Molekularsystematische Studien in Der Subtribus Thrinacinae, Mit Besonderer Berücksichtigung Der Gattung Trachycarpus H

Total Page:16

File Type:pdf, Size:1020Kb

Molekularsystematische Studien in Der Subtribus Thrinacinae, Mit Besonderer Berücksichtigung Der Gattung Trachycarpus H Molekularsystematische Studien in der Subtribus Thrinacinae, mit besonderer Berücksichtigung der Gattung Trachycarpus H. Wendl. (Arecaceae) Diplomarbeit im Studienfach Biologie vorgelegt von Chris Stührk Biozentrum Klein Flottbek und Botanischer Garten Hamburg, 2006 Gutachter: Prof. Dr. Hans-Peter Mühlbach Prof. Dr. Jens G. Rohwer I Inhaltsverzeichnis Inhaltsverzeichnis I Abkürzungsverzeichnis III Abbildungsverzeichnis V Tabellenverzeichnis VII 1 Einleitung 1 1.1 Die Familie der Arecaceae 1 1.2 Subtribus Thrinacinae Becc. (1907) 6 1.3 Die Gattung Trachycarpus H. Wendl. (1861) 10 1.4 Fragestellung 18 1.5 ITS Analyse 18 1.6 AFLP, RAPD, ISSR & cpSSR 20 1.7 AFLP Analyse 20 2 Material und Methoden 22 2.1 Material 22 2.1.1 Pflanzenmaterial und Herkunft 22 2.1.2 Chemikalien und Enzyme 22 2.1.3 Behandlung von Geräten und Lösungen 22 2.1.4 DNA-Längenmarker 22 2.1.5 Oligonucleotide (ITS) 23 2.1.6 Oligonucleotide für AFLP Analyse 23 2.2 Methoden 27 2.2.1 Rasterelektronenmikroskopische Untersuchungen 27 2.2.2 Karyologische Untersuchungen 27 2.3 Molekularbiologische Untersuchungen 28 2.3.1 DNA-Isolierung 28 2.3.2 Gelelektrophorese 29 2.3.3 Konzentrationsbestimmungen von DNA-Lösungen 30 2.4.1 Polymerase-Kettenreaktion für die ITS Untersuchungen 30 2.4.2 Aufreinigung der PCR Produkte 32 2.4.3 Sequenzierungsreaktion 32 2.4.4 Fällung der Sequenzreaktion 33 2.4.5 Auftrennung der Sequenzreaktion 33 II 2.4.6 Auswertung der Sequenzen 34 2.4.7 Phylogenetische Analyse 34 2.5.1 AFLP 35 2.5.2 Restriktionsverdau 36 2.5.3 Ligation der Adapter 36 2.5.4 Präamplifikation 37 2.5.5 Selektive Amplifikation 38 2.5.6 Längenstandards für den ALFTMexpress 38 2.5.7 Aufbau des Polyacrylamidgels 40 2.5.8 Probenvorbereitung und Beladung des Gels 40 2.5.9 Gellauf am automatischen Sequenzierer 41 2.5.10 Auswertung der AFLP-Gele am Computer 41 2.5.11 Berechnung der Daten 42 3 Ergebnisse 43 3.1 Morphologische Untersuchungen 43 3.2 Karyologische Untersuchungen 46 3.3 ITS 49 3.3.1 Ergebnisse der ITS Analyse 49 3.4 AFLP 52 3.4.1 Ergebnisse der AFLP Analyse 52 3.4.2 Phylogramme der AFLP Analyse 53 4 Diskussion 70 4.1 Diskussion der morphologischen Untersuchungen 70 4.2 Diskussion der karyologischen Untersuchungen 71 4.3 Diskussion der ITS Analyse 73 4.4 Diskussion der AFLP Analyse 76 4.4.1 Diskussion der AFLP Analyse und ITS Analyse 78 5 Zusammenfassung 86 5.1 Zusammenfassung 86 5.2 Abstract 86 6 Literaturverzeichnise 88 7 Anhang 95 8 Danksagung 128 9 Eidesstattliche Erklärung 129 III Abkürzungsverzeichnis AFLP amplified fragment length polymorphism bp Basenpaar cf. conferre, vergleiche! cpDNA Chloroplasten-DNA cpSSR Chloroplasten simple sequence repeats Cy5 Indodicarbocyanin-Fluorochrom DAPI Diamidino-2-phenylindol DMSO Dimethylsulfoxid DNA Desoxyribonukleinsäure dNTP Desoxynukleotid-5´-Triphosphat EDTA Ethylendiamintetraessigsäure et al. et alteri/et alii (und andere) ISSR inter simple sequence repeats ITS internal transcribed spacer µM mikromolar mA milliAmpere ng Nanogramm NJ Neighbor-joining nm Nanometer PCR polymerase chain reaction pers. Mitt. Persönliche Mitteilung pg Picogramm Primerkombi A Primerkombination Eco ATG + Mse AAT Primerkombi B Primerkombination Eco ATG + Mse AGG RAPD random amplified polymorphic DNA REM Rasterelektronenmikroskop RNA Ribonukleinsäure RNAse Ribonuklease SSR simple sequence repeats TBE Tris-Borat-EDTA Tris Tris-(Hydroxymethyl-)Aminomethan IV UPGMA unweighted pair group method using arithmetic averages Upm Umdrehungen pro Minute UV Ultraviolett µm Mikrometer v/v Volumen pro Volumen w/v Gewicht pro Volumen V Abbildungsverzeichnis Abbildung 1.1: Verbreitung der Arecaceae welweit. 1 Abbildung 1.2: Strict consensus tree der trnL-trnF Analyse von Baker et al. (1999). 4 Abbildung 1.3: Strict consensus tree der kombinierten rps16 und trnL-trnF Analyse von Asmussen et al. (2000). 5 Abbildung 1.4: Typische Blattsegmenteinteilung von Fächerpalmen. 7 Abbildung 1.5: Hastula-Typen verschiedener Fächerpalmen 8 Abbildung 1.6: Prophyll einer Infloreszenz einer Fächerpalme (Schippia). 9 Abbildung 1.7: Eophyll (erstes Sämlingsblatt) von Phoenix. 9 Abbildung 1.8: Verbreitung der Thrinacinae weltweit. 10 Abbildung 1.9: Trachycarpus takil im Habitat, Oktober 2005. 15 Abbildung 1.10: Oval-kaffeebohnenförmige Samen der Trachycarpus sp. ’Nagaland’ 16 Abbildung 1.11: Reniforme Samen der Trachycarpus geminisectus. 16 Abbildung 1.12: Trachycarpus fortunei Typuspflanze in den Royal Botanic Gardens, Kew. 17 Abbildung 1.13: Relative Lage der ETS, ITS- und IGS Abschnitte innerhalb eines rDNA Operons. 19 Abbildung 2.1: Die relative Lage der ITS Primerbinderegionen – schematisch. 23 Abbildung 3.1: Epicuticulare Wachsablagerungen auf der Unterseite eines Blattsegments von Trachycarpus ’NagaHills’ # 43. 43 Abbildung 3.2: Epicuticulare Wachsabsonderung im Querschnitt von Trachycarpus ’NagaHills’ # 43 (REM, Schrägansicht). 44 Abbildung 3.3: Epicuticulare Wachsabsonderung in Aufsicht von Trachycarpus ’NagaHills’ # 43 (REM). 44 Abbildung 3.4: Epicuticulare Wachsabsonderung in Nahansicht von Trachycarpus ’NagaHills’ # 43 (REM). 45 Abbildung 3.5: Trachycarpus princeps # 2 (Typuspflanze) im BG Hamburg 46 Abbildung 3.6: DNA-Histogramm von Trachycarpus nanus # 8. 47 Abbildung 3.7: DNA-Histogramm von Trachycarpus fortunei x takil # 16. 47 Abbildung 3.8: DNA-Histogramm von Trachycarpus takil # 15. 48 Abbildung 3.9: DNA-Histogramm von Trachycarpus takil # 21. 48 Abbildung 3.10: Phylogramm der exhaustive search Analyse (ITS). 50 Abbildung 3.11: ITS Bootstrap 50% majority-rule consensus tree (100 replicates). 51 VI Abbildung 3.12: Phylogramm 5 des Sets 3. 54 Abbildung 3.13: Phylogramm 6 des Sets 3. 55 Abbildung 3.14: Phylogramm 9 des Sets 5. 56 Abbildung 3.15: Phylogramm 10 des Sets 5. 57 Abbildung 3.16: Phylogramm 11 des Sets 6. 59 Abbildung 3.17: Phylogramm 12 des Sets 6. 61 Abbildung 3.18: Gesamtphylogramm 1 der Sets 3, 5 und 6. 63 Abbildung 3.19: Gesamtphylogramm 2 der Sets 3, 5 und 6. 65 Abbildung 3.20: Gesamtphylogramm 3 der Sets 3, 5 und 6. 67 Abbildung 3.21: Gesamtphylogramm 4 der Sets 3, 5 und 6. 69 Abbildung 4.1: Ansichtskarte aus Lugano (1913). 72 Abbildung 4.2: Ansichtskarte aus Lugano (1927). 72 Abbildung 4.3: Die Verteilung der Kontinente vor ca. 135 Millionen Jahren. 74 Abbildung 4.4: Verbreitung der T. princeps entlang des Nujiang (Yunnan, China) 79 Abbildung 4.5: Herbarblatt (Holotyp) der Trachycarpus takil Becc. 80 Abbildung 7.1: Phylogramm 1 des Sets 1. 114 Abbildung 7.2: Phylogramm 2 des Sets 1. 115 Abbildung 7.3: Phylogramm 3 des Sets 2. 116 Abbildung 7.4: Phylogramm 4 des Sets 2. 117 Abbildung 7.5: Phylogramm 7 des Sets 4. 118 Abbildung 7.6: Phylogramm 8 des Sets 4. 119 Abbildung 7.7: Phylogramm 13 des Sets 7. 120 Abbildung 7.8: Phylogramm 14 des Sets 7. 121 Abbildung 7.9: Phylogramm 15 des Sets 7. 122 Abbildung 7.10: Phylogramm 16 des Sets 7. 123 Abbildung 7.11: Phylogramm 17 des Sets 7. 124 Abbildung 7.12: Phylogramm 18 des Sets 7. 125 Abbildung 7.13: Phylogramm 19 des Sets 7. 126 Abbildung 7.14: Phylogramm 20 des Sets 7. 127 VII Tabellenverzeichnis Tabelle 1.1: Klassifikation der Arecaceae nach Dransfield und Uhl. 2 Tabelle 1.2: Subtribus Thrinacinae. 10 Tabelle 1.3: Kurzbeschreibungen der Arten der Gattung Trachycarpus. 11 Tabelle 2.1: Bezeichnung und Sequenz der verwendeten ITS-Primer. 23 Tabelle 2.2: Primer zur Amplifikation des Internen Standards nach Rudolph (2001). 24 Tabelle 2.3: AFLP-Adapter nach Vos et al. (1995). 24 Tabelle 2.4: AFLP-Primer nach Vos et al. (1995). 25 Tabelle 2.5: Primerkombinationen zur Herstellung von PCR-Produkten definierter Länge. 39 Tabelle 3.1: Gesamtzahl detektierter Banden und Anteil monomorpher Banden aus sieben Sets der Primerkombination Eco ATG + Mse AAT. 52 Tabelle 3.2: Gesamtzahl detektierter Banden und Anteil monomorpher Banden aus sieben Sets der Primerkombination Eco ATG + Mse AGG. 52 Tabelle 7.1: Gesamtaufsammlung – nach laufender Labornummer geordnet. 95 Tabelle 7.2: Gesamtaufsammlung – alphabetisch. 98 Tabelle 7.3: Gesamtaufsammlung Thrinacinae – alphabetisch. 102 Tabelle 7.4: Angaben und Koordinaten der Herkünfte. 105 Tabelle 7.5: Händler- und Sammlerverzeichnis. 106 Tabelle 7.6: Taxa der ITS Analyse. 107 Tabelle 7.7: Sets der AFLP Analyse (Primerkombinationen und Taxa). 108 Tabelle 7.8: Chemikalienliste. 112 Einleitung 1 1 Einleitung 1.1 Die Familie der Arecaceae Die Palmen (Arecaceae oder auch Palmae) sind eine Familie der Monokotylen (Liliopsida) und einzige Familie der Ordnung der Palmenartigen (Arecales), die schon vor etwa 70 Millionen Jahren in der Kreidezeit weit verbreitet war. Die Arecaceae zeigen einen pantropischen Verbreitungsschwerpunkt, vor allem im malesischen Raum und in Amazonien. Relativ artenarm an Palmen dagegen ist Afrika, wie die Abbildung 1.1 veranschaulicht. Abbildung 1.1: Verbreitung der Arecaceae weltweit (Lötschert, 1985). Die Angaben über die Anzahl der Palmenarten variieren zwischen 2.500 und 3.500, und über die der Gattungen zwischen 210 und 236 (Jones, 2000). In der Familie der Palmen findet sich das längste Blatt (bei Palmen der Gattung Raphia mit bis zu 25 m Länge), der größte Same (von der Seychellenpalme Lodoicea mit bis zu 22 kg Gewicht), sowie die blütenreichste terminale Infloreszenz (des Pflanzenreichs in der Gattung Corypha mit geschätzten 10 Millionen Blüten pro Infloreszenz). Das Ziel einer allumfassenden Einleitung 2 Klassifikation der Palmen, eines „Genera Palmarum“, verfolgte Harold E. Moore Junior vom L.H. Bailey Hortorium der Cornell University. Moore verstarb 1980, bevor sein Werk vollendet werden konnte. Die Aufzeichnungen wurden jedoch von John Dransfield von den Royal Botanical Gardens Kew und Nathalie Uhl von der Cornell University verwendet, um die erste umfassende Monographie aller bekannten Palmengattungen fertig zu stellen, die unter dem Namen „Genera Palmarum – A classification of palms based on the work of Harold E. Moore, Jr.” erschien (Uhl et al., 1987). Nach dieser Klassifikation werden die Arecaceae in sechs Unterfamilien gegliedert, mit 200 Gattungen und ca. 2.675 Arten. Tabelle 1.1 veranschaulicht dieses Konzept. Tabelle 1.1: Klassifikation der Arecaceae nach Dransfield und Uhl (Uhl et al., 1987).
Recommended publications
  • Case Study on Latanye Broom Industry
    DEVELOPMENT OF THE LATANYÉ BROOM INDUSTRY IN SAINT LUCIA (WEST INDIES) Contributing Authors- Donatian Gustave, Lyndon John, Michael Andrew, Brent Charles, Margaret Severin, Monica Hyacinth, Lench Fevrier, Julius James, Anita James, Cornelius Isaac and Rebecca Rock. October 19 2006 1 Background Latanyé (Coccothrinax barbadensis) is a palm native to Saint Lucia. Its leaves are used to make craft and brooms. Latanyé is generally distributed throughout the Windward and Leeward Islands, including Trinidad and Tobago. Latanyé’s natural habitat ranges from “littoral and scrub woodlands near the coast, from sea level to 200 metres elevation”. (L. John 2001). The morphology of the leaves makes the plant resistant to strong wind currents. As it can grow on marginal soils, and appears to be tolerant against pests and diseases, Latanyé may be considered as an ideal plant for soil conservation works to reduce the rate of land degradation in St. Lucia. Figure 1 Photo of a Latanyé Plant Traditional Harvest of Latanyé Leaves In an ideal sustainable harvesting system, the older or mature Latanyé leaves are harvested and that the remainder of the plant regenerates and produces new leaves. 5 to 7 Latanyé leaves and a sturdy broom handle are used to make large brooms. (L. John 2001). Figure 2 illustrates how brooms are made. Figure 2 Phases in the production of a Latanyé Broom 1. Harvesting 2. Drying of Leaves 3. Preparation of Leaves 4) Tying leaves 5. Latanyé Broom (3- 5 days) Lyndon John (2001) described the broom industry in a socio economic context in 2001. The study revealed that Latanyé wild stocks were harvested “year round” to maintain livelihoods of rural people because of the available market and high demand for leaves for making brooms.
    [Show full text]
  • Extremely Rare and Endemic Taxon Palm: Trachycarpus Takil Becc
    Academia Arena, 2009;1(5), ISSN 1553-992X, http://www.sciencepub.org, [email protected] Extremely Rare and Endemic Beautiful Taxon Palm: Trachycarpus takil Becc. Lalit M. Tewari1 and Geeta Tewari2 1Department of Botany, 2Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India [email protected] Abstract: This article offers a short describes on the Extremely Rare and Endemic Beautiful Taxon Palm, Trachycarpus takil Becc. [Academia Arena, 2009;1(5):81-82]. ISSN 1553-992X. Kumaun Himalaya offers a unique platform for nurturing several endemic taxa and therefore is a type locality of these taxa. Trachycarpus takil Becc. is one of them, which is extremely rare in occurrence in wild state and has a specific habitat preference. Trachycarpus takil Becc. belonging to the family Arecaceae (Palmae) which is a rare and endemic taxon of this Kumaun Himalaya having a very small population in wild state. However, by far no serious attempt towards its conservation has been undertaken. This species has been cultivated around Nainital and Ranikhet in Kumaun Himalaya by Britishers and explore the causes responsible for their being rare and threatened in the wild state. Trachycarpus takil Becc. is a cold temperate species for Palm family and grows in dense humid temperate forest between 2000-2700m altitude usually in association with Alnus nepalensis, Quercus leucotricophera, Q. floribunda, Ilex dipyrena, Rhododendron arboreum, Lyonia ovalifolia, Betula ulnoides, Cupressus torulosa, Abies pindrow, Persea duthiei etc. It usually prefers north and northwestern aspects in hilly slope on moist humus rich soil having localized natural population. The wild adults population of this palm species appears to be extremely rare and highly threatened.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • A Comparison of Hispine Beetles (Coleoptera: Chrysomelidae) Associated with Three Orders of Monocot Host Plants in Lowland Panama
    International Journal of Tropical Insect Science Vol. 27, No. 3/4, pp. 159-171, 2008 DOI: 10.1017/S1742758407864071 © icipe 2008 A comparison of hispine beetles (Coleoptera: Chrysomelidae) associated with three orders of monocot host plants in lowland Panama Christophe Meskens1*, Donald Windsor2 and Thierry Hance1 1 Unite d'Ecologie et de Biogeographie, Biodiversity Research Centre, Universite catholique de Louvain, 4-5, Place Croix du Sud, Louvain-la- Neuve 1348, Belgium: ^Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama (Accepted 17 October 2007) Abstract. The feeding traces in fossil ginger leaves and the conserved phylogenetic relationships seen today in certain clades of hispine beetles on their monocot hosts point towards a long and intimate plant-insect evolutionary relationship. Studies in the 1970s and 1980s documented the rich fauna of rolled-leaf hispine beetles and their association with the Neotropical monocot family Heliconiaceae in Central America. In this report, the taxonomic breadth of these early studies is expanded to include species in the families, Marantaceae, Poaceae, Arecaceae and Costaceae, all with species occurring sympatrically with the Heliconiaceae in lowland Panama. Additionally, the analysis is widened to include open-leaf scraping and internal leaf-mining clades of hispoid Cassidinae. The censuses add more than 5080 Cassidinae herbivore occurrence records on both open and unfurled new leaf rolls of 4600 individual plants. Cluster analysis reveals that while many Hispinae species tend to group with plant species in only one of the three monocot orders, 9 of 16 Hispinae species on Zingiberales hosts were recorded in substantial numbers on both the Heliconiaceae and the Marantaceae, indicating an underlying pattern of feeding flexibility at the host plant family level.
    [Show full text]
  • CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia Aculeata (Jacq.) Lodd
    HÉRIA DE FREITAS TELES CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia aculeata (Jacq.) Lodd. ex Mart. E SUAS POPULAÇÕES NAS REGIÕES CENTRO E SUL DO ESTADO DE GOIÁS Dissertação apresentada ao Programa de Pós-Graduação em Agronomia, da Universidade Federal de Goiás, como requisito parcial à obtenção do título de Mestre em Agronomia, área de concentração: Produção Vegetal. Orientadora: Profª Dra. Larissa Leandro Pires Co-orientador: Prof. Dr. José Garcia de Jesus Goiânia,GO - Brasil 2009 2 HÉRIA DE FREITAS TELES CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia aculeata (Jacq.) Lodd. ex Mart. E SUAS POPULAÇÕES NAS REGIÕES CENTRO E SUL DO ESTADO DE GOIÁS Dissertação DEFENDIDA e APROVADA em 27 de fevereiro de 2009, pela Banca Examinadora constituída pelos membros: ____________________________ ____________________________ Prof. Dr. Wilson Mozena Leandro Dr. Adeliano Cargnin EA – UFG Embrapa _________________________________ Profª Drª Larissa Leandro Pires EA - UFG 3 Ao meu pai ,Vilmar À minha mãe, Mariana Ao meu irmão, Winkler e em memória de minha avó Elvira e padrinho Volneis, Dedico 4 AGRADECIMENTOS Grande é a minha lista de agradecimentos, o que me torna uma pessoa de muita sorte. Primeiramente, a Deus, por ser meu refúgio, minha rocha e, nos momentos mais íntimos, meu conselheiro e confidente. À minha família, muito presente e amiga. Meu pai Vilmar, maior incentivador e apoiador de meus estudos; minha mãe, Mariana, carinhosa e dedicada; e meu irmão Winkler, exemplo de amizade e caráter. À minha amiga e orientadora, Profª Larissa, pelo apoio, dedicação, paciência, orientação e, principalmente, pela amizade. Exemplo de companheirismo e estímulo a ser seguido.
    [Show full text]
  • Journal of the International Palm Society Vol. 57(3) Sep. 2013 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 57(3) Sep. 2013 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Inventario De Las Plantas Cubanas Silvestres Parientes De Las Cultivadas De Importancia Alimenticia, Agronómica Y Forestal
    Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal por Werner Greuter y Rosa Rankin Rodríguez A Checklist of Cuban wild relatives of cultivated plants important for food, agriculture and forestry by Werner Greuter and Rosa Rankin Rodríguez Botanischer Garten und Botanisches Museum Berlin Jardín Botánico Nacional, Universidad de La Habana Publicado en el Internet el 22 marzo 2019 Published online on 22 March 2019 ISBN 978-3-946292-33-3 DOI: https://doi.org/10.3372/cubalist.2019.1 Published by: Botanischer Garten und Botanisches Museum Berlin Zentraleinrichtung der Freien Universität Berlin Königin-Luise-Str. 6–8, D-14195 Berlin, Germany © 2019 The Authors. This work is distributed under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0), which permits unrestricted use provided the original author and source are credited (see https://creativecommons.org/licenses/by/4.0/) Greuter & Rankin – Parientes Cubanos Silvestres de Plantas Cultivadas 3 Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal Werner Greuter & Rosa Rankin Rodríguez Introducción Este Inventario se generó para servir de base a los trabajos de la reunión anual del Grupo de Especialistas en Plantas Cubanas de la Comisión para la supervivencia de las especies de la UICN en La Habana, Cuba, del 13 al 15 de Marzo del 2019. Abarca 57 familias y 859 taxones de plantas vasculares de la flora espontánea cubana congenéricas con las plantas útiles de importancia al nivel global y que puedan servir para enriquecer su patrimonio genético en el desarrollo de nuevas variedades con mejores propiedades de productividad y/o resistencia y cuya conservación por ende es de importancia prioritaria para la sobrevivencia de la raza humana (ver Meta 13 de las Metas nacionales cubanas para la diversidad biológica 2016-2020).
    [Show full text]
  • Part Iv the Phytogeographical Subdivision of Cuba (With the Contribution of O
    PART IV THE PHYTOGEOGRAPHICAL SUBDIVISION OF CUBA (WITH THE CONTRIBUTION OF O. MUÑIZ) CONTENTS PART IV The phytogeographical subdivision of Cuba (With the contribution of O. Muñiz) 21 The phytogeographical status of Cuba . 283 21.1 Good's phytogeographic regionalization ofthe Caribbean . 283 21.2 A new proposal for the phytogeographic regionalization of the Caribbean area 283 21.3 Relationships within the flora of the West Indies . 284 21. 4 Toe phytogeographical subdivision of Cuba . 29(J Sub-province A. Western Cuba . .. .. 290 Sub-province B. Central Cuba . 321 Sub-province C. Eastern Cuba .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349 8 21 The phytogeographical status of Cuba 21.1 Good's phytogeographic regionalization of the Caribbean Cuba belongs to the Neotropical floristic kingdom whose phytogeographic subdivision has been defined by Good (1954) and, later by Takhtadjan (1970). According to these authors, the Neotropical kingdom is divided into seven floristic regions and is characterized by 32 endemic plant families, 10 of which occur in Cuba. These are: Marcgraviaceae, Bixaceae, Cochlospermaceae, Brunelliaceae, Picrodendraceae, Calyceraceae, Bromeliaceae, Cyclanthaceae, Heliconiaceae and Cannaceae. The Caribbean floristic region has been divided into four provinces: l. Southern California-Mexico, 2. Caribbean, 3. Guatemala-Panama, and 4. North Colombia-North Venezuela, Cuba, as a separate sub-province, belongs to the Caribbean province. 21.2 A new proposal far the phytogeographic regionalization of the Caribbean area In the author's opinion the above-mentioned phytogeographic classification does not reflect correctly the evolutionary history and the present floristic conditions of the Caribbean. In addition, the early isolation of the Antilles and the rich endemic flora of the archipelago are not considered satisfactorily.
    [Show full text]
  • Is Trachycarpus Latisectus Vanishing from Its Natural Habitat?
    PALM S Kholia: Vanishing Trachycarpus Vol. 54(1) 2010 Is Trachycarpus latisectus B.S. K HOLIA Botanical Survey of India Vanishing Sikkim Himalayan Circle P. O. Rajbhawan from its Gangtok-737 103, Sikkim, India Natural [email protected] Habitat? 1. Rocky habitat with three living palms and one dead palm. The relatively recently described rare and endemic palm from Darjeeling Himalaya of India, Trachycarpus latisectus (Fig. 1), was surveyed to evaluate its status in its only known wild and semi-cultivated localities. The Windamere palm is becoming rarer and rarer in its natural habitat and exposed to the great threat of extinction. It is feared that if the threats continue this beautiful palm may perish very soon from the wild. A few protective measures are also suggested here for its conservation. PALMS 54(1): 43 –50 43 PALM S Kholia: Vanishing Trachycarpus Vol. 54(1) 2010 2. Satellite imagery of the site of Trachycarpus latisectus . Two open areas with scattered vegetation are separated by two narrow parallel gorges with dense vegetation. (Courtesy Google Wikimapia) The Himalaya and South East Asia bear a very Hussain & Garg 2004, Gibbons et al. 2008, rich a nd diver se flora d ue to t he ir unique Kholi a, 200 9); ho weve r, the rece nt recognit ion geo graphical po sitio n, com plex to pograph y of ano ther endem i c and thre atened species of and variable climatic conditions. This region Darjeeling and Kalimpong hills of west Bengal, is considered as the South East Asian center of India, T.
    [Show full text]
  • Biodiversity Conservation in the Kangchenjunga Landscape Final
    Plant Resources in the Protected Areas and Proposed Corridors of Darjeeling, India Abhaya Prasad Das1, Ram Bahadur Bhujel2, Dorje Lama3, 1University of North Bengal, Darjeeling, India, 2Kalimpong College, Kalimpong, India, 3St. Joseph’s College, Darjeeling, India, [email protected] The proposed corridors in Darjeeling are rich in flora, many of which are threatened. Substantial numbers of species are endemic to the region. Introduction Among the nine botanical provinces in the Indian sub-continent, the eastern Himalayas are unique globally because of the diversity of plants and animals found there, and this has drawn the attention of many plant and animal scientists from different corners of the world (Das 1995). The Himalayan region, influenced by various climatic factors, soil characteristics, diversified landforms, and altitudinal variations has a rich and diverse forest structure and an abundant composition of species. The district of Darjeeling is one of the most pleasant and beautiful places in India. It has a blend of nature, culture, wildlife, and adventure. Covering an area of 3,255 sq.km, the district Section 2: Biodiversity Conservation 57 is located between 26°31’ and 27°13’ N and 87°59’ and 88°53’ E. The district has three subdivisions: Kalimpong is the largest (1,057 sq.km) followed by Darjeeling (936 sq.km) and Kurseong (425 sq.km). The district shares its boundaries with Nepal to the west, Sikkim to the north, and Bhutan to the east. The climate is extremely variable with a nearly tropical climate prevailing in the foothills and terai regions and subalpine conditions in the areas above 3,000m.
    [Show full text]
  • (Arecaceae): Évolution Du Système Sexuel Et Du Nombre D'étamines
    Etude de l’appareil reproducteur des palmiers (Arecaceae) : évolution du système sexuel et du nombre d’étamines Elodie Alapetite To cite this version: Elodie Alapetite. Etude de l’appareil reproducteur des palmiers (Arecaceae) : évolution du système sexuel et du nombre d’étamines. Sciences agricoles. Université Paris Sud - Paris XI, 2013. Français. NNT : 2013PA112063. tel-01017166 HAL Id: tel-01017166 https://tel.archives-ouvertes.fr/tel-01017166 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Sciences du Végétal (ED 45) Laboratoire d'Ecologie, Systématique et E,olution (ESE) DISCIPLINE : -iologie THÈSE DE DOCTORAT SUR TRAVAUX soutenue le ./05/10 2 par Elodie ALAPETITE ETUDE DE L'APPAREIL REPRODUCTEUR DES PAL4IERS (ARECACEAE) : EVOLUTION DU S5STE4E SE6UEL ET DU NO4-RE D'ETA4INES Directeur de thèse : Sophie NADOT Professeur (Uni,ersité Paris-Sud Orsay) Com osition du jury : Rapporteurs : 9ean-5,es DU-UISSON Professeur (Uni,ersité Pierre et 4arie Curie : Paris VI) Porter P. LOWR5 Professeur (4issouri -otanical Garden USA et 4uséum National d'Histoire Naturelle Paris) Examinateurs : Anders S. -ARFOD Professeur (Aarhus Uni,ersity Danemark) Isabelle DA9OA Professeur (Uni,ersité Paris Diderot : Paris VII) 4ichel DRON Professeur (Uni,ersité Paris-Sud Orsay) 3 4 Résumé Les palmiers constituent une famille emblématique de monocotylédones, comprenant 183 genres et environ 2500 espèces distribuées sur tous les continents dans les zones tropicales et subtropicales.
    [Show full text]
  • Mar2009sale Finalfinal.Pub
    March SFPS Board of Directors 2009 2009 The Palm Report www.southfloridapalmsociety.com Tim McKernan President John Demott Vice President Featured Palm George Alvarez Treasurer Bill Olson Recording Secretary Lou Sguros Corresponding Secretary Jeff Chait Director Sandra Farwell Director Tim Blake Director Linda Talbott Director Claude Roatta Director Leonard Goldstein Director Jody Haynes Director Licuala ramsayi Palm and Cycad Sale The Palm Report - March 2009 March 14th & 15th This publication is produced by the South Florida Palm Society as Montgomery Botanical Center a service to it’s members. The statements and opinions expressed 12205 Old Cutler Road, Coral Gables, FL herein do not necessarily represent the views of the SFPS, it’s Free rare palm seedlings while supplies last Board of Directors or its editors. Likewise, the appearance of ad- vertisers does not constitute an endorsement of the products or Please visit us at... featured services. www.southfloridapalmsociety.com South Florida Palm Society Palm Florida South In This Issue Featured Palm Ask the Grower ………… 4 Licuala ramsayi Request for E-mail Addresses ………… 5 This large and beautiful Licuala will grow 45-50’ tall in habitat and makes its Membership Renewal ………… 6 home along the riverbanks and in the swamps of the rainforest of north Queen- sland, Australia. The slow-growing, water-loving Licuala ramsayi prefers heavy Featured Palm ………… 7 shade as a juvenile but will tolerate several hours of direct sun as it matures. It prefers a slightly acidic soil and will appreciate regular mulching and protection Upcoming Events ………… 8 from heavy winds. While being one of the more cold-tolerant licualas, it is still subtropical and should be protected from frost.
    [Show full text]