Meteorological and Environmental Inputs to Aviation Systems

Total Page:16

File Type:pdf, Size:1020Kb

Meteorological and Environmental Inputs to Aviation Systems https://ntrs.nasa.gov/search.jsp?R=19880015721 2020-03-20T07:07:10+00:00Z NASA Conference Publication 2498 c Meteorological and Environmental Inputs to Aviation Systems Proceedings of a workshop held at the University of Tennessee Space Institute in Tullahoma, Tennessee March 12-14, 1985 NASA Conference Publication 2498 Meteorological and Environmental Inputs to Aviation Systems . Edited by Dennis W. Camp and Walter Frost University of Tennessee Space Institute Tullahoma, Tennessee Proceedings of a workshop jointly sponsored by the National Aeronautics and Space Administration, .National Oceanic and Atmospheric Administration (Department of Commerce), Federal Aviation Administration (Department of Transportation), Department of Defense, and Office of the Federal Coordinator for Meteorology, and held at the University of Tennessee Space Institute in Tullahoma, Tennessee March 12-14, 1985 National Aeronautics and Space Administration Scientific and Technical Information Division PREFACE The first in a series of annual workshops addressing meteorological inputs to aviation systems was held on March 17-19, 1977, at the University of Tennessee Space Institute in Tullahoma, Tennessee. The workshops were initially sponsored by NASA, NOAA and the FAA, and were later joined in sponsorship by DOD and the Office of the Federal Coordinator. They have provided a forum for open discussion of weather and environmental concerns between the research, operations and user organizations within the aviation community. Following the past few workshops, several individuals have voiced concern over the benefit of what has become a continuing workshop with in many instances the same continuing recommendations. To assess the value of a continuing workshop one must look beyond a simple comparison of recommendations made year to year. Although problems appear very rapidly, such as those resulting from an accident, solutions usually span many years and involve time-consuming activities such as funding cycles, studies, experiments, and cooperation from multiple organizations. The values I would give high marks to are in programmatic guidance and communication. Over the history of this workshop I have seen programs within my own organiza- tion NASA initiated and/or guided from information gained here at Tullahoma. The task of communicating is difficult when people are on the same side of an issue; it is almost impossible when requirements of operators, researchers, and users are debated before the Congress or the public in a competitive environment. The continuing Workshops on Meteorological and Environmental Inputs To Avi- ation Systems provide a needed non-competitive atmosphere for open discussion of aviation problems and a critique of ongoing activities from a diversified, but involved audience. Joseph W. Stickle Chief, Low-Speed Aerodynamics Division TABLE OF CONTENTS I. EXECUTIVE SUMMARY ................... 1 11. INTRODUCTION AND WELCOME .............17 111. OVERVIEW PRESENTATIONS ................23 AUTOMATION OF SURFACE OBSERVATIONS PROGRAM Steve E. Short ..........................?25 BRACKNELL METEOROLOGICAL OFFICE Colin R. Flood ..........................41 SPECIAL OBSERVATIONS Donald Beran ..........................53 APPLICATIONS PRODUCTS OF AVIATION FORECAST lMODELS John P. Garthner ........................67 GENERAL-AVIATION'S VIEW OF PROGRESS 15 THE AVIATION WEATHER SYSTEM Douglas J. Lundgren .......................79 PANEL DISCUSSION FOLLOWING OVERVIEW PRESENTATIONS . 87 IV. BANQUET PRESENTATION Dub Yarbrough .........................97 V. IMPROMPTU PRESENTATIONS ............. 101 AIRCRAFTILIDAR TURBULENCE COMPARISON Kao-Huah Huang ....................... 103 LIGHTNING DETECTION AND LOCATING SYSTEMS Russell L. Hovey ........................115 NATIONAL PLAIL'S FOR AIRCRAFT ICING AND IMPROVED AIRCRAFT ICING FORECASTS AND ASSOCIATED WARNING SERVICES Ralph P. Pass ......................... 121 OBJECTIVE DETECTION AND FORECASTING OF CAT: A STATUS REPORT John L. Keller ......................... COMPARATIVE VERIFICATION BETWEEN GEM AND OFFICIAL AVIATION TERMINAL FORECASTS Robert G. Miller ....................... COMPUTER AND MODEL CHANGES AT NIMC Charles H. Sprinkle ....................... DENVER ARTCC EVALUATION OF PROFS MESOSCALE WEATHER PRODUCTS John W. Hinkelman ..................... THE FAA/M.~.T.LIN 1 COLN LABORATORY DOPPLER WEATHER RADAR PROGRA-M James E. Evans ..................... VI. COMMITTEE SUMMARY REPORTS ........... SUhIhL4RY REPORT: OBSERVIXG WEATHER Chairman: Alexander E. %lacDonald ............... SUMhlXRY REPORT: PRODUCTS AND SERVICES Chairman: Col. John \V. Oliver ................. SUMMARY REPORT: SPECIAL OBSERVATIONS Chairman: Gerald F. O'Brien .................. SUMMARY REPORT: AVIATION FORECAST MODELS Chairman: Raymond J. Stralka ................. SUMMARY REPORT: USING THE SYSTEM Chairman: John R. Gallimore .................. SUMMARY REPORT: PASSENGER AIRLINES Chairman: Russell Crawford ................. SUMMARY REPORT: CARGO AIRLINES Chairman: William H . Pickron ................. 195 SUMMARY REPORT: CORPORATE AVIATION Chairman: Richard J . Van Gemert ................ L98 SUMMARY REPORT: GENERAL AVIATION Chairman: Elaine McCoy .................... 202 SUMMARY REPORT: MILITARY ,4VIATION Chairman: Lt . Col . James L. Crook ............... 205 VII . CONCLUDING REMARKS ................. 211 APPENDICES .......................... 21.3 APPENDIX A: LIST OF ACRONYMS ............. 217 APPENDIX B: ROSTER OF WORKSHOP PARTICIPANTS .... 225 COMMITTEES SECTION I EXECUTIVE SUMMARY EXECUTIVE SUMMARY Introduction There have been seven workshops concerned with meteorological and environ- mental inputs to aviation systems. The first one was held in March 1977 and the last in March 1985. These workshops have served a twofold purpose for the gov- ernment sponsors (NASA, FAA, NOAA, DOD, and OFCM). Their first purpose was to bring together the various disciplines of the aviation community with atmo- spheric scientists and meteorologists in interactive discussions concerning needs of the community and how to satisfy these needs. Their second purpose was to use the established and identified needs to develop recommendations that serve as a basis for structuring relevant programs of the sponsoring agencies. An indication of how well the purpose of these workshops has been achieved is given in the various reports, papers, and presentations that have been made on the workshops (Camp and Frost, 1977, 1979, 1981, 1985a, 1985b; Camp, et al. 1980a, 1980b, 1981; Frost and Camp, 1978, 1980, 1982, 1983, Frost, et al. 1979a, 1979b; and Miller, 1987; [I-161. Due to the coverage of the previous workshops, this article will be concerned only with the results (recommendations) of the seventh workshop. Workshop Structure and Operation The basic objective of all the workshops has been and is to satisfy the needs of the sponsoring agencies relative to such factors as 1) Knowledge of the inter- action of the atmosphere with aircraft and airport operations, 2) Better definition and implenlentation of meteorological services for the operators. and 3) The col- lection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the operational and educational needs of the aviation community. The specific theme of each workshop gives an insight into its particular fo- cus. "Aviation Weather/Observing, Distributing, and Using the Products" was the theme for the Eighth Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems. This workshop theme, coupled with the focusing of the interactive committees, according to the committee titles (Table I), tended to direct the workshop in the desired area of effort. These interactive committee ses- sions are considered to be a major element contributing to the success of the annual workshops. The type of information desired from the interactive committee sessions was what was the effect of the particular subject area (Fixed Committee Title) on the operation of the various segments (Floating Committee Title) of the aviation community? Each of the committees was asked to focus its discussion according to the committee guidelines given in Table 2. The workshop began with a series of five overview papers (Table 3). Papers on previous workshop accomplishments, interactive weather displays, and impromptu tasks were also given. These also helped to set the tempo in the vein of the workshop theme, as did the banquet and dinner presentations. The structure (program) of this workshop was very similar to previous work- shops. It began with the overview presentations, followed in order by interactive committee sessions, banquet, impromptu presentations, more interactive committee sessions, dinner presentation, more interactive committee sessions, and a conclusion with a plenary session consisting of the committee chairmen presenting the results and recommendat ions of their committees. Comments and Recommendations At this workshop, the committee chairmen were requested to use a special procedure (form) for reporting their comments and recommendations. Specifically, they were asked to give the results of their efforts in the following order: 1) state as concisely as possible the issue, 2) briefly summarize the discussion of the issue, 3) state recommended action, 4) indicate who should be responsible for accomplishing any required effort, and 5) specify the priority of issues discussed. TABLE 1. INTERACTIVE COMMITTEE TITLES FOR THE EIGHTH
Recommended publications
  • In-Cloud Icing and Supercooled Cloud Microphysics: from Reanalysis to Mesoscale Modeling
    UNIVERSITY OF QUEBEC AT CHICOUTIMI MANUSCRIPT-BASED THESIS PRESENTED TO UNIVERSITY OF QUEBEC AT CHICOUTIMI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHIAE DOCTOR Ph.D. IN EARTH AND ATMOSPHERIC SCIENCES OFFERED AT UNIVERSITY OF QUEBEC AT MONTREAL UNDER A MEMORANDUM OF UNDERSTANDING WITH THE UNIVERSITY OF QUEBEC AT CHICOUTIMI BY FAYÇAL LAMRAOUI IN-CLOUD ICING AND SUPERCOOLED CLOUD MICROPHYSICS: FROM REANALYSIS TO MESOSCALE MODELING NOVEMBER 2014 © Fayçal Lamraoui, 2014 The ice storm - January 1998 Oil on canvas painting – Artist: A. Poirier In the distance, the Montérégie, viewed from Mont-Royal (Montreal, Quebec, Canada) (Courtesy of the community Ste-Croix, Saint-Laurent) iii ABSTRACT In-cloud icing is continually associated with potential hazardous meteorological conditions at higher altitudes in the troposphere across the world and near surface over mountainous and cold climate regions. This PhD thesis aims to scrutinize the horizontal and vertical characteristics of near-surface in-cloud icing events, the associated cloud microphysics, develop and demonstrate an innovative method to determine the climatology of icing events at high resolution. In reference to ice accretion, the quantification of icing events is based on the cylinder model. With the use of North American Regional Reanalysis, a preliminary mapping of the icing severity index spanning a 32-year time period is introduced and in that way the freezing precipitation during the ice storm of January 1998 is quantified and compared to observations. Also, case studies over Mount- Bélair and Bagotville are investigated. The assessment of icing events obtained from NARR demonstrates agreements with observation over simple terrains and disparities over complex terrains, due to the coarse resolution of the reanalysis.
    [Show full text]
  • Operating Instructions Present Weather Sensor Parsivel
    Operating instructions Present Weather Sensor Parsivel English We reserve the right to make technical changes! Table of contents 1 Scope of delivery 5 2 Part numbers 5 3 Parsivel Factory Settings 6 4 Safety instructions 7 5 Introduction 8 5.1 Functional principle 8 5.2 Connection Options for the Parsivel 9 6 Installing the Parsivel 10 6.1 Cable Selection 10 6.2 Wiring the Parsivel 11 6.3 Grounding the Parsivel 13 6.4 Installing the Parsivel 14 7 Connecting the Parsivel to a data logger 15 7.1 Connecting the Parsivel to the LogoSens Station Manager via RS-485 interface 15 7.2 Connecting the Parsivel to a Data logger via the SDI-12 Interface 17 7.3 Connecting the Parsivel to a Data Logger with Impulse/Status Input 21 8 Connecting the Parsivel to a PC 23 8.1 Connecting the Parsivel to Interface Converter RS-485/RS-232 (Accessories) 23 8.2 Connecting the Parsivel to the ADAM-4520 Converter RS-485/RS-232 (Accessories) 25 8.3 Connecting the Parsivel to Interface Converter RS-485/USB (Accessories) 26 8.4 Connecting the Parsivel to any RS-485 Interface Converter 27 8.5 Connecting the Parsivel for configuration via the Service-Tool to a PC 27 9 Connecting the Parsivel to a Power Supply (Accessory) 29 10 Heating the Parsivel sensor heads 30 11 Operating Parsivel with a Terminal software 31 11.1 Set up communications between the Parsivel and the terminal program 31 11.2 Measured value numbers 32 11.3 Defining the formatting string 33 11.4 OTT telegram 33 11.5 Updating Parsivel Firmware 34 12 Maintenance 36 12.1 Cleaning the laser’s protective glass
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • Thermometer 1 Thermometer
    Thermometer 1 Thermometer Developed during the 16th and 17th centuries, a thermometer (from the Greek θερμός (thermo) meaning "warm" and meter, "to measure") is a device that measures temperature or temperature gradient using a variety of different principles.[1] A thermometer has two important elements: the temperature sensor (e.g. the bulb on a mercury thermometer) in which some physical change occurs with temperature, plus some means of converting this physical change into a numerical value (e.g. the scale on a mercury thermometer). A clinical mercury-in-glass thermometer There are many types of thermometer and many uses for thermometers, as detailed below in sections of this article. Temperature While an individual thermometer is able to measure degrees of hotness, the readings on two thermometers cannot be compared unless they conform to an agreed scale. There is today an absolute thermodynamic temperature scale. Internationally agreed temperature scales are designed to approximate this closely, based on fixed points and interpolating thermometers. The most recent official temperature scale is the International Temperature Scale of 1990. It extends from 0.65 K (−272.5 °C; −458.5 °F) to approximately 1358 K (1085 °C; 1985 °F). Thermometer Thermometer 2 Development Various authors have credited the invention of the thermometer to Cornelius Drebbel, Robert Fludd, Galileo Galilei or Santorio Santorio. The thermometer was not a single invention, however, but a development. Philo of Byzantium and Hero of Alexandria knew of the principle that certain substances, notably air, expand and contract and described a demonstration in which a closed tube partially filled with air had its end in a container of water.[2] The expansion and contraction of the air caused the position of the water/air interface to move along the tube.
    [Show full text]
  • How to Get Weather and Pest Data?
    How to get weather and pest data? François Brun (ACTA) with contributions of the other lecturers IPM CC, October 2016 Which data ? • Weather and Climate – Weather : conditions of the atmosphere over a short period of time – climate : atmosphere behavior over relatively long periods of time. • Pest and Disease data – Effects of conditions : experiments – Epidemiology : observation / monitoring networks Weather and Climate data Past Weather Historical Climate Data – Ground weather station – Average and variability – Satellite,… – Real long time series – Reconstituted long series – Simulated long series (1961- 1990 : reference) Forecast Weather Climate projections – Prediction with model – Prediction with model – Short term : 1h, 3h, 12h, 24, – IPCC report 3 day, 15 day. – 2021-2050 : middle of – Seasonal prediction : 1 to 6 century period months (~ el nino ) – 2071-2100 : end of century period Past Weather data Standard weather station Standard : at 2 m height • Frequent Useful for us – Thermometer : temperature – Anemometer : wind speed – Wind vane : wind direction – Hygrometer : humidity – Barometer : atmospheric pressure • Less frequent – Ceilometer : cloud height – Present weather sensor – Visibility sensor – Rain gauge : liquid-equivalent precipitation – Ultrasonic snow depth sensor for measuring depth of snow © Choi – Pyranometer : solar radiation Past Weather data In field / micro weather observations Wetness duration Temperature and humidity in canopy Water in soil © Choi Past Weather data Where to retrieve them ? • Your own weather
    [Show full text]
  • ICICLE Program Updates (Stephanie Divito, FAA)
    In-Cloud ICing and Large-drop Experiment Stephanie DiVito, FAA October 13, 2020 New FAA Flight program: ICICLE In-Cloud ICing and Large-drop Experiment Other Participants: Desert Research Institute (DRI), National Oceanic and Atmospheric Association (NOAA) Earth System Research Laboratory (ESRL), National Aeronautics and Space Administration (NASA) Langley Research Center, Meteo-France, UK Met Office, Deutscher Wetterdienst (German Meteorological Office), Northern Illinois University, Iowa State University, University of Illinois at Urbana-Champaign, and Valparaiso University 10/13/2020 FPAW: ICICLE 2 Flight Program Overview • January 27 – March 8, 2019 • Operations Base: Rockford, Illinois – Domain: 200 nmi radius • NRC Convair-580 aircraft – Owned and operated by NRC Flight Research Laboratory – Jointly instrumented by NRC and ECCC – Extensively used in icing research for over 25 years • 120 flight hours (110 for research) • 26 research flights (30 total) 10/13/2020 FPAW: ICICLE 3 Scientific & Technical Objectives • Observe, document, and further characterize a variety of in-flight and surface-level icing conditions – Environmental parameters and particle size distribution for: . Small-drop icing, FZDZ and FZRA – Transitions between those environments & non-icing environments – Synoptic, mesoscale & local effects • Assess ability of operational data, icing tools and products to diagnose and forecast those features – Satellite – GOES-16 – Radar – Individual NEXRADs, MRMS – Surface based – ASOS, AWOS, etc. – Numerical Weather Prediction (NWP) models – Microphysical parameterizations, TLE, etc. – Icing Products - CIP, FIP, other icing tools 10/13/2020 FPAW: ICICLE 4 Sampling Objectives (1/2) • Collect data in a wide variety of icing and non-icing conditions – Small-drop and large-drop . Including those with (& without) FZDZ and FZRA – Null icing environments .
    [Show full text]
  • Ott Parsivel - Enhanced Precipitation Identifier for Present Weather, Drop Size Distribution and Radar Reflectivity - Ott Messtechnik, Germany
    ® OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER FOR PRESENT WEATHER, DROP SIZE DISTRIBUTION AND RADAR REFLECTIVITY - OTT MESSTECHNIK, GERMANY Kurt Nemeth1, Martin Löffler-Mang2 1 OTT Messtechnik GmbH & Co. KG, Kempten (Germany) 2 HTW, Saarbrücken (Germany) as a laser-optic enhanced precipitation identifier and present weather sensor. The patented extinction method for simultaneous measurements of particle size and velocity of all liquid and solid precipitation employs a direct physical measurement principle and classification of hydrometeors. The instrument provides a full picture of precipitation events during any kind of weather phenomenon and provides accurate reporting of precipitation types, accumulation and intensities without degradation of per- formance in severe outdoor environments. Parsivel® operates in any climate regime and the built-in heating device minimizes the negative effect of freezing and frozen precipitation accreting critical surfaces on the instrument. Parsivel® can be integrated into an Automated Surface/ Weather Observing System (ASOS/AWOS) as part of the sensor suite. The derived data can be processed and 1. Introduction included into transmitted weather observation reports and messages (WMO, SYNOP, METAR and NWS codes). ® OTT Parsivel : Laser based optical Disdrometer for 1.2. Performance, accuracy and calibration procedure simultaneous measurement of PARticle SIze and VELocity of all liquid and solid precipitation. This state The new generation of Parsivel® disdrometer provides of the art instrument, designed to operate under all the latest state of the art optical laser technology. Each weather conditions, is capable of fulfilling multiple hydrometeor, which falls through the measuring area is meteorological applications: present weather sensing, measured simultaneously for size and velocity with an optical precipitation gauging, enhanced precipitation acquisition cycle of 50 kHz.
    [Show full text]
  • Guidelines for Meteorological Icing Models, Statistical Methods and Topographical Effects
    291 GUIDELINES FOR METEOROLOGICAL ICING MODELS, STATISTICAL METHODS AND TOPOGRAPHICAL EFFECTS Working Group B2.16 Task Force 03 April 2006 GUIDELINES FOR METEOROLOGICAL ICING MODELS, STATISTICAL METHODS AND TOPOGRAPHICAL EFFECTS Task Force B2.16.03 Task Force Members: André Leblond – Canada (TF Leader) Svein M. Fikke – Norway (WG Convenor) Brian Wareing – United Kingdom (WG Secretary) Sergey Chereshnyuk – Russia Árni Jón Elíasson – Iceland Masoud Farzaneh – Canada Angel Gallego – Spain Asim Haldar – Canada Claude Hardy – Canada Henry Hawes – Australia Magdi Ishac – Canada Samy Krishnasamy – Canada Marc Le-Du – France Yukichi Sakamoto – Japan Konstantin Savadjiev – Canada Vladimir Shkaptsov – Russia Naohiko Sudo – Japan Sergey Turbin – Ukraine Other Working Group Members: Anand P. Goel – Canada Franc Jakl – Slovenia Leon Kempner – Canada Ruy Carlos Ramos de Menezes – Brasil Tihomir Popovic – Serbia Jan Rogier – Belgium Dario Ronzio – Italy Tapani Seppa – USA Noriyoshi Sugawara – Japan Copyright © 2006 “Ownership of a CIGRE publication, whether in paper form or on electronic support only infers right of use for personal purposes. Are prohibited, except if explicitly agreed by CIGRE, total or partial reproduction of the publication for use other than personal and transfer to a third party; hence circulation on any intranet or other company network is forbidden”. Disclaimer notice “CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the
    [Show full text]
  • Launching of New RS90-AG Radiosonde Valuable
    40813_VaisalaNews_155 7.12.2000 18:29 Sivu 1 155/2001155/2001 After Extensive Field Testing: Launching of New RS90-AG Radiosonde Customer Satisfaction Survey for WOBS Customers: Valuable Customer Feedback Using Product Platforms: Next Generation of Surface Weather Software Products New ROSA Weather Station Generation: Evolution Rather Than Revolution 40813_VaisalaNews_155 7.12.2000 18:29 Sivu 2 Contents President’s Column 3 Serving Better Our Customers 4 Customer Satisfaction Survey for WOBS Customers: Valuable Customer Feedback 6 Next Generation of Surface Weather Software Products 8 Meteorological Data Management System: Aurora’s payload system was MetMan for Multi-purpose Data Collection 10 developed for high altitude dropsonde missions, for use on Compact MAWS301 Automatic Weather Station 12 low speed platforms such as Demanding Tactical Military Needs 14 Pathfinder, Altus and Perseus B. Due to funding cuts, the Vaisala Technology for the U.S. Air Force 17 dropsonde payload was not Military Exhibition EUROSATORY 2000 in France 18 permitted to be deployed and Climatological Conditions on the My Thuan Bridge 19 operated from Pathfinder. Nevertheless, Aurora tested and Major Contract from the U.S. qualified the payload for flight, National Weather Service 20 using its high altitude test Using L and S-Band Boundary Layer Radars and a chambers. Vaisala’s dropsondes were an integral part of this Millimeter-wave Doppler Radar with Vaisala MAWS: scientific experiment. Weather Observations 20 Researchers are using dropson- Royal Botanic Gardens Melbourne: des to get a more accurate pic- Fostering Plant Conservation 24 ture of hurricanes. Fire RAWS Unit on the Bircher Burned Over 26 Launching of RS90-AG Radiosonde 29 Vaisala’s MAWS301 Automatic Global Positioning System 31 Weather Station is a new gener- ation weather station especially Significant Radiosonde Order designed for applications where from Met Service Canada 32 no commercial power or com- Vaisala’s Next Generation munication networks are avail- 32 able or economically installed.
    [Show full text]
  • Observation of Present and Past Weather; State of the Ground
    CHAPTER CONTENTS Page CHAPTER 14. OBSERVATION OF PRESENT AND PAST WEATHER; STATE OF THE GROUND .. 450 14.1 General ................................................................... 450 14.1.1 Definitions ......................................................... 450 14.1.2 Units and scales ..................................................... 450 14.1.3 Meteorological requirements ......................................... 451 14.1.4 Observation methods. 451 14.2 Observation of present and past weather ...................................... 451 14.2.1 Precipitation. 452 14.2.1.1 Objects of observation ....................................... 452 14.2.1.2 Instruments and measuring devices: precipitation type ........... 452 14.2.1.3 Instruments and measuring devices: precipitation intensity and character ............................................... 454 14.2.1.4 Instruments and measuring devices: multi-sensor approach ....... 455 14.2.2 Atmospheric obscurity and suspensoids ................................ 455 14.2.2.1 Objects of observation ....................................... 455 14.2.2.2 Instruments and measuring devices for obscurity and suspensoid characteristics .................................... 455 14.2.3 Other weather events ................................................ 456 14.2.3.1 Objects of observation ....................................... 456 14.2.3.2 Instruments and measuring devices. 457 14.2.4 State of the sky ...................................................... 457 14.2.4.1 Objects of observation ......................................
    [Show full text]
  • Ront November-Ddecember, 2002 National Weather Service Central Region Volume 1 Number 6
    The ront November-DDecember, 2002 National Weather Service Central Region Volume 1 Number 6 Technology at work for your safety In this issue: Conceived and deployed as stand alone systems for airports, weather sensors and radar systems now share information to enhance safety and efficiency in the National Airspace System. ITWS - Integrated Jim Roets, Lead Forecaster help the flow of air traffic and promote air Terminal Aviation Weather Center safety. One of those modernization com- Weather System The National Airspace System ponents is the Automated Surface (NAS) is a complex integration of many Observing System (ASOS). technologies. Besides the aircraft that fly There are two direct uses for ASOS, you and your family to vacation resorts, and the FAA’s Automated Weather or business meetings, many other tech- Observing System (AWOS). They are: nologies are at work - unseen, but critical Integrated Terminal Weather System MIAWS - Medium to aviation safety. The Federal Aviation (ITWS), and the Medium Intensity Intensity Airport Administration (FAA) is undertaking a Airport Weather System (MIAWS). The Weather System modernization of the NAS. One of the technologies that make up ITWS, shown modernization efforts is seeking to blend in Figure 1, expand the reach of the many weather and aircraft sensors, sur- observing site from the terminal to the en veillance radar, and computer model route environment. Their primary focus weather output into presentations that will is to reduce delays caused by weather, Gust fronts - Evolution and Detection Weather radar displays NWS - Doppler FAA - ITWS ASOS - It’s not just for airport observations anymore Mission Statement To enhance aviation safety by Source: MIT Lincoln Labs increasing the pilots’ knowledge of weather systems and processes Figure 1.
    [Show full text]
  • VPF-730 Visibility & Present Weather Sensor Datasheet Visibly Better
    VPF-730 Visibility & Present Weather Sensor Datasheet Visibly Better Robust, highly corrosion resistant design suited to offshore and general aviation applications Exclusive backscatter sensor gives unparalleled ability to identify frozen precipitation Proven forward scatter design simplifies installation and system integration, whilst providing the most accurate measurements The VPF-730 Visibility and Present Weather sensor provides accurate visibility and present weather KEY FEATURES & BENEFITS measurement in a compact and highly rugged package making it suited to both general and offshore aviation applications. These features also make the VPF-730 popular in applications where reliability and long life are important such as national weather service Highly corrosion resistant hard coat anodised networks and remote monitoring stations. enclosure Rugged and Reliable WMO Table 4680 and METAR present weather Our sensors are often installed in challenging environments, codes such as offshore platforms, where meteorological information is essential for operational safety. The sensor's physical design is optimised to ensure accurate measurement and reliable Automatic window contamination monitoring – operation even where driving rain and salt spray is a common ensures optimum accuracy whilst minimising occurrence. Low power heaters keep the windows free from maintenance requirements dew whilst high power heaters are optionally available to keep the optics free of blowing snow. Designed for aviation, research and general The operational life of a typical VPF series sensor is well in meteorological use – used on CAT III Runways excess of ten years, even in a marine environment, due to the in the UK hard coat anodise finish applied to the aluminium enclosure. The calculated Mean Time Between Failure (MTBF) is over 6 years, however field return data gives a figure in excess of 35 Easy integration with the ALS-2 Ambient Light years.
    [Show full text]