IWAIS XI, Montréal, June 2005 Modern Meteorology and Atmospheric Icing Svein M. Fikke Meteorological consultant – overhead lines, Lindeveien 1, 1470 Lørenskog, Norway
[email protected] Abstract—Although the water cycle in the atmosphere is still not according to local experiences. Now we all agree to described well enough to provide reliable input parameters for encompass all phenomena that cause accretions of water in its the liquid water content of the air or precipitation rate, fine-scale frozen stage on any type of object into the term “icing” [1], atmospheric models can now describe wind speed, wind direction, air temperature and vertical stability taking [2]. We differentiate icing according to the process during topographical details into account with a horizontal scale of 100 which the accretion is formed. m or less. This means that these models can provide much more “Atmospheric icing” is therefore now a global term for: detailed information than any observation network can do - in-cloud icing, concerning both weather and icing data. Examples are shown on - precipitation icing, and the application of such models for detailed studies on power lines. - hoar frost. A comprehensive scheme for combining models for weather dependent impacts on overhead lines and weather forecasting In-cloud icing is often also denoted as (soft and hard) rime models is suggested. icing. Precipitation icing may result in I. INTRODUCTION - freezing rain, TMOSPHERIC icing has been on the agenda for - wet snow, and A international collaboration since the very first IWAIS - dry snow. (although it was not called so then) in Hanover, New Hoar frost is the result of a phase transition direct from Hampshire, in 1982.