Freshwater Resources

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Resources 3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ............................................................................................................................................................ 234 3.2. Observed Hydrological Changes Due to Climate Change ........................................................................................ 234 3.2.1. Detection and Attribution ................................................................................................................................................................. 234 3.2.2. Precipitation, Evapotranspiration, Soil Moisture, Permafrost, and Glaciers ....................................................................................... 236 3.2.3. Streamflow ....................................................................................................................................................................................... 236 3.2.4. Groundwater .................................................................................................................................................................................... 237 3.2.5. Water Quality ................................................................................................................................................................................... 237 3.2.6. Soil Erosion and Sediment Load ....................................................................................................................................................... 237 3.2.7. Extreme Hydrological Events and their Impacts ................................................................................................................................ 239 3.3. Drivers of Change for Freshwater Resources ......................................................................................................... 240 3 3.3.1. Climatic Drivers ................................................................................................................................................................................ 240 3.3.2. Non-Climatic Drivers ......................................................................................................................................................................... 240 3.4. Projected Hydrological Changes ............................................................................................................................. 241 3.4.1. Methodological Developments in Hydrological Impact Assessment ................................................................................................. 241 3.4.2. Evapotranspiration, Soil Moisture, and Permafrost ........................................................................................................................... 241 Box 3-1. Case Study: Himalayan Glaciers .................................................................................................................................... 242 3.4.3. Glaciers ............................................................................................................................................................................................. 243 3.4.4. Runoff and Streamflow ..................................................................................................................................................................... 243 3.4.5. Groundwater ..................................................................................................................................................................................... 243 3.4.6. Water Quality ................................................................................................................................................................................... 246 3.4.7. Soil Erosion and Sediment Load ....................................................................................................................................................... 246 3.4.8. Extreme Hydrological Events (Floods and Droughts) ........................................................................................................................ 247 3.5. Projected Impacts, Vulnerabilities, and Risks .......................................................................................................... 248 3.5.1. Availability of Water Resources ........................................................................................................................................................ 248 3.5.2. Water Uses ....................................................................................................................................................................................... 251 3.5.2.1. Agriculture ........................................................................................................................................................................... 251 3.5.2.2. Energy Production ................................................................................................................................................................ 252 3.5.2.3. Municipal Services ............................................................................................................................................................... 252 3.5.2.4. Freshwater Ecosystems ........................................................................................................................................................ 253 3.5.2.5. Other Uses ........................................................................................................................................................................... 253 230 Freshwater Resources Chapter 3 3.6. Adaptation and Managing Risks ............................................................................................................................. 253 3.6.1. Options ............................................................................................................................................................................................. 254 3.6.2. Dealing with Uncertainty in Future Climate Change ......................................................................................................................... 254 3.6.3. Costs of Adaptation to Climate Change ............................................................................................................................................ 256 3.6.4. Adaptation in Practice in the Water Sector ....................................................................................................................................... 256 3.7. Linkages with Other Sectors and Services .............................................................................................................. 257 3.7.1. Impacts of Adaptation in Other Sectors on Freshwater Systems ....................................................................................................... 257 3.7.2. Climate Change Mitigation and Freshwater Systems ........................................................................................................................ 257 3.7.2.1. Impact of Climate Change Mitigation on Freshwater Systems ............................................................................................. 257 3.7.2.2. Impact of Water Management on Climate Change Mitigation ............................................................................................. 258 3.8. Research and Data Gaps ......................................................................................................................................... 258 References ......................................................................................................................................................................... 259 3 Frequently Asked Questions 3.1: How will climate change affect the frequency and severity of floods and droughts? ....................................................................... 247 3.2: How will the
Recommended publications
  • Proposed 2021-2022 Ice Fishing Contests
    Proposed 2021-2022 Ice Fishing Contests Region Contest Name Dates & Waterbody Species of Fish Contest ALS # Contact Telephone Hours Sponsor Person 1 23rd Annual Teena Feb. 12, Lake Mary Yellow Perch, Treasure State 01/01/1500 Chancy 406-314- Frank Family Derby 2022 6am- Ronan Kokanee Angler Circuit -3139 Jeschke 8024 1pm Salmon 1 50th Annual Jan. 8, 2022 Smith Lake Yellow Perch, Sunriser Lions 01/01/1500 Warren Illi 406-890- Sunriser Lions 7am-1pm Northern Pike, Club of Kalispell -323 0205 Family Fishing Sucker Derby 1 Bull Lake Ice Feb. 19-20, Bull Lake Nothern Pike Halfway House 01/01/1500 Dave Cooper 406-295- Fishing Derby 2022 6am- Bar & Grill -3061 4358 10pm 1 Canyon Kid Feb. 26, Lion Lake Trout, Perch Canyon Kids 01/01/1500 Rhonda 406-261- Christmas Lion 2022 10am- Christmas -326 Tallman 1219 Lake Fishing Derby 2pm 1 Fisher River Valley Jan. 29-30, Upper, Salmon, Yellow Fisher River 01/01/1500 Chelsea Kraft 406-291- Fire Rescue Winter 2022 7am- Middle, Perch, Rainbow Valley Fire -324 2870 Ice Fishing Derby 5pm Lower Trout, Northern Rescue Auxilary Thompson Pike Lakes, Crystal Lake, Loon Lake 1 The Lodge at Feb. 26-27, McGregor Rainbow Trout, The Lodge at 01/01/1500 Brandy Kiefer 406-858- McGregor Lake 2022 6am- Lake Lake Trout McGregor Lake -322 2253 Fishing Derby 4pm 1 Perch Assault #2- Jan. 22, 2022 Smith Lake Yellow Perch, Treasure State 01/01/1500 Chancy 406-314- Smith Lake 8am-2pm Nothern Pike Angler Circuit -3139 Jeschke 8024 1 Perch Assault- Feb.
    [Show full text]
  • Farmland Investments and Water Rights: the Legal Regimes at Stake
    Farmland Investments and Water Rights: The legal regimes at stake Makane Moïse Mbengue Susanna Waltman May 2015 www.iisd.org/gsi www.iisd.org © 2015 The International Institute for Sustainable Development Published by the International Institute for Sustainable Development. International Institute for Sustainable Development The International Institute for Sustainable Development (IISD) contributes to sustainable development by advancing policy recommendations on international trade and investment, economic policy, climate change and energy, and management of natural and social capital, as well as the enabling role of communication technologies in these areas. We report on international negotiations and disseminate knowledge gained through collaborative projects, resulting in more rigorous research, capacity building in developing countries, better networks spanning the North and the South, and better global connections among researchers, practitioners, citizens and policy-makers. IISD’s vision is better living for all—sustainably; its mission is to champion innovation, enabling societies to live sustainably. IISD is registered as a charitable organization in Canada and has 501(c)(3) status in the United States. IISD receives core operating support from the Government of Canada, provided through the International Development Research Centre (IDRC), from the Danish Ministry of Foreign Affairs and from the Province of Manitoba. The Institute receives project funding from numerous governments inside and outside Canada, United Nations agencies,
    [Show full text]
  • Impacts of Technology on U.S. Cropland and Rangeland Productivity Advisory Panel
    l-'" of nc/:\!IOIOO _.. _­ ... u"' "'"'" ... _ -'-- Impacts of Technology on U.S. Cropland w, in'... ' .....7 and Rangeland Productivity August 1982 NTIS order #PB83-125013 Library of Congress Catalog Card Number 82-600596 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This Nation’s impressive agricultural success is the product of many factors: abundant resources of land and water, a favorable climate, and a history of resource- ful farmers and technological innovation, We meet not only our own needs but supply a substantial portion of the agricultural products used elsewhere in the world. As demand increases, so must agricultural productivity, Part of the necessary growth may come from farming additional acreage. But most of the increase will depend on intensifying production with improved agricultural technologies. The question is, however, whether farmland and rangeland resources can sustain such inten- sive use. Land is a renewable resource, though one that is highly susceptible to degrada- tion by erosion, salinization, compaction, ground water depletion, and other proc- esses. When such processes are not adequately managed, land productivity can be mined like a nonrenewable resource. But this need not occur. For most agricul- tural land, various conservation options are available, Traditionally, however, farm- ers and ranchers have viewed many of the conservation technologies as uneconom- ical. Must conservation and production always be opposed, or can technology be used to help meet both goals? This report describes the major processes degrading land productivity, assesses whether productivity is sustainable using current agricultural technologies, reviews a range of new technologies with potentials to maintain productivity and profitability simultaneously, and presents a series of options for congressional consideration.
    [Show full text]
  • Climate History Spanning the Past 17,000 Years at the Bottom of a South Island Lake
    VOL. 98 NO. 10 OCT 2017 Lakebed Cores Record Shifting Winds Cell Phone App Aids Irrigation Earth & Space Science News Red/Blue and Peer Review A New Clue about CO2 UPTAKE Act Now to Save on Registration and Housing Early Registration Deadline: 3 November 2017, 11:59 P.M. ET Housing Deadline: 15 November 2017, 11:59 P.M. ET fallmeeting.agu.org Earth & Space Science News Contents OCTOBER 2017 PROJECT UPDATE VOLUME 98, ISSUE 10 12 Shifting Winds Write Their History on a New Zealand Lake Bed A team of scientists finds a year-by-year record of climate history spanning the past 17,000 years at the bottom of a South Island lake. PROJECT UPDATE 18 Growing More with Less Using Cell Phones and Satellite Data Researchers from the University of Washington and Pakistan are using 21st-century technology to revive farming as a profitable profession in the Indus 24 Valley. OPINION COVER Red/Blue Assessing a New Clue 10 and Peer Review Healthy skepticism has long formed the to How Much Carbon Plants Take Up foundation of the scientific peer review Current climate models disagree on how much carbon dioxide land ecosystems take up process. Will anything substantively new be for photosynthesis. Tracking the stronger carbonyl sulfide signal could help. gleaned from a red team/blue team exercise? Earth & Space Science News Eos.org // 1 Contents DEPARTMENTS Editor in Chief Barbara T. Richman: AGU, Washington, D. C., USA; eos_ [email protected] Editors Christina M. S. Cohen Wendy S. Gordon Carol A. Stein California Institute Ecologia Consulting, Department of Earth and of Technology, Pasadena, Austin, Texas, USA; Environmental Sciences, Calif., USA; wendy@ecologiaconsulting University of Illinois at cohen@srl .caltech.edu .com Chicago, Chicago, Ill., José D.
    [Show full text]
  • Freshwater Ecosystems and Biodiversity
    Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St.
    [Show full text]
  • Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat
    ruses science for a changing world Prepared in cooperation with the Alaska Energy Authority u Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat Water-Resources Investigations Report 98-4191 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Ice pedestals at Bradley River near Tidewater transect, February 28, 1995. Effects of Ice Formation on Hydrology and Water Quality in the Lower Bradley River, Alaska Implications for Salmon Incubation Habitat by Ronald L. Rickman U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 98-4191 Prepared in cooperation with the ALASKA ENERGY AUTHORITY Anchorage, Alaska 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information: Copies of this report may be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 4230 University Drive, Suite 201 Box 25286 Anchorage, AK 99508-4664 Denver, CO 80225-0286 http://www-water-ak.usgs.gov CONTENTS Abstract ................................................................. 1 Introduction ............................................................... 1 Location of Study Area.................................................. 1 Bradley Lake Hydroelectric Project .......................................
    [Show full text]
  • Coping with Water Scarcity: What Role for Biotechnologies?
    ISSN 1729-0554 LAND AND WATER DISCUSSION 7 PAPER LAND AND WATER DISCUSSION PAPER 7 Coping with water scarcity: What role for biotechnologies? As one of its initiatives to mark World Water Day 2007, whose theme was "Coping with water scarcity", FAO organized a moderated e-mail conference entitled "Coping with water scarcity in developing countries: What role for agricultural biotechnologies?". Its main focus was on the use of biotechnologies to increase the efficiency of water use in agriculture, while a secondary focus was on two specific water-related applications of micro-organisms, in wastewater treatment and in inoculation of crops and forest trees with mycorrhizal fungi. This publication brings together the background paper and the summary report from the e-mail conference. Coping with water scarcity: What role for biotechnologies? ISBN 978-92-5-106150-3 ISSN 1729-0554 9 7 8 9 2 5 1 0 6 1 5 0 3 TC/M/I0487E/1/11.08/2000 LAND AND WATER Coping with Water DISCUSSION PAPER Scarcity: What Role for 7 Biotechnologies? By John Ruane FAO Working Group on Biotechnology Rome, Italy Andrea Sonnino FAO Research and Extension Division Rome, Italy Pasquale Steduto FAO Land and Water Division Rome, Italy and Christine Deane Faculty of Law University of Technology, Sydney Australia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The views expressed in this publication are those of the authors and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Evaluating Vapor Intrusion Pathways
    Evaluating Vapor Intrusion Pathways Guidance for ATSDR’s Division of Community Health Investigations October 31, 2016 Contents Acronym List ........................................................................................................................................................................... 1 Introduction ........................................................................................................................................................................... 2 What are the potential health risks from the vapor intrusion pathway? ............................................................................... 2 When should a vapor intrusion pathway be evaluated? ........................................................................................................ 3 Why is it so difficult to assess the public health hazard posed by the vapor intrusion pathway? .......................................... 3 What is the best approach for a public health evaluation of the vapor intrusion pathway? ................................................. 5 Public health evaluation.......................................................................................................................................................... 5 Vapor intrusion evaluation process outline ............................................................................................................................ 8 References… …......................................................................................................................................................................
    [Show full text]
  • Water on Earth (Pages 392–395) Key Concept
    Name Date Class Fresh Water ■ Adapted Reading and Study Water on Earth (pages 392–395) The Water Cycle (pages 392–393) Key Concept: In the water cycle, water moves from bodies of water, land, and living things on Earth’s surface to the atmosphere and back to Earth’s surface. • The water cycle is how water moves from Earth’s surface to the atmosphere and back again. The water cycle never stops. It has no beginning or end. • The sun is the source of energy for the water cycle. • Water evaporates from Earth’s surface. Water is always evaporating from oceans and lakes. Water is given off by plants as water vapor. • When water vapor in the air cools, it condenses. The result of this condensation is clouds. • From clouds, water falls back to Earth as precipitation. Precipitation is water that falls to Earth as rain, snow, hail, or sleet. • If the precipitation falls on land, it may soak into the soil. Or, it may run off into rivers and lakes. Answer the following questions. Use your textbook and the ideas above. 1. The process by which water moves from Earth’s surface to the atmosphere and back again is the . 2. Water that falls to Earth as rain, snow, hail, or Fresh Water Fresh sleet is called . © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. 185 Name Date Class Fresh Water ■ Adapted Reading and Study 3. Circle the letter of each sentence that is true about the water cycle. a. The water cycle begins with the formation of clouds.
    [Show full text]
  • Freshwater Resources and Their Management
    3 Freshwater resources and their management Coordinating Lead Authors: Zbigniew W. Kundzewicz (Poland), Luis José Mata (Venezuela) Lead Authors: Nigel Arnell (UK), Petra Döll (Germany), Pavel Kabat (The Netherlands), Blanca Jiménez (Mexico), Kathleen Miller (USA), Taikan Oki (Japan), Zekai Senç (Turkey), Igor Shiklomanov (Russia) Contributing Authors: Jun Asanuma (Japan), Richard Betts (UK), Stewart Cohen (Canada), Christopher Milly (USA), Mark Nearing (USA), Christel Prudhomme (UK), Roger Pulwarty (Trinidad and Tobago), Roland Schulze (South Africa), Renoj Thayyen (India), Nick van de Giesen (The Netherlands), Henk van Schaik (The Netherlands), Tom Wilbanks (USA), Robert Wilby (UK) Review Editors: Alfred Becker (Germany), James Bruce (Canada) This chapter should be cited as: Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Senç and I.A. Shiklomanov, 2007: Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 173-210. Freshwater resources and their management Chapter 3 Table of Contents .....................................................175 3.5.2 How will climate change affect flood Executive summary damages?...............................................................196 .......................................................175
    [Show full text]
  • Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2019-07-01 Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Barkdull, Natalie Shepherd, "Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA" (2019). Theses and Dissertations. 8590. https://scholarsarchive.byu.edu/etd/8590 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Gregory T. Carling, Chair Barry R. Bickmore Stephen T. Nelson Department of Geological Sciences Brigham Young University Copyright © 2019 Natalie Shepherd Barkdull All Rights Reserved ABSTRACT Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull Department of Geological Sciences, BYU Master of Science Shrinking alpine glaciers alter the geochemistry of sensitive mountain streams by exposing reactive freshly-weathered bedrock and releasing decades of atmospherically-deposited trace elements from glacier ice. Changes in the timing and quantity of glacial melt also affect discharge and temperature of alpine streams.
    [Show full text]
  • Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico
    Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico Vincente Ruiz WP 2016.05 Suggested citation: V. Ruiz (2016). Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico. FAERE Working Paper, 2016.05. ISSN number: 2274-5556 www.faere.fr Groundwater Overdraft, Electricity, and Wrong Incentives: Evidence from Mexico by Vicente Ruiz⇤ Last version: January 2016 Abstract Groundwater overdraft is threatening the sustainability of an increasing number of aquifers in Mexico. The excessive amount of groundwater ex- tracted by irrigation farming has significantly contributed to this problem. The objective of this paper is to analyse the effect of changes in ground- water price over the allocation of different production inputs. I model the technology of producers facing groundwater overdraft through a Translog cost function and using a combination of multiple micro-data sources. My results show that groundwater demand is inelastic, -0.54. Moreover, these results also show that both labour and fertiliser can act as substitutes for groundwater, further reacting to changes in groundwater price. JEL codes:Q12,Q25 Key words: Groundwater, Electricity, Subsidies, Mexico, Translog Cost ⇤Université Paris 1 - Panthéon Sorbonne, Paris School of Economics (PSE). Centre d’Économie de la Sorbonne, 106-112 Boulevard de l’Hopital, 75647, Paris Cedex 13, France. Email: [email protected] Introduction The high rate of groundwater extraction in Mexico is threatening the sustainability of an increasing number of aquifers in the country. Today in Mexico 1 out of 6aquifersisconsideredtobeoverexploited(CONAGUA, 2010). Groundwater overdraft is not only an important cause of major environmental problems, but it also has a direct impact on economic activities and the wellbeing of a high share of the population.
    [Show full text]