Hydrogen-Assessment-Project-Appendix.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lewis Wave Power Limited
Lewis Wave Power Limited 40MW Oyster Wave Array North West Coast, Isle of Lewis Environmental Statement Volume 1: Non-Technical Summary March 2012 40MW Lewis Wave Array Environmental Statement 1. NON-TECHNICAL SUMMARY 1.1 Introduction This document provides a Non-Technical Summary (NTS) of the Environmental Statement (ES) produced in support of the consent application process for the North West Lewis Wave Array, hereafter known as the development. The ES is the formal report of an Environmental Impact Assessment (EIA) undertaken by Lewis Wave Power Limited (hereafter known as Lewis Wave Power) into the potential impacts of the construction, operation and eventual decommissioning of the development. 1.2 Lewis Wave Power Limited Lewis Wave Power is a wholly owned subsidiary of Edinburgh based Aquamarine Power Limited, the technology developer of the Oyster wave power technology, which captures energy from near shore waves and converts it into clean sustainable electricity. Aquamarine Power installed the first full scale Oyster wave energy convertor (WEC) at the European Marine Energy Centre (EMEC) in Orkney, which began producing power to the National Grid for the first time in November 2009. That device has withstood two winters in the harsh Atlantic waters off the coast of Orkney in northern Scotland. Aquamarine Power recently installed the first of three next-generation devices also at EMEC which will form the first wave array of its type anywhere in the world. 1.3 Project details The wave array development will have the capacity to provide 40 Megawatts (MW), enough energy to power up to 38,000 homes and will contribute to meeting the Scottish Government’s targets of providing the equivalent of 100% of Scotland’s electricity generation from renewable sources by 2020. -
Surfing and the Future of Scotlands Seas
Scottish Marine Recreational Resources: Surfing and the Future of Scotland’s Seas PREPARED 23 Jan 2013 Prepared by W. Watson The Scottish Surfing Federation January 2013 Contents Forward..................................................................................................................................................................................................................................................3 1) Understanding Changes in the Marine Environment.....................................................................................................................................4 1.1) What is RenewaBle Energy? ........................................................................................................................................................................4 1.2) So what is the scale of Scotland’s Renewable Industry? .................................................................................................................6 1.3) The Units of Power and Energy in layman’s terms............................................................................................................................6 1.4) Benchmarking Power CaPacities of existing Scottish Power SuPPlies .....................................................................................7 1.5) The History of Scotlands Renewables – The Hydro Schemes 1900 - 2000.............................................................................7 1.6) Onshore Wind 2000 - 2012..........................................................................................................................................................................8 -
Siadar Wave Energy Project Siadar 2 Scoping Report Voith Hydro Wavegen
Siadar Wave Energy Project Siadar 2 Scoping Report Voith Hydro Wavegen Assignment Number: A30708-S00 Document Number: A-30708-S00-REPT-002 Xodus Group Ltd 8 Garson Place Stromness Orkney KW16 3EE UK T +44 (0)1856 851451 E [email protected] www.xodusgroup.com Environment Table of Contents 1 INTRODUCTION 6 1.1 The Proposed Development 6 1.2 The Developer 8 1.3 Oscillating Water Column Wave Energy Technology 8 1.4 Objectives of the Scoping Report 8 2 POLICY AND LEGISLATIVE FRAMEWORK 10 2.1 Introduction 10 2.2 Energy Policy 10 2.2.1 International Energy Context 10 2.2.2 National Policy 10 2.3 Marine Planning Framework 11 2.3.1 Marine (Scotland) Act 2010 and the Marine and Coastal Access Act 2009 11 2.3.2 Marine Policy Statement - UK 11 2.3.3 National and Regional Marine Plans 11 2.3.4 Marine Protected Areas 12 2.4 Terrestrial Planning Framework 12 2.5 Environmental Impact Assessment Legislation 12 2.5.1 Electricity Works (Environmental Impact Assessment) (Scotland) Regulations 2000 13 2.5.2 The Marine Works (Environmental Impact Assessment) Regulations 2007 13 2.5.3 The Environmental Impact Assessment (Scotland) Regulations 1999 13 2.5.4 Habitats Directive and Birds Directive 13 2.5.5 Habitats Regulations Appraisal and Appropriate Assessment 13 2.6 Consent Applications 14 3 PROJECT DESCRIPTION 15 3.1 Introduction 15 3.2 Rochdale Envelope 15 3.3 Project Aspects 15 3.3.1 Introduction 15 3.3.2 Shore Connection (Causeway and Jetty) 15 3.3.3 Breakwater Technology and Structure 16 3.3.4 Parallel Access Jetty 17 3.3.5 Site Access Road 17 3.3.6 -
The Renewable Energy Review May 2011
The Renewable Energy Review May 2011 Preface The Committee on Climate Change (the Committee) is an independent statutory body which was established under the Climate Change Act (2008) to advise UK and devolved administration governments on setting and meeting carbon budgets, and preparing for climate change. Setting carbon budgets In December 2008 we published our first report, Building a low-carbon economy – the UK’s contribution to tackling climate change, containing our advice on the level of the first three carbon budgets and the 2050 target; this advice was accepted by the Government and legislated by Parliament. In December 2010, we set out our advice on the fourth carbon budget, covering the period 2023-27, as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fourth budget in Spring of 2011. We will provide advice on inclusion of international aviation and shipping in carbon budgets in Spring 2012, drawing on analysis of shipping emissions and a bioenergy review to be published later in 2011. Progress meeting carbon budgets The Climate Change Act requires that we report annually to Parliament on progress meeting carbon budgets; to date we have published two progress reports (October 2009, June 2010) and will publish our third report in June 2011. Advice requested by Government We provide ad hoc advice in response to requests by the Government and the devolved administrations. Under a process set out in the Climate Change Act, we have advised on reducing UK aviation emissions, Scottish emissions reduction targets, UK support for low-carbon technology innovation, and design of the Carbon Reduction Commitment. -
National Planning Framework for Scotland 2 Wealthier and Fairer
NATIONAL PLANNING FRAMEWORK FOR SCOTLAND 2 WEALTHIER AND FAIRER GREENER SMARTER SAFER AND STRONGER HEALTHIER CONTENTS Paragraph INTRODUCTION 1 KEY CHALLENGES 11 ECONOMIC STRATEGY 12 The Importance of Place 13 NATIONAL PLANNING FRAMEWORK FOR SCOTLAND 2 SUSTAINABLE DEVELOPMENT 15 Climate Change 16 Transport 21 Energy 25 Waste 27 Biodiversity 28 New Technologies 29 PEOPLE AND HOUSEHOLDS 31 SCOTLAND IN THE WORLD 36 Europe 37 United Kingdom 42 SCOTLAND – 2030 44 A GROWING ECONOMY 45 A GREENER SCOTLAND 48 STRONGER, SMARTER, HEALTHIER AND SAFER COMMUNITIES 50 DEVELOPMENT STRATEGY 53 The Cities and their Regions 54 Sustainable Growth 58 Housing 72 Sustainable Communities 78 Built Environment 79 Regeneration 85 Vacant and Derelict Land 89 Greening the Environment 92 Landscape and Cultural Heritage 97 Marine and Coastal Environment 101 Paragraph INFRASTRUCTURE 103 NATIONAL DEVELOPMENTS 104 TRANSPORT 106 External Links 114 Internal Connectivity 128 Sustainable Transport and Land Use 136 NATIONAL PLANNING FRAMEWORK FOR SCOTLAND 2 ENERGY Renewable Energy 144 Baseload Power Stations 151 Fossil Fuels 154 Electricity Transmission 157 Sub-Sea Grid 162 Heat 163 Decentralised Production 164 WASTE MANAGEMENT Municipal, Commercial and Industrial Waste 166 Radioactive Waste 171 WATER AND DRAINAGE 174 WATER RESOURCE MANAGEMENT AND FLOODING 177 COMMUNICATIONS TECHNOLOGY 180 SPATIAL PERSPECTIVES 183 CENTRAL BELT City Collaboration 186 Edinburgh Waterfront 187 West Edinburgh 188 East Central Scotland 189 Clyde Corridor 191 Clyde Waterfront 194 Clyde Gateway 198 Making the Connections 199 Green Network 202 EAST COAST 203 HIGHLANDS AND ISLANDS 211 AYRSHIRE AND THE SOUTH-WEST 224 SOUTH OF SCOTLAND 232 Paragraph MAKING IT HAPPEN DEVELOPMENT PLANNING 239 DEVELOPMENT MANAGEMENT 240 ACTION PROGRAMME 243 ENQUIRIES 245 Page ANNEX: NATIONAL NATIONAL PLANNING FRAMEWORK FOR SCOTLAND 2 DEVELOPMENTS – STATEMENTS OF NEED 102 1. -
A Vision for Scotland's Electricity and Gas Networks
A vision for Scotland’s electricity and gas networks DETAIL 2019 - 2030 A vision for scotland’s electricity and gas networks 2 CONTENTS CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM 03 The policy context 04 Supporting wider Scottish Government policies 07 The gas and electricity networks today 09 CHAPTER 2: DEVELOPING THE NETWORK INFRASTRUCTURE 13 Electricity 17 Gas 24 CHAPTER 3: COORDINATING THE TRANSITION 32 Regulation and governance 34 Whole system planning 36 Network funding 38 CHAPTER 4: SCOTLAND LEADING THE WAY – INNOVATION AND SKILLS 39 A vision for scotland’s electricity and gas networks 3 CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM A vision for scotland’s electricity and gas networks 4 SUPPORTING OUR ENERGY SYSTEM Our Vision: By 2030… Scotland’s energy system will have changed dramatically in order to deliver Scotland’s Energy Strategy targets for renewable energy and energy productivity. We will be close to delivering the targets we have set for 2032 for energy efficiency, low carbon heat and transport. Our electricity and gas networks will be fundamental to this progress across Scotland and there will be new ways of designing, operating and regulating them to ensure that they are used efficiently. The policy context The energy transition must also be inclusive – all parts of society should be able to benefit. The Scotland’s Energy Strategy sets out a vision options we identify must make sense no matter for the energy system in Scotland until 2050 – what pathways to decarbonisation might targeting a sustainable and low carbon energy emerge as the best. Improving the efficiency of system that works for all consumers. -
SSE Annual Report 2006
POWERFUL OPPORTUNITIES Scottish and Southern Energy plc Annual Report 2006 Scottish and Southern Energy Annual Report 2006 Contents Chairman’s Statement 1 Directors’ Report 28 Dividends 59 What We Do 2 Corporate Governance 29 Earnings Per Share 60 Where We Are 4 Organisation and Structure 29 Intangible Assets 61 Key Performance Indicators 6 Board Effectiveness 30 Property, Plant and Equipment 63 Chief Executive’s Statement 8 Board Commitees 30 Investment in Associates and Joint Ventures 64 Audit Committee 30 Subsidiary Undertakings 66 Directors’ Statement 9 Remuneration Committee 31 Acquisitions and Disposals 68 Financial Overview 9 Nomination Committee 31 Inventories 70 Energy Systems 9 Risk Committee 32 Trade and Other Receivables 70 Generation and Supply 13 Executive Committee 32 Cash and Cash Equivalents 70 Contracting, Connections and Metering 20 Health, Safety and Environmental Advisory Committee 32 Trade and Other Payables 71 Gas Storage 21 Internal Control and Risk Management Current Tax Liabilities 71 Telecoms 22 Committee 32 Construction Contracts 71 Exceptional Items 22 Going Concern 33 Loans and Other Borrowings 71 Capital Expenditure 22 Communication with Shareholders Deferred Taxation 74 Financial Management 23 and Major Business Stakeholders 33 Provisions 75 Tax 23 Share Capital 76 Balance Sheet 25 Directors’ Biographies and Responsibilities 34 Reserves 76 Purchase of own Shares 25 Remuneration Report 36 Minority Interests 77 Corporate Responsibility 25 Retirement Benefit Obligations 78 Strategy and Outlook 25 Independent -
Offshore Technology Yearbook
Offshore Technology Yearbook 2 O19 Generation V: power for generations Since we released our fi rst offshore direct drive turbines, we have been driven to offer our customers the best possible offshore solutions while maintaining low risk. Our SG 10.0-193 DD offshore wind turbine does this by integrating the combined knowledge of almost 30 years of industry experience. With 94 m long blades and a 10 MW capacity, it generates ~30 % more energy per year compared to its predecessor. So that together, we can provide power for generations. www.siemensgamesa.com 2 O19 20 June 2019 03 elcome to reNEWS Offshore Technology are also becoming more capable and the scope of Yearbook 2019, the fourth edition of contracts more advanced as the industry seeks to Wour comprehensive reference for the drive down costs ever further. hardware and assets required to deliver an As the growth of the offshore wind industry offshore wind farm. continues apace, so does OTY. Building on previous The offshore wind industry is undergoing growth OTYs, this 100-page edition includes a section on in every aspect of the sector and that is reflected in crew transfer vessel operators, which play a vital this latest edition of OTY. Turbines and foundations role in servicing the industry. are getting physically larger and so are the vessels As these pages document, CTVs and their used to install and service them. operators are evolving to meet the changing needs The growing geographical spread of the sector of the offshore wind development community. So is leading to new players in the fabrication space too are suppliers of installation vessels, cable-lay springing up and players in other markets entering vessels, turbines and other components. -
Scottish Energy Strategy: the Future of Energy in Scotland
Scottish Energy Strategy: The future of energy in Scotland December 2017 Scottish Energy Strategy 3 Contents Ministerial Foreword 02 Executive Summary 04 Chapter 1: A 2050 Vision for Energy in Scotland 10 Chapter 2: Scotland’s Changing Energy System 16 Chapter 3: Scotland’s Route to 2050: Targets, Priorities and Actions 32 Chapter 4: Scotland’s Economic Opportunity 74 Chapter 5: Monitoring and Engagement 86 Scottish Energy Strategy Ministerial Foreword Choices affecting our Low carbon and renewable energy already energy future are among supports thousands of jobs across Scotland, the most important we face. generating billions of pounds in turnover. Scottish Scotland’s social and yards and workers are already fabricating and economic well-being, and manufacturing some of the components that will the sustainable productivity power our energy future; our supply chains are and competitiveness of our growing, and the opportunities for innovation are economy, depend upon a secure, affordable immense. In the future, demand for low carbon and reliable energy supply. Our energy sector skills, goods and services will grow both here in also provides high quality jobs, and a vibrant Scotland, and overseas, offering ever greater climate and opportunity for innovation. export opportunities. The decisions and actions which we take now will Delivering the goals and policies in this Strategy shape the Scotland that future generations will can build on what’s been achieved to date – live and work in, visit and enjoy. Our vision, set out creating more jobs, more investment, and a in this document, strengthens our international stronger, more sustainable Scottish economy. reputation for sustainability – we are an ambitious country of outstanding natural beauty, Scotland’s electricity production has changed determined to build on our reputation as a enormously since the turn of the century, sparked renewable energy powerhouse. -
The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report
Planning Scotland’s Seas The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report Marine Scotland The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report Date: July 2013 Project Ref: R/4136/1 Report No: R.2097 © ABP Marine Environmental Research Ltd Version Details of Change Date 1.0 Draft 29.04.2013 2.0 Draft 15.05.2013 3.0 Final 07.06.2013 4.0 Final 28.06.2013 5.0 Final 01.07.2013 6.0 Final 05.07.2013 Document Authorisation Signature Date Project Manager: S F Walmsley PP 05.07.2013 Quality Manager: C E Brown 05.07.2013 Project Director: S C Hull 05.07.2013 ABP Marine Environmental Research Ltd ABPmer is certified by: Quayside Suite, Medina Chambers, Town Quay, Southampton, Hampshire SO14 2AQ Tel: +44 (0) 23 8071 1840 Fax: +44 (0) 23 8071 1841 Web: www.abpmer.co.uk Email: [email protected] All images copyright ABPmer apart from front cover (wave, anemone, bird) and policy & management (rockpool) Andy Pearson www.oceansedgepzhotography.co.uk The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Summary Introduction The Marine (Scotland) Act and the UK Marine and Coastal Access Act contain provisions for the designation of a network of Marine Protected Areas (MPAs) in Scottish territorial and offshore waters in order to protect marine biodiversity and geodiversity and contribute to a UK and international network of MPAs. -
Developing the Marine Energy Sector in Scotland: a View from the Islands Thomas Neal Mcmillin University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2014 Developing the Marine Energy Sector in Scotland: A View from the Islands Thomas Neal McMillin University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the American Studies Commons Recommended Citation McMillin, Thomas Neal, "Developing the Marine Energy Sector in Scotland: A View from the Islands" (2014). Honors Theses. 912. https://egrove.olemiss.edu/hon_thesis/912 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS _____________________ NEAL MCMILLIN DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS by Thomas Neal McMillin, Jr. A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford 2014 Approved by _________________________________ Advisor: Dr. Andy Harper _________________________________ Reader: Dr. Jay Watson _________________________________ Reader: Dr. John Winkle 2 ACKNOWLEDGEMENTS If you need an idea, you may be wise to take a hot shower. I conceived the genesis of this project during one of these. I realized that to apply for the Barksdale Award, I needed to focus on something which I had both experienced and cared about. From that thought, I realized that Scotland and water were my two topics to research. -
Biomass and Coal-Fired Power Station (420MW) on One of Three Units ( Most Thermally Efficient Coal-Fired Power Station in the UK)
LOCATION ??, Oslo March 2011 CCS projects in the EU NER 300 Paal Frisvold Bellona Europa What is the NER 300? • World’s largest CCS funding mechanism. • 300 million emission unit allowances (EUAs) • Today’s value app. €4.5bn –allocated by two calls for proposals for large-scale demonstration projects of CCS and innovative renewable projects through this mechanism. (6 - 8 CCS and 34 RES) • 1st call (200 million EUA): Application to MS by the February 9th. MS to European Investment Bank and European Commission by May 9th, 2011. • 2nd call (100 million EUA): 2012 (selection: late 2013) NER 300 Overview n Total projects 22 CCS and 131 RES, according to the European Commission: n Power generation: pre-combustion 250 MW = 6 projects n Power generation: post combustion 250 MW= 8 projects n Power generation: oxyfuel 250 MW = 4 projects n Industrial applications = 4 projects • Refineries, with 500 kt/y stored CO 2 from one or more sources within the refinery • Cement kiln, with 500 kt/y stored CO 2 • Primary production routes in iron and steel production with 500 kt/y stored CO 2 • Primary production routes in aluminium production with 500 kt/y stored CO 2 NER 300 requirements n Eligibility criteria: - Full chain project: capture, transport and storage - Capture rate: >85% of CO 2 in flue gases - Operational by 2016 - Knowledge sharing & Research Centre for each project - NER 300 grant= Max. 50% of CCS relevant costs n Role of the EIB: ranking against the cost per unit performance (CPUP) ” amount of CO 2 captured and stored per € granted” n Other