FAA Advisory Circular AC 91-74B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pitot-Static System Blockage Effects on Airspeed Indicator
The Dramatic Effects of Pitot-Static System Blockages and Failures by Luiz Roberto Monteiro de Oliveira . Table of Contents I ‐ Introduction…………………………………………………………………………………………………………….1 II ‐ Pitot‐Static Instruments…………………………………………………………………………………………..3 III ‐ Blockage Scenarios – Description……………………………..…………………………………….…..…11 IV ‐ Examples of the Blockage Scenarios…………………..……………………………………………….…15 V ‐ Disclaimer………………………………………………………………………………………………………………50 VI ‐ References…………………………………………………………………………………………….…..……..……51 Please also review and understand the disclaimer found at the end of the article before applying the information contained herein. I - Introduction This article takes a comprehensive look into Pitot-static system blockages and failures. These typically affect the airspeed indicator (ASI), vertical speed indicator (VSI) and altimeter. They can also affect the autopilot auto-throttle and other equipment that relies on airspeed and altitude information. There have been several commercial flights, more recently Air France's flight 447, whose crash could have been due, in part, to Pitot-static system issues and pilot reaction. It is plausible that the pilot at the controls could have become confused with the erroneous instrument readings of the airspeed and have unknowingly flown the aircraft out of control resulting in the crash. The goal of this article is to help remove or reduce, through knowledge, the likelihood of at least this one link in the chain of problems that can lead to accidents. Table 1 below is provided to summarize -
Airspeed Indicator Calibration
TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between -
Sept. 12, 1950 W
Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2 Sheets-Sheet. INVENTOR. M/2 2.7aar alwg,57. A77OAMA). Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2. Sheets-Sheet 2 N 2 2 %/ NYSASSESSN S2,222,W N N22N \ As I, mtRumaIII-m- III It's EARAs i RNSITIE, 2 72/ INVENTOR, M247 aeawosz. "/m2.ATTORNEY. Patented Sept. 12, 1950 2,522,337 UNITED STATES ; :PATENT OFFICE 2,522,337 MACH METER Walter Angst, Manhasset, N. Y., assignor to Square D Company, Detroit, Mich., a corpora tion of Michigan Application December 9, 1944, Serial No. 567,431 3 Claims. (Cl. 73-182). is 2 This invention relates to a Mach meter for air plurality of posts 8. Upon one of the posts 8 are craft for indicating the ratio of the true airspeed mounted a pair of serially connected aneroid cap of the craft to the speed of sound in the medium sules 9 and upon another of the posts 8 is in which the aircraft is traveling and the object mounted a diaphragm capsuler it. The aneroid of the invention is the provision of an instrument s: capsules 9 are sealed and the interior of the cas-l of this type for indicating the Mach number of an . ing is placed in communication with the static aircraft in fight. opening of a Pitot static tube through an opening The maximum safe Mach number of any air in the casing, not shown. The interior of the dia craft is the value of the ratio of true airspeed to phragm capsule is connected through the tub the speed of sound at which the laminar flow of ing 2 to the Pitot or pressure opening of the Pitot air over the wings fails and shock Waves are en static tube through the opening 3 in the back countered. -
A New Ice Accretion Model for Aircraft Icing Based on Phase-Field Method
applied sciences Article A New Ice Accretion Model for Aircraft Icing Based on Phase-Field Method Hao Dai 1, Chunling Zhu 1,*, Huanyu Zhao 2 and Senyun Liu 3 1 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] 2 Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang 110034, China; [email protected] 3 Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang 621000, China; [email protected] * Correspondence: [email protected] Abstract: Aircraft icing presents a serious threat to the aerodynamic performance and safety of aircraft. The numerical simulation method for the accurate prediction of icing shape is an important method to evaluate icing hazards and develop aircraft icing protection systems. Referring to the phase-field method, a new ice accretion mathematical model is developed to predict the ice shape. The mass fraction of ice in the mixture is selected as the phase parameter, and the phase equation is established with a freezing coefficient. Meanwhile, the mixture thickness and temperature are determined by combining mass conservation and energy balance. Ice accretions are simulated under typical ice conditions, including rime ice, glaze ice and mixed ice, and the ice shape and its characteristics are analyzed and compared with those provided by experiments and LEWICE. The results show that the phase-field ice accretion model can predict the ice shape under different icing conditions, especially reflecting some main characteristics of glaze ice. Keywords: numerical simulation; phase-field method; aircraft icing; ice accretion model Citation: Dai, H.; Zhu, C.; Zhao, H.; Liu, S. -
In-Cloud Icing and Supercooled Cloud Microphysics: from Reanalysis to Mesoscale Modeling
UNIVERSITY OF QUEBEC AT CHICOUTIMI MANUSCRIPT-BASED THESIS PRESENTED TO UNIVERSITY OF QUEBEC AT CHICOUTIMI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHIAE DOCTOR Ph.D. IN EARTH AND ATMOSPHERIC SCIENCES OFFERED AT UNIVERSITY OF QUEBEC AT MONTREAL UNDER A MEMORANDUM OF UNDERSTANDING WITH THE UNIVERSITY OF QUEBEC AT CHICOUTIMI BY FAYÇAL LAMRAOUI IN-CLOUD ICING AND SUPERCOOLED CLOUD MICROPHYSICS: FROM REANALYSIS TO MESOSCALE MODELING NOVEMBER 2014 © Fayçal Lamraoui, 2014 The ice storm - January 1998 Oil on canvas painting – Artist: A. Poirier In the distance, the Montérégie, viewed from Mont-Royal (Montreal, Quebec, Canada) (Courtesy of the community Ste-Croix, Saint-Laurent) iii ABSTRACT In-cloud icing is continually associated with potential hazardous meteorological conditions at higher altitudes in the troposphere across the world and near surface over mountainous and cold climate regions. This PhD thesis aims to scrutinize the horizontal and vertical characteristics of near-surface in-cloud icing events, the associated cloud microphysics, develop and demonstrate an innovative method to determine the climatology of icing events at high resolution. In reference to ice accretion, the quantification of icing events is based on the cylinder model. With the use of North American Regional Reanalysis, a preliminary mapping of the icing severity index spanning a 32-year time period is introduced and in that way the freezing precipitation during the ice storm of January 1998 is quantified and compared to observations. Also, case studies over Mount- Bélair and Bagotville are investigated. The assessment of icing events obtained from NARR demonstrates agreements with observation over simple terrains and disparities over complex terrains, due to the coarse resolution of the reanalysis. -
High-Resolution Simulations of Freezing Drizzle and Freezing Rain and Comparisons to Observations
High-resolution simulations of freezing drizzle and freezing rain and comparisons to observations Greg Thompson Research Applications Laboratory National Center for Atmospheric Research additional contributions by: Roy Rasmussen, Trude Eidhammer, Kyoko Ikeda, Changhai Liu, Pedro Jimenez, Mei Xu, Stan Benjamin Winterwind 7 Feb 2017, Skelleftea, Sweden Outline • Brief History • High-Resolution Forecasts o Supercooled water drops aloft o Ground icing • Verification o Weather Research & Forecasting, WRF o High Resolution Rapid Refresh, HRRR • Next steps o Time-lag ensemble average o Making clouds better o WISLINE project and AROME model With respect to Numerical Weather Prediction The microphysics scheme is a component in a weather model responsible for: • Condensing water vapor into droplets • Model collisions with other droplets to become drizzle/rain • Creating ice crystals via droplet freezing or vapor-to-ice conversion • Growing ice crystals to snow size • Letting snow collect cloud water droplets (riming or accretion) • Large drops freeze into hail, snow rimes heavily to create graupel • Making rain, snow, and graupel fall to earth • etc. The treatment of processes going between water vapor, liquid water, and ice. Cloud physics & precipitation NCAR-RAL microphysics scheme Scheme version/generation Research or operational model Reisner, Rasmussen, Bruintjes (1998MWR) MM5 Rapid Update Cycle (RUC) Thompson, Rasmussen, Manning (2004MWR) MM5 WRF RUC Thompson, Field, Rasmussen, Hall (2008MWR) MM5 WRF & HWRF RUC Rapid Refresh (RAP) High-Res -
Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype. -
Thermometer 1 Thermometer
Thermometer 1 Thermometer Developed during the 16th and 17th centuries, a thermometer (from the Greek θερμός (thermo) meaning "warm" and meter, "to measure") is a device that measures temperature or temperature gradient using a variety of different principles.[1] A thermometer has two important elements: the temperature sensor (e.g. the bulb on a mercury thermometer) in which some physical change occurs with temperature, plus some means of converting this physical change into a numerical value (e.g. the scale on a mercury thermometer). A clinical mercury-in-glass thermometer There are many types of thermometer and many uses for thermometers, as detailed below in sections of this article. Temperature While an individual thermometer is able to measure degrees of hotness, the readings on two thermometers cannot be compared unless they conform to an agreed scale. There is today an absolute thermodynamic temperature scale. Internationally agreed temperature scales are designed to approximate this closely, based on fixed points and interpolating thermometers. The most recent official temperature scale is the International Temperature Scale of 1990. It extends from 0.65 K (−272.5 °C; −458.5 °F) to approximately 1358 K (1085 °C; 1985 °F). Thermometer Thermometer 2 Development Various authors have credited the invention of the thermometer to Cornelius Drebbel, Robert Fludd, Galileo Galilei or Santorio Santorio. The thermometer was not a single invention, however, but a development. Philo of Byzantium and Hero of Alexandria knew of the principle that certain substances, notably air, expand and contract and described a demonstration in which a closed tube partially filled with air had its end in a container of water.[2] The expansion and contraction of the air caused the position of the water/air interface to move along the tube. -
PROPULSION SYSTEM/FLIGHT CONTROL INTEGRATION for SUPERSONIC AIRCRAFT Paul J
PROPULSION SYSTEM/FLIGHT CONTROL INTEGRATION FOR SUPERSONIC AIRCRAFT Paul J. Reukauf and Frank W. Burcham , Jr. NASA Dryden Flight Research Center SUMMARY The NASA Dryden Flight Research Center is engaged in several programs to study digital integrated control systems. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. In this program, the existing analog air-data computer, autothrottle, autopilot, and inlet control systems are to be converted to digital systems by using a general purpose airborne computer and interface unit. First, the existing control laws are to be programed and tested in flight. Then, integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are to be tested in flight. Analysis indicates that an integrated autothrottle-autopilot gives good flight path control and that observers can be used to replace failed sensors. INTRODUCTION Supersonic airplanes, such as the XB-70, YF-12, F-111, and F-15 airplanes, exhibit strong interactions between the engine and the inlet or between the propul- sion system and the airframe (refs. 1 and 2) . Taking advantage of possible favor- able interactions and eliminating or minimizing unfavorable interactions is a chal- lenging control problem with the potential for significant improvements in fuel consumption, range, and performance. In the past, engine, inlet, and flight control systems were usually developed separately, with a minimum of integration. It has often been possible to optimize the controls for a single design point, but off-design control performance usually suffered. -
Pilots Can Minimize the Likelihood of Aircraft Roll Upset in Severe Icing
FLIGHT SAFETY FOUNDATION JANUARY 1996 FLIGHT SAFETY DIGEST Pilots Can Minimize the Likelihood of Roll Upset in Severe Icing FLIGHT SAFETY FOUNDATION For Everyone Concerned Flight Safety Digest With the Safety of Flight Vol. 15 No. 1 January 1996 Officers/Staff In This Issue Stuart Matthews Chairman, President and CEO Pilots Can Minimize the Likelihood of Board of Governors Roll Upset in Severe Icing 1 Robert Reed Gray, Esq. Under unusual conditions associated with General Counsel and Secretary Board of Governors supercooled large droplets, roll upset can result from ice accretion on a sensitive area of the wing, ADMINISTRATIVE aft of the deicing boots. Pilots must be sensitive Nancy Richards to cues — visual, audible and tactile — that Executive Secretary identify severe icing conditions, and then promptly exit the icing conditions before control FINANCIAL of the airplane is degraded to a hazardous level. Brigette Adkins Accountant Approach-and-landing Accidents TECHNICAL Accounted for Majority of Commercial 10 Robert H. Vandel Director of Technical Projects Jet Hull Losses, 1959–1994 MEMBERSHIP The flight crew was the primary causal factor in the largest number of commercial jet hull-loss J. Edward Peery Director of Membership and Development accidents, according to Boeing statistics. Ahlam Wahdan Assistant to the Director of Membership and Development Report Disputes Commission’s Findings on Mt. Erebus Accident 14 PUBLICATIONS Book offers guidance on successful corporate Roger Rozelle aviation management. Director of Publications Girard Steichen Assistant Director of Publications Airbus A300 Crew Anticipates Clearance, Rick Darby Makes Unauthorized Takeoff 18 Senior Editor Helicopter strikes electrical wires, with two Karen K. -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
Boeing Submission for Asiana Airlines (AAR) 777-200ER HL7742 Landing Accident at San Francisco – 6 July 2013
Michelle E. Bernson The Boeing Company Chief Engineer P.O. Box 3707 MC 07-32 Air Safety Investigation Seattle, WA 98124-2207 Commercial Airplanes 17 March 2014 66-ZB-H200-ASI-18750 Mr. Bill English Investigator In Charge National Transportation Safety Board 490 L’Enfant Plaza, SW Washington DC 20594 via e-mail: [email protected] Subject: Boeing Submission for Asiana Airlines (AAR) 777-200ER HL7742 Landing Accident at San Francisco – 6 July 2013 Reference: NTSB Tech Review Meeting on 13 February 2014 Dear Mr. English: As requested during the reference technical review, please find the attached Boeing submission on the subject accident. Per your request we are sending this electronic version to your attention for distribution within the NTSB. We would like to thank the NTSB for giving us the opportunity to make this submission. If you have any questions, please don’t hesitate to contact us. Best regardsregards,, Michelle E. E Bernson Chief Engineer Air Safety Investigation Enclosure: Boeing Submission to the NTSB for the subject accident Submission to the National Transportation Safety Board for the Asiana 777-200ER – HL7742 Landing Accident at San Francisco 6 July 2013 The Boeing Company 17 March 2014 INTRODUCTION On 6 July 2013, at approximately 11:28 a.m. Pacific Standard Time, a Boeing 777-200ER airplane, registration HL7742, operating as Asiana Airlines Flight 214 on a flight from Seoul, South Korea, impacted the seawall just short of Runway 28L at San Francisco International Airport. Visual meteorological conditions prevailed at the time of the accident with clear visibility and sunny skies.