JO 7900.5D Chg.1

Total Page:16

File Type:pdf, Size:1020Kb

JO 7900.5D Chg.1 U.S. DEPARTMENT OF TRANSPORTATION JO 7900.SD CHANGE CHG 1 FEDERAL AVIATION ADMINISTRATION National Policy Effective Date: 11/29/2017 SUBJ: JO 7900.SD Surface Weather Observing 1. Purpose. This change amends practices and procedures in Surface Weather Observing and also defines the FAA Weather Observation Quality Control Program. 2. Audience. This order applies to all FAA and FAA-contract personnel, Limited Aviation Weather Reporting Stations (LAWRS) personnel, Non-Federal Observation (NF-OBS) Program personnel, as well as United States Coast Guard (USCG) personnel, as a component ofthe Department ofHomeland Security and engaged in taking and reporting aviation surface observations. 3. Where I can find this order. This order is available on the FAA Web site at http://faa.gov/air traffic/publications and on the MyFAA employee website at http://employees.faa.gov/tools resources/orders notices/. 4. Explanation of Changes. This change adds references to the new JO 7210.77, Non­ Federal Weather Observation Program Operation and Administration order and removes the old NF-OBS program from Appendix B. Backup procedures for manual and digital ATIS locations are prescribed. The FAA is now the certification authority for all FAA sponsored aviation weather observers. Notification procedures for the National Enterprise Management Center (NEMC) are added. Appendix B, Continuity of Service is added. Appendix L, Aviation Weather Observation Quality Control Program is also added. PAGE CHANGE CONTROL CHART RemovePa es Dated Insert Pa es Dated ii thru xi 12/20/16 ii thru xi 11/15/17 2 12/20/16 2 11/15/17 5 12/20/17 5 11/15/17 7 12/20/16 7 11/15/17 12 12/20/16 12 11/15/17 15 12/20/16 15 11/15/17 19 12/20/16 19 11/15/17 34 12/20/16 34 11/15/17 43 thru 45 12/20/16 43 thru 45 11/15/17 138 12/20/16 138 11/15/17 148 12/20/16 148 11/15/17 152 thru 153 12/20/16 152 thru 153 11/15/17 AppendixL 11/15/17 Distribution: Electronic 1 Initiated By: AJT-2 11/29/2017 JO 7900.5D Chg.1 5. Disposition of Transmittal. Retain this transmittal sheet until the directive is replaced by a new directive. 6. Distribution. This order is distributed to select offices in Washington Headquarters; Air Traffic Organization; Office ofOperations Planning; NAS Weather Office; Flight Standards Service; the Mike Monroney Aeronautical Center; the William J. Hughes Technical Center; the USCG Elizabeth City Facility; the Department of Defense (DoD); all air traffic field facilities; all Alaska flight service stations (FSS); FAA-contract weather; and the National Weather Service (NWS). Vice President, Air Traffic Services Air Traffic Organization 2 U.S. DEPARTMENT OF TRANSPORTATION ORDER FEDERAL AVIATION ADMINISTRATION JO 7900.5D Air Traffic Organization Policy Effective Date: 12/20/2016 SUBJ: Surface Weather Observing The Federal Aviation Administration (FAA) Surface Weather Observer Program is a component of the National Airspace System (NAS). It combines with other elements of the NAS to ensure the overall safety of air transportation services. The FAA is committed to providing the resources necessary to ensure the vibrancy of this critical aviation service. This order provides the practices and procedures for weather observation services that support the important role it plays in the mission of the FAA. The practices and procedures set forth in this order apply to all FAA personnel, FAA-contract personnel, and non-Federal Observer personnel who provide aviation weather observation services. Weather observer personnel are required to apply the provision of this order as it pertains to their observational responsibilities. Observers are expected to exercise experienced judgment when encountering situations not covered by this order. Distribution: Electronic Initiated By: AJT-2 11/15/2017 JO 7900.5D Table of Contents Chapter 1. Introduction..............................................................................................................1 1.1. Purpose of This Order......................................................................................................1 1.2. Audience ..........................................................................................................................1 1.3. Where to Find This Order ................................................................................................1 1.4. Cancellation .....................................................................................................................1 1.5. Explanation of Changes ...................................................................................................1 1.6. Abbreviations and Acronyms ..........................................................................................1 1.7. Relationship to FMH-1 and Other Documents ................................................................1 1.8. Applicability of Procedures and Practices .......................................................................2 1.9. User Responsibilities .......................................................................................................3 1.10. Distribution ......................................................................................................................3 1.11. Changing the Order..........................................................................................................3 1.12. Maintaining the Order......................................................................................................3 Chapter 2. Guidelines ................................................................................................................4 2.1. Introduction......................................................................................................................4 2.2. Types of Stations..............................................................................................................4 2.3. General Types of Observations........................................................................................5 2.4. Augmentation Requirements ...........................................................................................5 2.5. Backup Requirements ......................................................................................................6 2.6. Long-line Backup Requirements ...................................................................................11 2.7. Certification of Personnel and Currency Requirements ................................................12 2.8. Types and Content of METAR/SPECI Observations....................................................13 Chapter 3. General Procedures ................................................................................................14 3.1. Introduction....................................................................................................................14 3.2. Definitions......................................................................................................................14 3.3. Aviation Weather Observing Locations.........................................................................16 3.4. General Observing Practices..........................................................................................17 3.5. Dissemination ................................................................................................................18 3.6. Corrections to Transmitted Data....................................................................................18 3.7. Delayed Reports.............................................................................................................18 3.8. Rounding Off Numbers..................................................................................................19 3.9. Record Keeping and Forms ...........................................................................................19 3.10. Evaluating Weather Sensor Accuracy ...........................................................................19 3.11. Criteria for SPECI Observations....................................................................................19 3.12. Content of METAR/SPECI Observations .....................................................................21 Chapter 4. General Procedures at Automated Weather Stations .............................................32 4.1. Purpose...........................................................................................................................32 4.2. Types of Automated Stations.........................................................................................32 4.3. Certification ...................................................................................................................34 4.4. General Procedures ........................................................................................................34 4.5. General Equipment Procedures......................................................................................34 4.6. Procedures at Non-Federal Observation Sites ...............................................................35 4.7. Procedures at Non-Federal AWOS Sites .......................................................................35 ii 11/15/2017 JO 7900.5D 4.8. Procedures for Handling Aircraft Mishaps at Automated Sites.....................................35 4.9. General Requirements for Record Keeping ...................................................................35 Chapter 5. Augmentation Requirements at Automated Weather Stations ..............................36
Recommended publications
  • The Fujita Scale F‐Scale Intensity Wind Type of Damage Done Number Phrase Speed
    Weather‐Wind Worksheet 2 L2 MiSP Weather-Wind Speed and Direction Worksheet #2 L2 Name _____________________________ Date_____________ Tornados – Pressure and Wind Speed Introduction (excerpts from http://www.srh.noaa.gov/jetstream/tstorms/tornado.htm ) A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground. The United States experiences more tornadoes by far than any other country. In a typical year about 1000 tornadoes will strike the United States. The peak of the tornado season is April through June and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley." Most tornadoes are spawned from thunderstorms. Tornadoes can last from several seconds to more than an hour but most last less than 10 minutes. The size and/or shape of a tornado are no measure of its strength. Occasionally, small tornadoes do major damage and some very large tornadoes, over a quarter-mile wide, have produced only light damage. The Fujita Scale F‐Scale Intensity Wind Type of Damage Done Number Phrase Speed 40‐72 Some damage to chimneys; breaks branches off trees; F0 Gale tornado mph pushes over shallow‐rooted trees; damages sign boards. The lower limit is the beginning of hurricane wind speed; Moderate 73‐112 peels surface off roofs; mobile homes pushed off F1 tornado mph foundations or overturned; moving autos pushed off the roads; attached garages may be destroyed. Considerable damage. Roofs torn off frame houses; Significant 113‐157 mobile homes demolished; boxcars pushed over; large F2 tornado mph trees snapped or uprooted; light object missiles generated.
    [Show full text]
  • Kentucky Mesonet Weather Station Moves to Ephram White Park
    Home / News https://www.bgdailynews.com/news/kentucky-mesonet-weather-station-moves-to-ephram-white- park/article_5c142169-496b-5905-90c0-fb3ac31cfab0.html Kentucky Mesonet weather station moves to Ephram White Park By AARON MUDD [email protected] 9 min ago A Kentucky Mesonet weather station was recently relocated to Warren County’s Ephram White Park from its previous location near the General Motors Bowling Green Assembly Plant. Submitted photo courtesy of WKU Visitors to Ephram White Park might notice a new feature – a Kentucky Mesonet weather station has been relocated to the park from its previous location near the General Motors Corvette plant. Stuart Foster, director of the Kentucky Mesonet and the Kentucky Climate Center, said the move comes after the station was damaged during a lightning strike. He said the new location shouldn’t afect forecasting in the area. On the contrary, the real- time weather information the station ofers could become even more valuable in its new location at the park at 885 Mount Olivet Road. “With the growing population, nearby schools and industrial park, we felt it was important to keep coverage in that area so we worked with Chris Kummer and Warren County Parks and Recreation and partnered with them on the site at Ephram White Park,” Foster said in a news release. Part of a statewide network of 71 stations in 69 counties, the Mesonet station collects real- time data on temperature, precipitation, humidity, barometric pressure, solar radiation, soil moisture, soil temperature, wind speed and direction. That data is transmitted to the Kentucky Climate Center at WKU every fve minutes, 24 hours a day throughout the year, and is available online at kymesonet.org.
    [Show full text]
  • Wind Energy Forecasting: a Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy
    Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy Keith Parks Xcel Energy Denver, Colorado Yih-Huei Wan National Renewable Energy Laboratory Golden, Colorado Gerry Wiener and Yubao Liu University Corporation for Atmospheric Research (UCAR) Boulder, Colorado NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. S ubcontract Report NREL/SR-5500-52233 October 2011 Contract No. DE-AC36-08GO28308 Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy Keith Parks Xcel Energy Denver, Colorado Yih-Huei Wan National Renewable Energy Laboratory Golden, Colorado Gerry Wiener and Yubao Liu University Corporation for Atmospheric Research (UCAR) Boulder, Colorado NREL Technical Monitor: Erik Ela Prepared under Subcontract No. AFW-0-99427-01 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 1617 Cole Boulevard NREL/SR-5500-52233 Golden, Colorado 80401 October 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Aviation Advisory Board Meeting Minutes August 5-6, 2010 in Unalakleet, Alaska
    Aviation Advisory Board Meeting Minutes August 5-6, 2010 in Unalakleet, Alaska Chairman Lee Ryan called meeting to order at 9:05am. PRESENT: Lee Ryan, Jim Dodson, Tom George, Tom Nicolos, Mike Salazar, Mike Stedman, Judy McKenzie, Frank Neitz, Steve Strait EXCUSED ABSENCE: Al Orot, Ken Lythgoe OTHERS IN ATTENDANCE: Marc Luiken (DOT&PF), Rebecca Cronkhite (DOT&PF), Jeff Roach (DOT&PF), Linda Bustamante (DOT&PF), Commissioner Leo von Scheben (DOT&PF), Harry Johnson, Jr. - Unalakleet Airport Manager, Laura Lawrence – Staff to Senator Donny Olson, Representative Neal Foster, Chuck Degnan, Jim Tweto. MINUTES: Approved by the board prior to meeting – via email. Agenda Addition – Add time for public comments to agenda which could happen throughout the day as the public stops in for the meeting. Announcement from Deputy Commissioner: Deputy Commissioner Luiken thanked Chairman Lee Ryan for hosting the meeting in Unalakleet and welcomed new board members, Tom Nicolos and Mike Stedman. AGENDA: Alaska International Airports System (AIAS) and Statewide Aviation Update: Deputy Commissioner Luiken provided an overview of the AIAS. Marketing efforts of the Anchorage Airport include: 1. Plans to hire two key positions - marketing and air service development. 2. Interview with Supply Chain Management for an online story 3. Air Cargo Summit – International carriers invited to meet with representative from U.S. DOT to better understand the unique cargo transfer rights available in Alaska and to review fuel supply issues. The State is conducting a study to review fuel storage and all aspects of fuel availability at the international airports. Public Comment: Junior Johnson, Unalakleet Airport Manager expressed concern over Emmonak Airport not having a village contractor.
    [Show full text]
  • The Error Is the Feature: How to Forecast Lightning Using a Model Prediction Error [Applied Data Science Track, Category Evidential]
    The Error is the Feature: How to Forecast Lightning using a Model Prediction Error [Applied Data Science Track, Category Evidential] Christian Schön Jens Dittrich Richard Müller Saarland Informatics Campus Saarland Informatics Campus German Meteorological Service Big Data Analytics Group Big Data Analytics Group Offenbach, Germany ABSTRACT ACM Reference Format: Despite the progress within the last decades, weather forecasting Christian Schön, Jens Dittrich, and Richard Müller. 2019. The Error is the is still a challenging and computationally expensive task. Current Feature: How to Forecast Lightning using a Model Prediction Error: [Ap- plied Data Science Track, Category Evidential]. In Proceedings of 25th ACM satellite-based approaches to predict thunderstorms are usually SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19). based on the analysis of the observed brightness temperatures in ACM, New York, NY, USA, 10 pages. different spectral channels and emit a warning if a critical threshold is reached. Recent progress in data science however demonstrates 1 INTRODUCTION that machine learning can be successfully applied to many research fields in science, especially in areas dealing with large datasets. Weather forecasting is a very complex and challenging task requir- We therefore present a new approach to the problem of predicting ing extremely complex models running on large supercomputers. thunderstorms based on machine learning. The core idea of our Besides delivering forecasts for variables such as the temperature, work is to use the error of two-dimensional optical flow algorithms one key task for meteorological services is the detection and pre- applied to images of meteorological satellites as a feature for ma- diction of severe weather conditions.
    [Show full text]
  • Operating Instructions Present Weather Sensor Parsivel
    Operating instructions Present Weather Sensor Parsivel English We reserve the right to make technical changes! Table of contents 1 Scope of delivery 5 2 Part numbers 5 3 Parsivel Factory Settings 6 4 Safety instructions 7 5 Introduction 8 5.1 Functional principle 8 5.2 Connection Options for the Parsivel 9 6 Installing the Parsivel 10 6.1 Cable Selection 10 6.2 Wiring the Parsivel 11 6.3 Grounding the Parsivel 13 6.4 Installing the Parsivel 14 7 Connecting the Parsivel to a data logger 15 7.1 Connecting the Parsivel to the LogoSens Station Manager via RS-485 interface 15 7.2 Connecting the Parsivel to a Data logger via the SDI-12 Interface 17 7.3 Connecting the Parsivel to a Data Logger with Impulse/Status Input 21 8 Connecting the Parsivel to a PC 23 8.1 Connecting the Parsivel to Interface Converter RS-485/RS-232 (Accessories) 23 8.2 Connecting the Parsivel to the ADAM-4520 Converter RS-485/RS-232 (Accessories) 25 8.3 Connecting the Parsivel to Interface Converter RS-485/USB (Accessories) 26 8.4 Connecting the Parsivel to any RS-485 Interface Converter 27 8.5 Connecting the Parsivel for configuration via the Service-Tool to a PC 27 9 Connecting the Parsivel to a Power Supply (Accessory) 29 10 Heating the Parsivel sensor heads 30 11 Operating Parsivel with a Terminal software 31 11.1 Set up communications between the Parsivel and the terminal program 31 11.2 Measured value numbers 32 11.3 Defining the formatting string 33 11.4 OTT telegram 33 11.5 Updating Parsivel Firmware 34 12 Maintenance 36 12.1 Cleaning the laser’s protective glass
    [Show full text]
  • Weather Station Handbook
    PART 2A. MANUAL WEATHER STATIONS: MEASUREMENTS; INSTRUMENTS This portion of the handbook focuses on manual 5. Mechanical wind counte r equipped with a timer wea ther station instru ments and thei r operational fea ­ (Forester IO-Minute Wind Counter), or other suitable tures. The individual chapters first define and describe read out device, such as the Forester (Haytronics) Total­ the weather elements or parameters that are measured izing Wind Counter. The counter enables measurement at fire-weather an d other stations. of average windspeed in miles per hour. The generator Observers with a basic understanding of weather in­ an emometers mentione-d above have a n electronic accu­ struments, and wha t the measurements re present, are mulator or odomete r that can give a digital readout of better prepared toward obtaining accurate wea ther data. IO-minute average windspeed. They will be better able to recognize an erroneous rea ding 6. Wind direction system-including wind vane and or defective instrumen t. Similarly, persona assigned the remote readout device. Again, no particular model has task will be more likely to properly install and maintai n been adopted as the standard. the instrume nts. 7. Nonrecording ("stick") rai n gauge, with support; In addition. a n increased understandin g of the instru­ gauge has 8-inch diameter and may be either large capac­ ments may bring greater satisfaction to what might other­ ity type or Fores t Service type. Measuri ng stick gives wise become a routine, mechan ical task. An understand­ rainfall in hundred ths of an inch. ing of the weather elements and processe s may further 8.
    [Show full text]
  • 6.4 the Warning Time for Cloud-To-Ground Lightning in Isolated, Ordinary Thunderstorms Over Houston, Texas
    6.4 THE WARNING TIME FOR CLOUD-TO-GROUND LIGHTNING IN ISOLATED, ORDINARY THUNDERSTORMS OVER HOUSTON, TEXAS Nathan C. Clements and Richard E. Orville Texas A&M University, College Station, Texas 1. INTRODUCTION shear and buoyancy, with small magnitudes of vertical wind shear likely to produce ordinary, convective Lightning is a natural but destructive phenomenon storms. Weisman and Klemp (1986) describe the short- that affects various locations on the earth’s surface lived single cell storm as the most basic convective every year. Uman (1968) defines lightning as a self- storm. Therefore, this ordinary convective storm type will propagating atmospheric electrical discharge that results be the focus of this study. from the accumulation of positive and negative space charge, typically occurring within convective clouds. This 1.2 THUNDERSTORM CHARGE STRUCTURE electrical discharge can occur in two basic ways: cloud flashes and ground flashes (MacGorman and Rust The primary source of lightning is electric charge 1998, p. 83). The latter affects human activity, property separated in a cloud type known as a cumulonimbus and life. Curran et al. (2000) find that lightning is ranked (Cb) (Uman 1987). Interactions between different types second behind flash and river flooding as causing the of hydrometeors within a cloud are thought to carry or most deaths from any weather-related event in the transfer charges, thus creating net charge regions United States. From 1959 to 1994, there was an throughout a thunderstorm. Charge separation can average of 87 deaths per year from lightning. Curran et either come about by inductive mechanisms (i.e. al. also rank the state of Texas as third in the number of requires an electric field to induce charge on the surface fatalities from 1959 to 1994, behind Florida at number of the hydrometeor) or non-inductive mechanisms (i.e.
    [Show full text]
  • Last Update July 2013
    LAST UPDATE JULY 2013 Acknowledgements The preparation of this document was financed in part by a grant from the Federal Aviation Administration (Project No: 3-27-0000-07-10), with the financial support of the MnDOT Office of Aeronautics. The contents do not necessarily reflect the official views or the policy of the FAA. Acceptance of this report does not in any way constitute a commitment to fund the development depicted herin. Document prepared by MnDOT Office of Aeronautics and HNTB Corporation. MINNESOTA GO STATE AVIATION SYSTEM PLAN TABLE OF CONTENTS Chapter 1: Introduction and System Goals 1 Chapter 2: Inventory 29 Chapter 3: Forecast 43 Chapter 4: Airline Service 63 Chapter 5: Airport Facility Requirements 75 Chapter 6: Performance Report 97 Chapter 7: Investment Plan and System Recommendations 161 Chapter 8: A Future Vision of Aviation 195 AppendicesAppendices 217 215 APPENDICIES This page intentionally left blank. MINNESOTA GO STATE AVIATION SYSTEM PLAN Appendices APPENDIX A: ACRONYMS APPENDIX B: INVENTORY SURVEY APPENDIX C: FORECAST TECHNICAL REPORT APPENDIX D: COMMERCIAL AIR SERVICE TECHNICAL REPORT APPENDIX E: AIRPORT FACILITY NEEDS SHEETS AND REPORT CARDS APPENDIX F: UNIT COST ASSUMPTIONS APPENDIX G: GOALS MATRIX APPENDICES PAGE 215 This page intentionally left blank. PAGE 216 MINNESOTA GO STATE AVIATION SYSTEM PLAN AC Advisory Circular ADA Americans with Disabilities Act ADPM Average Day Peak Month AIP Airport Improvement Program ALP Airport Layout Plan ALSF High Intensity Approach Lighting System with Sequenced Flashers
    [Show full text]
  • Imet-4 Radiosonde 403 Mhz GPS Synoptic
    iMet-4 Radiosonde 403 MHz GPS Synoptic Technical Data Sheet Temperature and Humidity Radiosonde Data Transmission The iMet-4 measures air temperature with a The iMet-4 radiosonde can transmit to an small glass bead thermistor. Its small size effective range of over 250 km*. minimizes effects caused by long and short- wave radiation and ensures fast response times. A 6 kHz peak-to-peak FM transmission maximizes efficiency and makes more channels The humidity sensor is a thin-film capacitive available for operational use. Seven frequency polymer that responds directly to relative selections are pre-programmed - with custom humidity. The sensor incorporates a temperature programming available. sensor to minimize errors caused by solar heating. Calibration Pressure and Height The iMet-4’s temperature and humidity sensors are calibrated using NIST traceable references to As recommended by GRUAN3, the iMet-4 is yield the highest data quality. equipped with a pressure sensor to calculate height at lower levels in the atmosphere. Once Benefits the radiosonde reaches the optimal height, pressure is derived using GPS altitude combined • Superior PTU performance with temperature and humidity data. • Lightweight, compact design • No assembly or recalibration required The pressure sensor facilitates the use of the • GRUAN3 qualified (pending) sonde in field campaigns where a calibrated • Status LED indicates transmit frequency barometer is not available to establish an selection and 3-D GPS solution accurate ground observation for GPS-derived • Simple one-button user interface pressure. For synoptic use, the sensor is bias adjusted at ground level. Winds Data from the radiosonde's GPS receiver is used to calculate wind speed and direction.
    [Show full text]
  • Lecture Notes on Marine Meteorology
    Lecture notes on Marine Meteorology By Shri S. P. Joshi Assistant. Meteorologist Office of DDGM (WF) India Meteorological Department Pune-5 Preface The aim of these lecture notes is to provide training to the marine observers in handling and maintenance of meteorological instruments and collect meteorological observations in the form of logbooks. The chapters included in these lecture notes are from the Basic and Intermediate training courses of the department. The present lecture notes are merely a collection of information available on Internet and are compiled from various WMO sites, freely available, keeping in view the up-and-coming trends and new technological advancements. This collection is for private circulation for trainees of Basic and Intermediate training courses of the department and the author do not intend to violate copyrights of anybody what so ever. Port Meteorological Officers in the immediate future have to deal with the modernization of the marine equipments and automation of Marine Data collection, its transmission and archival by observing minimum quality control through the in-built software like TURBOWIN. These lecture notes will also be useful to Port Meteorological Officers in understanding the nature of work of PMOs and will provide them the useful guidelines. A separate chapter on installation of Turbowin is also included in these notes. S. P. Joshi. 9th April 2005. Gudhi Padva Table of contents Chapter no Contents Page no. 1 WMO Voluntary Observing Ships’ Scheme 1 2 Meteorological Instrumentation on board ships 8 3 Port Meteorological Office ( PMO ) 15 4 The Ship Weather Code 19 5 Broadcast of weather bulletins for Merchant shipping 24 6 Broadcast of weather bulletins for Indian navy 28 7 Warnings to Ports and Storm Warning Signals 30 8 Broadcast of weather warnings for fishermen through 34 All India Radio.
    [Show full text]
  • GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41
    GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41 WHITE PAPER Table of Contents CHAPTER 1 Introduction ................................................................................................................................................. 4 Executive Summary of Measurement Performance ............................................................................. 5 CHAPTER 2 GPS Technology in the Vaisala Radiosonde RS41 ........................................................................................... 6 Radiosonde GPS Receiver .................................................................................................................. 6 Local GPS Receiver .......................................................................................................................... 6 Calculation Algorithms ..................................................................................................................... 6 CHAPTER 3 GPS-Based Measurement Methods ............................................................................................................... 7 Height Measurement ......................................................................................................................... 7 Pressure Measurement ..................................................................................................................... 7 Measurement Accuracy..................................................................................................................... 8 CHAPTER
    [Show full text]