Road Salt and Water Quality Fact Sheet WMB-4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proposed 2021-2022 Ice Fishing Contests
Proposed 2021-2022 Ice Fishing Contests Region Contest Name Dates & Waterbody Species of Fish Contest ALS # Contact Telephone Hours Sponsor Person 1 23rd Annual Teena Feb. 12, Lake Mary Yellow Perch, Treasure State 01/01/1500 Chancy 406-314- Frank Family Derby 2022 6am- Ronan Kokanee Angler Circuit -3139 Jeschke 8024 1pm Salmon 1 50th Annual Jan. 8, 2022 Smith Lake Yellow Perch, Sunriser Lions 01/01/1500 Warren Illi 406-890- Sunriser Lions 7am-1pm Northern Pike, Club of Kalispell -323 0205 Family Fishing Sucker Derby 1 Bull Lake Ice Feb. 19-20, Bull Lake Nothern Pike Halfway House 01/01/1500 Dave Cooper 406-295- Fishing Derby 2022 6am- Bar & Grill -3061 4358 10pm 1 Canyon Kid Feb. 26, Lion Lake Trout, Perch Canyon Kids 01/01/1500 Rhonda 406-261- Christmas Lion 2022 10am- Christmas -326 Tallman 1219 Lake Fishing Derby 2pm 1 Fisher River Valley Jan. 29-30, Upper, Salmon, Yellow Fisher River 01/01/1500 Chelsea Kraft 406-291- Fire Rescue Winter 2022 7am- Middle, Perch, Rainbow Valley Fire -324 2870 Ice Fishing Derby 5pm Lower Trout, Northern Rescue Auxilary Thompson Pike Lakes, Crystal Lake, Loon Lake 1 The Lodge at Feb. 26-27, McGregor Rainbow Trout, The Lodge at 01/01/1500 Brandy Kiefer 406-858- McGregor Lake 2022 6am- Lake Lake Trout McGregor Lake -322 2253 Fishing Derby 4pm 1 Perch Assault #2- Jan. 22, 2022 Smith Lake Yellow Perch, Treasure State 01/01/1500 Chancy 406-314- Smith Lake 8am-2pm Nothern Pike Angler Circuit -3139 Jeschke 8024 1 Perch Assault- Feb. -
Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat
ruses science for a changing world Prepared in cooperation with the Alaska Energy Authority u Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat Water-Resources Investigations Report 98-4191 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Ice pedestals at Bradley River near Tidewater transect, February 28, 1995. Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat by Ronald L. Rickman U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 98-4191 Prepared in cooperation with the ALASKA ENERGY AUTHORITY Anchorage, Alaska 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information: Copies of this report may be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 4230 University Drive, Suite 201 Box 25286 Anchorage, AK 99508-4664 Denver, CO 80225-0286 http://www-water-ak.usgs.gov CONTENTS Abstract ................................................................. 1 Introduction ............................................................... 1 Location of Study Area.................................................. 1 Bradley Lake Hydroelectric Project ....................................... -
Sodium Chloride Or Rock Salt | Peters Chemical Company
MSDS Sheet – Sodium Chloride or Rock Salt | Peters Chemical Company Call Now - 1-973-427-8844 Home Contact Us Deicers Airport Runway Deicers Deicing Articles Lime & Limestone Misc. Print This Page MATERIAL SAFETY DATA SHEET Product Name: Sodium Chloride – Rock Salt – Halite EPA Reg. No: N/A 1. PRODUCT IDENTIFICATION Product Name: Sodium Chloride – Rock Salt UN/MA#: N/A DOT Hazard Class: N/A 2. INGREDIENTS & RECOMMENDED OCCUPATIONAL EXPOSURE LIMITS TLV See Addendum 1 10 MG/M3 as nuisance dust. 3. PHYSICAL DATA Density: 40 – 70 lb/ft Boiling Point: N/A dry solid Melting Point: Partially decomposes at 12o F Vapor Pressure: N/A Vapor Density: N/A pH: 6-8 Solubility in Water: 100% Evaporation Rate: N/A Appearance and Odor: White Crystals and mild aromatic odor 4. FIRE AND EXPLOSION HAZARD DATA Flash Point: N/A Flammable Limits: N/A Fire Extinguishing Media: Considered non-combustible. Dry chemical. Foam, CO2, Water, Spray or Fog. Special Fire Fighting Procedures: Use self-contained breathing apparatus and full protective clothing. Fight fire from upwind side. Avoid run-off. Keep non-essential personnel away from immediate fire area, and out of any fall-out or run-off areas. Unusual Fire and Explosion Hazards: None 5. REACTIVITY DATA Stability: Stable Incompatibility: None Hazardous Decomposition or By-Products: None Conditions to Avoid: None Hazardous Polymerization: Will not occur http://www.peterschemical.com/sodium-chloride/msds-sheet-sodium-chloride-or-rock-salt/[1/8/2014 2:35:52 PM] MSDS Sheet – Sodium Chloride or Rock Salt | Peters Chemical Company 6. SPILL OR LEAK PROCEDURES Steps to be taken in case material is released: In case of release to the environment, report spills to the National Response Center 1-800-424-8802. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering
water Article Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering Slobodan P. Simonovic Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; [email protected]; Tel.: +1-519-661-4075 Received: 29 March 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: Global change, that results from population growth, global warming and land use change (especially rapid urbanization), is directly affecting the complexity of water resources management problems and the uncertainty to which they are exposed. Both, the complexity and the uncertainty, are the result of dynamic interactions between multiple system elements within three major systems: (i) the physical environment; (ii) the social environment; and (iii) the constructed infrastructure environment including pipes, roads, bridges, buildings, and other components. Recent trends in dealing with complex water resources systems include consideration of the whole region being affected, explicit incorporation of all costs and benefits, development of a large number of alternative solutions, and the active (early) involvement of all stakeholders in the decision-making. Systems approaches based on simulation, optimization, and multi-objective analyses, in deterministic, stochastic and fuzzy forms, have demonstrated in the last half of last century, a great success in supporting effective water resources management. This paper explores the future opportunities that will utilize advancements in systems theory that might transform management of water resources on a broader scale. The paper presents performance-based water resources engineering as a methodological framework to extend the role of the systems approach in improved sustainable water resources management under changing conditions (with special consideration given to rapid climate destabilization). -
The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure. -
Chapter 7 Seasonal Snow Cover, Ice and Permafrost
I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change. -
Freshwater Resources
3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ........................................................................................................................................................... -
Integrated Planning and Management at Community Level
Training manual Water resource management: Integrated planning and management at community level This training manual is intended to help to WaterAid in Nepal ’s partners and stakeholders train community leaders in developing integrated plans for managing water resource at community level. The production of this manual was led by Kabir Das Rajbhandari from WaterAid in Nepal with support from WaterAid in Nepal ’s partners. Consultant Dinesh Raj Manandhar assisted in the preparation of this manual by organising a series of workshops at community level and with practitioners. Colleagues from the Advocacy team in Nepal reviewed the document, providing valuable input. This document should be cited as WaterAid in Nepal (2011) Training manual - Water resource management: Integrated planning and management at community level. The document can be found in the documents section of the WaterAid in Nepal country programme website– www.nepal.wateraid.org A WaterAid in Nepal publication September 2011 WaterAid transforms lives by improving access to safe water, hygiene and sanitation in the world’s poorest communities. We work with partners and influence decision makers to maximise our impact. Cover picture: Top: A school girl at Lalit Kalyan School behind recharged well from harvested rain. WaterAid/ Anita Pradhan Middle: Pratima Shakya from Hakha tole in Lalitpur district at the dug well front to her house. Bottom: Krishna Shrestha caretaker, Sunga wastewater treatment plant, Thimee. WaterAid/ Marco Betti Contents Abbreviation iii 1. Introduction 1 1.1 Background 1 1.2 WaterAid and Water Resource Management (WRM) 2 1.3 CWRM approach and capacity building 4 1.4 About the manual 5 1.5 Target group 6 1.6 Objective of the training 6 1.7 Expected outcomes 6 2. -
Ice Energy & Our Ice Batteries
Efficiency and Reliability – A Win/Win for Utilities and Consumers Ice Energy & Our Ice Batteries Greg Miller EVP Market Development & Sales [email protected], 970-227-9406 Discover the Power of Ice Ice Energy Mission Transforming Air Conditioning, which is the Principal Driver and Root Cause of Peak Demand driving the Highest Energy Cost Periods of the Day/Season, Into a Clean, Flexible and Reliable Energy Storage Resource for Utilities and Consumers, Enabling Energy Consumption Pattern Changes Automatically without Cooling Sacrifice Utility and Consumer Use Case Example: . Southern California Edison Ice Bear Program (Orange County) . Installing 1800 Ice Bears at commercial & industrial buildings to reduce 26 MW of HVAC peak load from 2 pm to 6 pm every day without cooling sacrifice . Utility objective is to reduce SCE substation energy constraints for Johanna and Santiago substations . Opportunity for consumers is to permanently reduce HVAC peak load and shift HVAC energy consumption to night time periods saving thousands of dollar with little to no investment – includes 20 years free Ice Bear annual maintenance Energy Storage: Barriers for Some, Advantages for Ice Major Competitive Advantage Lowest cost, longest lasting battery on the market, most environmental friendly battery using Water/Ice as energy storage media Extremely reliable 98%+ availability over 35 million operating hours, 1400+ units deployed to date, 14 years in business Environmentally Friendly & Safe No fire and no use of chemical – storage media is water. No -
Final Feasibility and Cost Analysis Findings and Recommendations Report
Final FEASIBILITY AND COST ANALYSIS FINDINGS AND RECOMMENDATION REPORT PARADOX VALLEY UNIT BYPRODUCTS DISPOSAL STUDY Submitted to: Wastren Advantage, Inc. 1571 Shyville Road Piketon, Ohio 45661 Submitted by: Amec Foster Wheeler Environment & Infrastructure, Inc. San Diego, California January 2017 Amec Foster Wheeler Project No. 1655500023 ©2016 Amec Foster Wheeler. All Rights Reserved. January 2017 Dave Sablosky Wastren Advantage, Inc. 1571 Shyville Road Piketon, Ohio 45661 Re: Final Feasibility, Cost Analysis, Findings, and Recommendation Report for Paradox Valley Unit Byproducts Disposal Study Dear Dave: The report included here satisfies the deliverable for the Paradox Valley Unit Evaporation Ponds Study 3: Final Feasibility, Cost Analysis, Findings, and Recommendations for Byproducts Disposal Report. As agreed with you and with Reclamation, this is a single combined report for the Byproducts Disposal Study that includes all elements anticipated from the Feasibility and Cost Analysis study, and the Findings and Recommendations report. This is a final version including all the information collected for Study 3 combined into a single report. It also includes the responses to the final comment matrix submitted by Reclamation. If you have any questions or concerns regarding this report, please contact Carla Scheidlinger at 858-300-4311 or by email at [email protected]. Respectfully submitted, Amec Foster Wheeler Environment & Infrastructure, Inc. Carla Scheidlinger Project Manager Amec Foster Wheeler Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200 San Diego, California Tel: (858) 300-4300 Fax: (858) 300-4301 www.amecfw.com Wastren Advantage, Inc. Final Combined Findings and Recommendation Report Paradox Valley Unit Byproducts Disposal Study Amec Foster Wheeler Project No. -
SPR-691: Development of ADOT Application Rate Guidelines For
e SPR 691 OCTOBER 2015 Development of ADOT Application Rate Guidelines for Winter Storm Management of Chemical Additives through an Ambient Monitoring System Arizona Department of Transportation Research Center Development of ADOT Application Rate Guidelines for Winter Storm Management of Chemical Additives through an Ambient Monitoring System SPR‐691 October 2015 Prepared by: Ed Latimer, Richard Bansberg, Scott Hershberger, Theresa Price, Don Thorstenson, and Phil Ryder AMEC Environmental & Infrastructure 4600 E. Washington St., Suite 600 Phoenix, AZ 85034 Published by: Arizona Department of Transportation 206 S. 17th Ave. Phoenix, AZ 85007 In cooperation with U.S. Department of Transportation Federal Highway Administration Disclaimer This report was funded in part through grants from the Federal Highway Administration, U.S. Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data, and for the use or adaptation of previously published material, presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers’ names that may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. government and the State of Arizona do not endorse products or manufacturers. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA‐AZ‐15‐691 4. Title and Subtitle 5. Report Date Development of ADOT Application Rate Guidelines for Winter Storm October 2015 Management of Chemical Additives through an Ambient Monitoring 6.