Freshwater Resources and Their Management

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Resources and Their Management 3 Freshwater resources and their management Coordinating Lead Authors: Zbigniew W. Kundzewicz (Poland), Luis José Mata (Venezuela) Lead Authors: Nigel Arnell (UK), Petra Döll (Germany), Pavel Kabat (The Netherlands), Blanca Jiménez (Mexico), Kathleen Miller (USA), Taikan Oki (Japan), Zekai Senç (Turkey), Igor Shiklomanov (Russia) Contributing Authors: Jun Asanuma (Japan), Richard Betts (UK), Stewart Cohen (Canada), Christopher Milly (USA), Mark Nearing (USA), Christel Prudhomme (UK), Roger Pulwarty (Trinidad and Tobago), Roland Schulze (South Africa), Renoj Thayyen (India), Nick van de Giesen (The Netherlands), Henk van Schaik (The Netherlands), Tom Wilbanks (USA), Robert Wilby (UK) Review Editors: Alfred Becker (Germany), James Bruce (Canada) This chapter should be cited as: Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Senç and I.A. Shiklomanov, 2007: Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 173-210. Freshwater resources and their management Chapter 3 Table of Contents .....................................................175 3.5.2 How will climate change affect flood Executive summary damages?...............................................................196 .......................................................175 3.1 Introduction 3.6 Adaptation: practices, options and ...................176 ...........................................................196 3.2 Current sensitivity/vulnerability constraints 3.6.1 The context for adaptation....................................196 ..................180 3.3 Assumptions about future trends 3.6.2 Adaptation options in principle .............................197 3.3.1 Climatic drivers.......................................................180 Box 3.2 Lessons from the ‘Dialogue on Water and 3.3.2 Non-climatic drivers ...............................................181 Climate’ .................................................................197 3.6.3 Adaptation options in practice ..............................198 .......182 3.4 Key future impacts and vulnerabilities 3.6.4 Limits to adaptation and adaptive capacity..........199 3.4.1 Surface waters .......................................................182 3.6.5 Uncertainty and risk: decision-making 3.4.2 Groundwater ..........................................................185 under uncertainty ..................................................199 3.4.3 Floods and droughts ..............................................186 3.4.4 Water quality ..........................................................188 3.7 Conclusions: implications for sustainable ........................................................200 3.4.5 Erosion and sediment transport.............................189 development 3.8 Key uncertainties and research ......190 ..............................................................201 3.5 Costs and other socio-economic aspects priorities 3.5.1 How will climate change affect the balance ......................................................................202 of water demand and water availability? ...............191 References Box 3.1 Costs of climate change in Okanagan, Canada ...195 174 Chapter 3 Freshwater resources and their management Executive summary Adaptation procedures and risk management practices for the water sector are being developed in some countries and regions (e.g., Caribbean, Canada, Australia, Netherlands, The impacts of climate change on freshwater systems and UK, USA, Germany) that have recognised projected their management are mainly due to the observed and hydrological changes with related uncertainties (very high projected increases in temperature, sea level and confidence). precipitation variability (very high confidence). Since the IPCC Third Assessment, uncertainties have been More than one-sixth of the world’s population live in glacier- or evaluated, their interpretation has improved, and new methods snowmelt-fed river basins and will be affected by the seasonal (e.g., ensemble-based approaches) are being developed for their shift in streamflow, an increase in the ratio of winter to annual characterisation (very high confidence) [3.4, 3.5]. Nevertheless, flows, and possibly the reduction in low flows caused by quantitative projections of changes in precipitation, river flows, decreased glacier extent or snow water storage (high confidence) and water levels at the river-basin scale remain uncertain (very [3.4.1, 3.4.3]. Sea-level rise will extend areas of salinisation of high confidence) [3.3.1, 3.4]. groundwater and estuaries, resulting in a decrease in freshwater The negative impacts of climate change on freshwater availability for humans and ecosystems in coastal areas (very systems outweigh its benefits (high confidence). high confidence) [3.2, 3.4.2]. Increased precipitation intensity and variability is projected to increase the risks of flooding and All IPCC regions (see Chapters 3–16) show an overall net drought in many areas (high confidence) [3.3.1]. negative impact of climate change on water resources and freshwater ecosystems (high confidence). Areas in which runoff Semi-arid and arid areas are particularly exposed to the is projected to decline are likely to face a reduction in the value impacts of climate change on freshwater (high confidence). of the services provided by water resources (very high Many of these areas (e.g., Mediterranean basin, western USA, confidence) [3.4, 3.5]. The beneficial impacts of increased southern Africa, and north-eastern Brazil) will suffer a decrease annual runoff in other areas will be tempered by the negative in water resources due to climate change (very high confidence) effects of increased precipitation variability and seasonal runoff [3.4, 3.7]. Efforts to offset declining surface water availability shifts on water supply, water quality, and flood risks (high due to increasing precipitation variability will be hampered by confidence) [3.4, 3.5]. the fact that groundwater recharge will decrease considerably in some already water-stressed regions (high confidence) [3.2, 3.1 Introduction 3.4.2], where vulnerability is often exacerbated by the rapid increase in population and water demand (very high confidence) [3.5.1]. Water is indispensable for all forms of life. It is needed in almost all human activities. Access to safe freshwater is now Higher water temperatures, increased precipitation regarded as a universal human right (United Nations Committee intensity, and longer periods of low flows exacerbate many on Economic, Social and Cultural Rights, 2003), and the forms of water pollution, with impacts on ecosystems, Millennium Development Goals include the extended access to human health, water system reliability and operating costs safe drinking water and sanitation (UNDP, 2006). Sustainable (high confidence). management of freshwater resources has gained importance at These pollutants include sediments, nutrients, dissolved organic regional (e.g., European Union, 2000) and global scales (United carbon, pathogens, pesticides, salt, and thermal pollution [3.2, Nations, 2002, 2006; World Water Council, 2006), and 3.4.4, 3.4.5]. ‘Integrated Water Resources Management’ has become the corresponding scientific paradigm. Climate change affects the function and operation of Figure 3.1 shows schematically how human activities affect existing water infrastructure as well as water management freshwater resources (both quantity and quality) and their practices (very high confidence). management. Anthropogenic climate change is only one of many Adverse effects of climate on freshwater systems aggravate the pressures on freshwater systems. Climate and freshwater impacts of other stresses, such as population growth, changing systems are interconnected in complex ways. Any change in one economic activity, land-use change, and urbanisation (very high confidence) [3.3.2, 3.5]. Globally, water demand will grow in the coming decades, primarily due to population growth and increased affluence; regionally, large changes in irrigation water demand as a result of climate change are likely (high confidence) [3.5.1]. Current water management practices are very likely to be inadequate to reduce the negative impacts of climate change on water supply reliability, flood risk, health, energy, and aquatic ecosystems (very high confidence) [3.4, 3.5]. Improved incorporation of current climate variability into water-related Figure 3.1. Impact of human activities on freshwater resources and management would make adaptation to future climate change their management, with climate change being only one of multiple pressures (modified after Oki, 2005). easier (very high confidence) [3.6]. 175 Freshwater resources and their management Chapter 3 of these systems induces a change in the other. For example, the water resources and related vulnerabilities are presented (Section draining of large wetlands may cause changes in moisture 3.4) as well as the impacts on water-use sectors (Section 3.5). recycling and a decrease of precipitation in particular months, Please refer to Chapter 1 for further information on observed when local boundary conditions dominate over the large-scale trends, to Chapter 15 (Sections 15.3 and 15.4.1) for freshwater
Recommended publications
  • Watershed Management Carroll University – Fall 2013
    ENV455 – Watershed Management Carroll University – Fall 2013 Professor: Dr. Jason G. Freund Lecture: Tuesday and Thursday 8:00 to 9:50, Maxon 103 Office: Rankin 304C Office Hours: Monday 2:00 to 3:30, Thursday 1:00 to Phone: (262) 524-7146 3:00, Friday 10:40 to 12:00; other hours by dropping in or E-mail: [email protected] make an appointment to be sure I will be in my office. I. Course Description From the Carroll University catalog: This course examines the interaction of abiotic, biotic, and social components in the management of a drainage basin's terrestrial and aquatic resources. Through the examination of global watershed management literature and related case studies, students will actively engage in the development of a watershed management plan. Class projects will focus on selected Wisconsin, upper Midwest, and Great Lakes watersheds. (Fa) Prerequisites: ENV 201 (not yet enforced), plus junior or senior standing. ENV 267 recommended. Watershed Management ENV 455 is a required course for Environmental Science majors and an important elective for majors in Biology and Environmental Science minors. This course will expose students to a wide range of issues associated with the management of natural resources. We will use the watershed as the management unit – as many state and federal agencies have moved their emphasis to the watershed scale – though other geographic scales could easily be substituted. This course aims to provide experiences related to the management of both terrestrial and aquatic resources and provide students with an appreciation of the interaction among aquatic and terrestrial environments. Maybe most importantly, students will understand the decision-making process and how societal norms and policies influence the management of natural resources.
    [Show full text]
  • Kingdom of Cambodia
    Forests & Water/REF/12 KINGDOM OF CAMBODIA Nation Religion King I I I I I I Country Report on Forest and Watershed Management Prepared by Teang Sokhom Deputy Chief of GIS/RS and Watershed Management Unit Department of Forestry and Wildlife Contact Address: # 40, Norodom Blvd. Phnom Penh CAMBODIA TEL/FAX: 855-23-214614 Mobil phone: 855-12-840725 Email: [email protected] 1 CONTENT Page I. Background 2 II. Deforestation 2 III. Forest Management 3 3.1 Forest Land allocation 4 3.2 Forest Concession Management 4 3.2.1 Concession level forest inventory (long term, 25-30 years) 5 3.2.2 Compartment level forest inventory (medium term, 5 years) 5 3.2.3 Coupe harvesting plan (Annual term, 1 year) 6 3.3 National Protected Areas 6 3.4 Protected Forest 6 3.5 Forest Plantation 7 3.6 Forest Community 8 IV. Watershed Management 8 4.1 Data for Watershed Management 9 4.1.1 Data available 9 4.1.2 Data not yet available 9 4.2 Watershed's Issues 10 4.3 Watershed Management Activities 10 4.4 Future Plan 10 4.5 Constrain Faced 10 4.6 Proposal 11 Annex 12 2 I. Background The multiple demands on the land, natural and water resources of the Cambodia increasingly strain its watershed. The integrity of watersheds is, however, vital to sustainable natural resources management. Of particular interest in this regard are water regime and water quality of the river system which depend to a large extent on the conditions of the landscape in the head waters.
    [Show full text]
  • Country Status Report on Watershed Management in Cambodia, Lao PDR, Thailand and Vietnam
    Working Paper 08 Country Status Report on Watershed Management in Cambodia, Lao PDR, Thailand and Vietnam As Background Information for the Policy Dialogue on Watershed Management 28 – 30 September 2004 prepared by Min Bunnara (Cambodia) Sengkham Inthiravongsy (Lao PDR) Vanchai Viranan (Thailand) Pham Thi Thuy Co (Vietnam) And Others Vientiane, September 2004 (Edition: Christoph Backhaus, Jeremy Broadhead and Timo Menniken, September 2004) MRC-GTZ Cooperation Programme Agriculture, Irrigation and Forestry Programme Watershed Management Component Table of Content Part I Summary The Status of Watershed Management in Cambodia 1. Enabling regulations 05 2. Institutional framework 05 3. Consistency in planning processes 06 4. Implementation experiences 06 5. Capacity building 07 6. Impact monitoring 08 7. Financial mechanisms and incentives 09 8. Conclusions 09 The Status of Watershed Management in Lao PDR 1. Enabling regulations 11 2. Institutional framework 11 3. Consistency in planning processes 12 4. Implementation experiences 13 5. Capacity building 14 6. Impact monitoring 14 7. Financial mechanisms and incentives 15 8. Conclusions 15 The Status of Watershed Management in Thailand 1. Enabling regulations 17 2. Institutional framework 18 3. Consistency in planning processes 18 4. Implementation experiences 19 5. Capacity building 19 6. Impact monitoring 20 7. Financial mechanisms and incentives 20 8. Conclusions 21 The Status of Watershed Management in Vietnam 1. Enabling regulations 23 2. Institutional framework 23 3. Consistency in planning processes 24 4. Implementation experiences 25 5. Capacity building 26 6. Impact monitoring 26 7. Financial mechanisms and incentives 27 8. Conclusions 27 2 Part II Extended Version The Status of Watershed Management in Cambodia 0.
    [Show full text]
  • Water Wars: the Brahmaputra River and Sino-Indian Relations
    U.S. Naval War College U.S. Naval War College Digital Commons CIWAG Case Studies 10-2013 Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher Follow this and additional works at: https://digital-commons.usnwc.edu/ciwag-case-studies Recommended Citation Christopher, Mark, "MIWS_07 - Water Wars: The Brahmaputra River and Sino-Indian Relations" (2013). CIWAG Case Studies. 7. https://digital-commons.usnwc.edu/ciwag-case-studies/7 This Book is brought to you for free and open access by U.S. Naval War College Digital Commons. It has been accepted for inclusion in CIWAG Case Studies by an authorized administrator of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Draft as of 121916 ARF R W ARE LA a U nd G A E R R M R I E D n o G R R E O T U N P E S C U N E IT EG ED L S OL TA R C TES NAVAL WA Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher United States Naval War College Newport, Rhode Island Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher Center on Irregular Warfare & Armed Groups (CIWAG) US Naval War College, Newport, RI [email protected] CHRISTOPHER: WATER WARS CIWAG Case Studies Bureaucracy Does Its Thing (in Afghanistan) – Todd Greentree Operationalizing Intelligence Dominance – Roy Godson An Operator’s Guide to Human Terrain Teams – Norman Nigh Organizational Learning and the Marine Corps: The Counterinsurgency Campaign in Iraq – Richard Shultz Piracy – Martin Murphy Reading the Tea Leaves: Proto-Insurgency in Honduras – John D.
    [Show full text]
  • Incorporating Wetlands Into Watershed Planning
    EPA Region 5 Wetlands Supplement: Incorporating Wetlands into Watershed Planning February 2013 Photograph Sources All photographs are in the public domain. Clockwise starting in the upper left: 1. R. Hagerty. 2001. U.S. Fish and Wildlife Service. Horicon National Wildlife Refuge. Wetland sunrise; water and reeds in foreground with plant growth in background. (Wisconsin) 2. R. Hagerty. 2003. U.S. Fish and Wildlife Service. A close-up view of a whooping crane photographed at the International Crane Foundation in Baraboo, Wisconsin. Endangered species. 3. J. Hollingsworth and K. Hollingsworth. 2008. U.S. Fish and Wildlife Service. Hooded Merganser brood, Seney National Wildlife Refuge, Michigan. 4. U.S. Fish and Wildlife Service. 2008. Thirty-acre wetland restoration in Rice County, Minnesota. 5. D. Becker. 2010. U.S. Geological Survey. Floodwaters at Moorhead, Minnesota. 6. U.S. Fish and Wildlife Service. 2009. Three men using equipment to take core samples at Roxanna Marsh, Grand Calumet River, in Hammond, Indiana, as part of a wetland restoration effort and damage assessment process. EPA Region 5 Wetlands Supplement Contents Contents Acronyms and Abbreviations ..................................................................................................... vii 1. Introduction ............................................................................................................................ 1 1.1 What Is the Purpose of This Supplement? ........................................................................ 1 1.2 Why Include
    [Show full text]
  • Water Conflicts in Historical Time (Ca 750 BC–330 AD) 3.1
    sustainability Review Water Conflicts: From Ancient to Modern Times and in the Future Andreas N. Angelakis 1,2 , Mohammad Valipour 3,*, Abdelkader T. Ahmed 4,5 , Vasileios Tzanakakis 6, Nikolaos V. Paranychianakis 7, Jens Krasilnikoff 8, Renato Drusiani 9, Larry Mays 10 , Fatma El Gohary 11, Demetris Koutsoyiannis 12 , Saifullah Khan 13 and Luigi Joseph Del Giacco 14 1 HAO-Demeter, Agricultural Research Institution of Crete, 71300 Iraklion, Greece; [email protected] 2 Union of Water Supply and Sewerage Enterprises, 41222 Larissa, Greece 3 Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA 4 Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt; [email protected] 5 Civil Engineering Department, Faculty of Engineering, Islamic University, Madinah 42351, Saudi Arabia 6 Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71410 Iraklion, Greece; [email protected] 7 School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; [email protected] 8 Department of History and Classical Studies, School of Culture and Society, Aarhus University, 8000 Aarhus C, Denmark; [email protected] 9 Utilitalia, Piazza Cola di Rienzo, 00192 Roma, Italy; [email protected] 10 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA; [email protected] 11 National Research Centre, Water Pollution
    [Show full text]
  • Global Experience on Irrigation Management Under Different Scenarios
    DOI: 10.1515/jwld-2017-0011 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2017 2017, No. 32 (I–III): 95–102 © Institute of Technology and Life Sciences (ITP), 2017 PL ISSN 1429–7426 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld Received 30.10.2016 Reviewed 01.12.2016 Accepted 06.12.2016 A – study design Global experience on irrigation management B – data collection C – statistical analysis D – data interpretation under different scenarios E – manuscript preparation F – literature search Mohammad VALIPOUR ABCDEF Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Imam Khomeini Campus, Farhikhtegan Bld. Shahid Jafari St., Kermanshah, Iran; e-mail: [email protected] For citation: Valipour M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI: 10.1515/jwld-2017-0011. Abstract This study aims to assess global experience on agricultural water management under different scenarios. The results showed that trend of permanent crops to cultivated area, human development index (HDI), irrigation wa- ter requirement, and percent of total cultivated area drained is increasing and trend of rural population to total population, total economically active population in agriculture to total economically active population, value added to gross domestic production (GDP) by agriculture, and the difference between national rainfall index (NRI) and irrigation water requirement is decreasing. The estimating of area equipped for irrigation in 2035 and 2060 were studied acc.
    [Show full text]
  • Weaponization of Water in a Changing Climate Marcus D
    EPICENTERS OF CLIMATE AND SECURITY: THE NEW GEOSTRATEGIC LANDSCAPE OF THE ANTHROPOCENE June 2017 Edited by: Caitlin E. Werrell and Francesco Femia Sponsored by: In partnership with: WATER WEAPONIZATION THE WEAPONIZATION OF WATER IN A CHANGING CLIMATE Marcus D. King1 and Julia Burnell 2,3 Water stress across the Middle East and Africa is providing an opportunity for subnational extremist organizations waging internal conflict to wield water as a weapon. The weaponization of water also drives conflict that transcends national borders, creating international ripple effects that contribute to a changing geostrategic landscape. Climate change-driven water stress in arid and semi-arid countries is a growing trend. This stress includes inadequacies in water supply, quality, and accessibility.4 These countries are consistently experiencing chronically dry climates and unpredictable, yet prevalent, droughts. Predicted future climate impacts include higher temperatures, longer dry seasons, and increased variability in precipitation. In the coming decades, these factors will continue to stress water resources in most arid regions.5 It is accepted wisdom that parties generally cooperate over scarce water resources at both the international and subnational levels, with a very few notable exceptions that have resulted in internal, low-intensity conflict.6 However, tensions have always existed: the word rivalry comes from the Latin word rivalus, meaning he who shares a river.7 Rivalry is growing at the sub-state level, leading to intractable conflicts. Social scientists have long observed a correlation between environmental scarcity and subnational conflict that is persistent and diffuse.8 Disputes over limited natural resources have played at least some role in 40 percent of all intrastate conflicts in the last 60 years.9 The Center for Climate and Security www.climateandsecurity.org EPICENTERS OF CLIMATE AND SECURITY 67 Recent scholarly literature and intelligence forecasts have also raised doubts that water stress will continue to engender more cooperation than conflict.
    [Show full text]
  • Division of Water Resources K.S.A
    Division of Water Resources K.S.A. 74-506a through 74-506d K.S.A. 74-510 and 74-510a K.S.A. 74-506a. Division of water resources; creation. For the purpose of consolidating the Kansas water commission and the division of irrigation there is hereby created a division of water resources within the Kansas department of agriculture. History: L. 1927, ch. 293, § 1; L. 2004, ch. 101, § 115; July 1. K.S.A. 74-506b. Authority, powers and duties conferred upon division of water resources. All of the authority, powers and duties now conferred and imposed by law upon the Kansas water commission and the state irrigation commissioner are hereby conferred upon the division of water resources created by this act, under the control, administration and supervision of the secretary of agriculture. History: L. 1927, ch. 293, § 2; L. 2004, ch. 101, § 116; July 1. K.S.A. 74-506c. Certain commissions abolished. The Kansas water commission and the division of irrigation are hereby abolished. History: L. 1927, ch. 293, § 3; Feb. 11. K.S.A. 74-506d. Chief engineer, assistants and employees; compensation. The secretary of agriculture is hereby authorized to employ a chief engineer of the division of water resources and such expert assistants, clerical and other help as may be necessary to properly carry out the provisions of this act, and to fix their compensation. The chief engineer shall be under the classified service of the Kansas civil service act, but any vacant position of such expert assistants, clerical and other help necessary to carry out the provisions of this act may be converted by the secretary of agriculture to an unclassified position.
    [Show full text]
  • Avoiding Water Wars: Water Scarcity and Central Asia’S Growing Importance for Stability in Afghanistan and Pakistan
    1 112TH CONGRESS " ! S. PRT. 1st Session COMMITTEE PRINT 112–10 AVOIDING WATER WARS: WATER SCARCITY AND CENTRAL ASIA’S GROWING IMPORTANCE FOR STABILITY IN AFGHANISTAN AND PAKISTAN A MAJORITY STAFF REPORT PREPARED FOR THE USE OF THE COMMITTEE ON FOREIGN RELATIONS UNITED STATES SENATE ONE HUNDRED TWELFTH CONGRESS FIRST SESSION FEBRUARY 22, 2011 Printed for the use of the Committee on Foreign Relations Available via World Wide Web: http://www.fdsys.gpo.gov U.S. GOVERNMENT PRINTING OFFICE 64–141 PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 17:49 Feb 17, 2011 Jkt 000000 PO 00000 Frm 00001 Fmt 5012 Sfmt 5012 S:\HEARING FILES\112TH CONGRESS, 1ST\STAFF TOPIC REPORTS\WATER, MELANIE seneagle COMMITTEE ON FOREIGN RELATIONS JOHN F. KERRY, Massachusetts, Chairman BARBARA BOXER, California RICHARD G. LUGAR, Indiana ROBERT MENENDEZ, New Jersey BOB CORKER, Tennessee BENJAMIN L. CARDIN, Maryland JAMES E. RISCH, Idaho ROBERT P. CASEY, JR., Pennsylvania MARCO RUBIO, Florida JIM WEBB, Virginia JAMES M. INHOFE, Oklahoma JEANNE SHAHEEN, New Hampshire JIM DEMINT, South Carolina CHRISTOPHER A. COONS, Delaware JOHNNY ISAKSON, Georgia RICHARD J. DURBIN, Illinois JOHN BARRASSO, Wyoming TOM UDALL, New Mexico MIKE LEE, Utah FRANK G. LOWENSTEIN, Staff Director KENNETH A. MYERS, JR., Republican Staff Director (II) VerDate Nov 24 2008 17:49 Feb 17, 2011 Jkt 000000 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\HEARING FILES\112TH CONGRESS, 1ST\STAFF TOPIC REPORTS\WATER, MELANIE CONTENTS Page Letter of Transmittal ..............................................................................................
    [Show full text]
  • Water Conflict Pathways and Peacebuilding Strategies by David Michel
    PEACEWORKS Water Conflict Pathways and Peacebuilding Strategies By David Michel NO. 164 | AUGUST 2020 NO. 164 | AUGUST 2020 ABOUT THE REPORT This report explores water-related conflict pathways and articulates potential peace- building strategies to mitigate conflict risks. The report is grounded in a survey of the ECONOMICS & ENVIRONMENT academic literature on natural resources conflict, case studies of three major basins, and participant interviews and documentary analyses of water diplomacy processes. ABOUT THE AUTHOR David Michel is a senior researcher with the Stockholm International Peace Research Institute. He previously served as a senior manager at the Stockholm International Water Institute. He has over twenty years of experience working with governments, civil society, and the private sector to build cooperative solutions to policy challenges posed by global environmental change. Cover photo: A woman walks along a dry lake bed near the Rawal Dam in Pakistan on June 22, 2018. (Photo by B. K. Bangash/AP) The views expressed in this report are those of the author alone. They do not necessarily reflect the views of the United States Institute of Peace. An online edition of this and related reports can be found on our website (www.usip.org), together with additional information on the subject. © 2020 by the United States Institute of Peace United States Institute of Peace 2301 Constitution Avenue NW Washington, DC 20037 Phone: 202.457.1700 Fax: 202.429.6063 E-mail: [email protected] Web: www.usip.org Peaceworks No. 164. First published 2020. ISBN: 978-1-60127-810-4 Contents Water Insecurity and Conflict Risks 3 Water Conflict Pathways 7 Case Study: The Indus River Basin 10 Case Study: Mali 14 Case Study: Myanmar 18 Water Governance and Water Diplomacy 22 Peacebuilding Strategies for Water Resources Conflicts 26 USIP.ORG 1 Summary Growing populations and economies, unsustainable management practices, and mounting environmental pressures are exerting increasing strains on the world’s vital freshwater resources.
    [Show full text]
  • WRI Issue Brief Southern Forests for the Future Incentives Series Issue Brief 2
    WRI Issue Brief Southern Forests for the Future Incentives Series Issue Brief 2 Forests for Water: exploring Payments for Watershed services in the u.s. south CRaIg Hanson, JoHn TalBerth, and logan YonavJak SUMMARY • The forested watersheds of the southern United States provide a • Entities that may have a business case for making a payment for number of benefits—including water flow regulation, flood control, watershed services include beverage companies, power compa- water purification, erosion control, and freshwater supply—to the nies with hydroelectric facilities, manufacturers that rely on clean region’s citizens, communities, and businesses. freshwater supplies for processing, housing developers, public and private wastewater treatment plants, city and county governments, • The loss and degradation of forests can reduce their ability to drinking water utilities, and public departments of transportation, provide these watershed-related ecosystem services. among others. • Payments for watershed services provide landowners financial • These entities can pursue a number of steps to capture the poten- incentives to conserve, sustainably manage, and/or restore forests tial benefits of payments for watershed services, including identify- specifically to provide one or more watershed-related ecosystem ing those forests most responsible for their clean water supplies, services. Such payments typically involve downstream beneficiaries conducting economic analyses of green versus gray infrastructure, paying upstream forest owners or forest
    [Show full text]