First Observation of an Ant Colony Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lasius Fuliginosus (Hymenoptera: Formicidae) Shapes Local Ant Assemblages
NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (2): 404-412 ©NwjZ, Oradea, Romania, 2014 Article No.: 141104 http://biozoojournals.ro/nwjz/index.html Lasius fuliginosus (Hymenoptera: Formicidae) shapes local ant assemblages Piotr ŚLIPIŃSKI1,*, Bálint MARKÓ2, Kamil RZESZOWSKI1, Hanna BABIK1 and Wojciech CZECHOWSKI1 1. Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland, E-mails: [email protected], [email protected], [email protected], [email protected]. 2. Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor str. 5-7, 400006 Cluj-Napoca, Romania, E-mail: [email protected]. * Corresponding author, P. Ślipiński, E-mail: [email protected] Received: 20. December 2013 / Accepted: 22. March 2014 / Available online: 17. October 2014 / Printed: December 2014 Abstract. Interspecific competition is a major structuring force in ant assemblages. The assemblages are organized hierarchically, with territorial species as top competitors. In boreal areas and in the temperate deciduous forest biome common territorials are species of the subgenus Formica s. str. They are well known for their negative impact on lower-ranked ant species. Less is known, though the structuring role of Lasius fuliginosus, another territorial ant species. Some earlier studies have shown or suggested that it may restrictively affect subordinate species (including direct predation toward them) even stronger than wood ants do. In the present study we compared species compositions and nest densities of subordinate ant species within and outside territories of L. fuliginosus. The results obtained confirmed that this species visibly impoverishes both qualitatively (reduced species richness, altered dominance structures) and quantitatively (decreased nest densities) ant assemblages within its territories. -
Mimetická Podobnosť U Pohyblivých Mimikov Bakalárska Práca Terézia Niková
Mimetická podobnosť u pohyblivých mimikov Bakalárska práca Terézia Niková Vedúci práce: prof.Mgr. Stanislav Pekár, Ph.D. Konzultant: Maria Guadalupe Corcobado Márquez, Ph.D. Brno 2015 Mimetická podobnost u pohyblivých mimiků Bakalářská práce Terézia Niková Vedoucí práce: prof.Mgr. Stanislav Pekár, Ph.D. Konzultant: Maria Guadalupe Corcobado Márquez, Ph.D. Brno 2015 BIBLIOGRAFICKÝ ZÁZNAM Autor Terézia Niková Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce Mimetická podobnost u pohyblivých mimiků Studijný program Evoluční a ekologická biologie Studijný obor Evoluční a ekologická biologie Vedoucí práce prof. Mgr. Stanislav Pekár, Ph.D. Konzultant Maria Guadalupe Corcobado Márquez, Ph.D. Akademický rok 2014/2015 Počet stran 53 Batesovské mimikry, mimikry, myrmekomorfní pavouci, nedokonalí Klíčové slova mimici, pohyb BIBLIOGRAFICKÝ ZÁZNAM Autor Terézia Niková Prírodovedecká fakulta, Masarykova univerzita Ústav botaniky a zoológie Názov práce Mimetická podobnosť u pohyblivých mimikov Študijný program Evolučná a ekologická biológia Študijný obor Evolučná a ekologická biológia Vedúci práce prof. Mgr. Stanislav Pekár, Ph.D. Konzultant Maria Guadalupe Corcobado Márquez, Ph.D. Akademický rok 2014/2015 Počet strán 53 Batesovské mimikry, mimikry, myrmekomorfné pavúky, nedokonalí Kľúčové slová mimici, pohyb BIBLIOGRAPHIC ENTRY Author Terézia Niková Faculty of Science, Masaryk University Department of Botany and Zoology Title of thesis Mimetic accuracy of moving mimics Degree programme Ecological and Evolutionary -
Tutela ZBORNÍK SLOVENSKÉHO MÚZEA OCHRANY PRÍRODY a JASKY N I a RST VA V LIPTOVSKOM MIKULÁŠI 11
tutela ZBORNÍK SLOVENSKÉHO MÚZEA OCHRANY PRÍRODY A JASKY N I A RST VA V LIPTOVSKOM MIKULÁŠI 11 NATURAE 2007 1 O B S A H V E D E C K É Š T Ú D I E Jozef Šteffek – Patrícia Danková: Ekologické a ekosozologické vyhodnotenia tanatocenóz malakofauny z náplavov tokov Spišskej Magury ..................................................................... 5 Oto Majzlan: Chrobáky (Coleoptera) Šenkvického a Martinského lesa pri Senci .......... 27 Oto Majzlan: Letová aktivita nosáčikov (Coleoptera: Curculionidae) v NPR Bábsky Predseda redakčnej rady: les pri Nitre .................................................................................................................................... 43 doc. RNDr. Dana Šubová, CSc. Vladimír Straka – Oto Majzlan: Dvojkrídlovce (Diptera) troch lokalít v Chránenej krajinnej oblasti Strážovské vrchy .............................................................................................. 47 Michal Wiezik: Mravce (Hymenoptera: Formicidae) horských a vysokohorských biotopov južnej časti Kráľovohoľských Tatier ............................................................................................ 85 Redakčná rada: Jozef Školek: Sutinové spoločenstvá v NPR Mních ................................................................. 91 prof. RNDr. Peter Bitušík, CSc., RNDr. Miroslav Fulín, CSc., RNDr. Ľudovít Gaál, Stanislav Korenko: Pavúky (Arachnida, Araneae) východnej časti Kozích chrbtov .......... 103 prof. RNDr. Oto Majzlan, PhD., doc. RNDr. Ľubomír Panigaj, CSc., RNDr. Jozef Monika Hatinová – Kristina -
409-456 Rejstriky Olomoucko1
Bibliografie 1. ALBRECHT, P. (1996–2000): Inventarizaãní prÛzkumy 19. BEZDùâKA, P. (1983): Lesní mravenci na lokalitû Alf- âubernice, Lipovské upolínové louky, Na HÛrkách, rédka. – Na‰í pfiírodou, 2: 18–19, Praha. Pod Pansk˘m lesem, Vitãick˘ les, Za Hrnãífikou. – 20. BEZDùâKA, P. (1998): Mravenci Pfiírodního parku Vel- Depon. in RÎP OkÚ Prostûjov, 25 s., 38 s., 17 s., 15 k˘ Kosífi. – Pfiírodovûdné studie Muzea Prostûjovska, s., 32 s., 25 s., Prostûjov. (nepubl.) 1: 125–132, Prostûjov. 2. ALBRECHT, P. (1998): Krajiny Prostûjovska. – Pfiírodo- 21. BEZDùâKA, P. (1999): V˘voj komplexu hnízd Formica vûdné studie Muzea Prostûjovska, 1: 47–66, Prostûjov. lugubris Zett. v Jeseníkách. – Formica, zpravodaj pro 3. ALBRECHT, P. (1999): Fytocenologické snímky moni- aplikovan˘ v˘zkum a ochranu lesních mravencÛ, 2: torovacích ploch LIPO 02.01 a 02.02. Správa CHKO 65–70, Liberec. Litovelské Pomoraví, 3 s., Olomouc. (nepubl.) 22. BUâEK, A. (1979): Pfiíspûvek k inventarizaci SPR Bu- 4. ALBRECHT, P. (2000): Pfiíspûvek ke kvûtenû nejvy‰‰ích koveãek. MS, práce SOâ pfii SLT· Hranice, 18 s., ãástí Drahanské vrchoviny se zamûfiením na mokfiady. Hranice. – Pfiírodovûdné studie Muzea Prostûjovska, 3: 55–86, 23. BURE·, L., BURE·OVÁ, Z. (1988): âerven˘ seznam cév- Prostûjov. nat˘ch rostlin CHKO Jeseníky. – Zpravodaj âSOP, 3: 5. ANDùRA, M. (1999): âeské názvy ÏivoãichÛ II. Savci 1–28, Bruntál. (Mammalia). Národní muzeum, 148 s., Praha. 24. BURE·, L., BURE·OVÁ, Z. (1989): Velká kotlina, státní 6. ANDùRA, M., HANZAL, V. (1996): Atlas roz‰ífiení sav- pfiírodní rezervace. – PrÛvodce nauãnou stezkou, cÛ v âeské republice. PfiedbûÏná verze. II: ·elmy (Car- âSOP ZO, 44 s., Ostrava. nivora). -
Download PDF File (107KB)
Myrmecological News 15 Digital supplementary material Digital supplementary material to SEPPÄ, P., HELANTERÄ, H., TRONTTI, K., PUNTTILA, P., CHERNENKO, A., MARTIN, S.J. & SUNDSTRÖM, L. 2011: The many ways to delimit species: hairs, genes and surface chemistry. – Myrmecological News 15: 31-41. Appendix 1: Number of hairs on different body parts of Formica fusca and F. lemani according to different authors. Promesonotum & pronotum YARROW COLLINGWOOD DLUSSKY & KUTTER COLLINGWOOD DOUWES CZECHOWSKI & SEIFERT SEIFERT (1954) (1958) PISARSKI (1971) (1977) (1979) (1995) al. (2002) (1996) (2007) F. fusca < 3 at most 2 - 3 ≤ 2 usually 0, usually = 0, ≤ 2 usually 0, rarely average average sometimes occasion. 1 - 2 1 - 5 < 1 0 - 0.8 1 - 4 F. lemani numerous numerous some ind. >10, up to 20 "with erect ≥ 3 > 6 average average in SE-Europ. popu- hairs" > 1 1.2 - 13.5 lations, most ind. 0 Femora F. fusca mid = 0 mid = 0 mid = 0 mid ≤ 1 fore = 2 - 3 hind = 0 hind = 0 mid = rarely 1 - 2 F. lemani mid = "long all = "hairy" mid = a few mid ≥ 2 fore = 3 - 12 hairs" hind = a few mid = 3 - 17 References COLLINGWOOD, C.A. 1958: A key to the species of ants (Hymenoptera, Formicidae) found in Britain. – Transactions of the Society for British Entomology 13: 69-96. COLLINGWOOD, C.A. 1979: The Formicidae (Hymenoptera) of Fennoscandia and Denmark. – Fauna Entomologica Scandinavica 8: 1-174. CZECHOWSKI, W., RADCHENKO, A. & CZECHOWSKA, W. 2002: The ants (Hymenoptera, Formicidae) of Poland. – Museum and Insti- tute of Zoology PAS, Warszawa, 200 pp. DLUSSKY, G.M. & PISARSKI, B. 1971: Rewizja polskich gatunków mrówek (Hymenoptera: Formicidae) z rodzaju Formica L. -
Guide to the Wood Ants of the UK
Guide to the Wood Ants of the UK and related species © Stewart Taylor © Stewart Taylor Wood Ants of the UK This guide is aimed at anyone who wants to learn more about mound-building woodland ants in the UK and how to identify the three ‘true’ Wood Ant species: Southern Red Wood Ant, Scottish Wood Ant and Hairy Wood Ant. The Blood-red Ant and Narrow-headed Ant (which overlap with the Wood Ants in their appearance, habitat and range) are also included here. The Shining Guest Ant is dependent on Wood Ants for survival so is included in this guide to raise awareness of this tiny and overlooked species. A further related species, Formica pratensis is not included in this guide. It has been considered extinct on mainland Britain since 2005 and is now only found on Jersey and Guernsey in the British Isles. Funding by CLIF, National Parks Protectors Published by the Cairngorms National Park Authority © CNPA 2021. All rights reserved. Contents What are Wood Ants? 02 Why are they important? 04 The Wood Ant calendar 05 Colony establishment and life cycle 06 Scottish Wood Ant 08 Hairy Wood Ant 09 Southern Red Wood Ant 10 Blood-red Ant 11 Narrow-headed Ant 12 Shining Guest Ant 13 Comparison between Shining Guest Ant and Slender Ant 14 Where to find Wood Ants 15 Nest mounds 18 Species distributions 19 Managing habitat for wood ants 22 Survey techniques and monitoring 25 Recording Wood Ants 26 Conservation status of Wood Ants 27 Further information 28 01 What are Wood Ants? Wood Ants are large, red and brown-black ants and in Europe most species live in woodland habitats. -
Download PDF File (497KB)
Myrmecologische Nachrichten 8 257 - 262 Wien, September 2006 Formica lusatica SEIFERT, 1997 (Hymenoptera: Formicidae), an ant species new to Finland, with notes on its biology and the description of males Wojciech CZECHOWSKI & Alexander RADCHENKO Abstract A taxonomically problematic ant species from southernmost Finland, so far determined as Formica rufibarbis FABRICIUS, 1793 or / and F. cunicularia LATREILLE, 1798, is identified as Formica lusatica SEIFERT, 1997. This is the first report of this species from Finland. Aspects of the biology of F. lusatica under the local conditions, and especially its relations with Formica sanguinea LATREILLE, 1798, are presented and the description of its males is given. Key words: Ants, Formica lusatica, Formica sanguinea, fauna, taxonomy, description of male, ecology, social para- sitism, Finland. Prof. Dr. Wojciech Czechowski (contact author), Prof. Dr. Alexander Radchenko, Museum and Institute of Zoology, Polish Academy of Sciences, 64 Wilcza Str., 00-679, Warsaw, Poland. E-mail: [email protected]; [email protected]. kiev.ua Introduction Until recently, two species of the Formica rufibarbis com- given by SEIFERT (1996) in the key. Together with this plex were recorded in Finland: F. rufibarbis FABRICIUS, report, we describe the males of F. lusatica and briefly 1793 (COLLINGWOOD 1979) and F. cunicularia LATREILLE, compare them with the males of F. cunicularia and F. rufi- 1798 (ALBRECHT 1993), both reported only from the south- barbis. The aim of the study was also to describe elements ern part of the country (approximately to latitude 62° N). of biology of F. lusatica, especially the nature of its rela- The main morphological differences between F. -
Space, Habitat and Isolation Are the Key Determinants of Tree Colonization by the Carpenter Ant in Plantation Forests
Article Space, Habitat and Isolation are the Key Determinants of Tree Colonization by the Carpenter Ant in Plantation Forests Adam Véle 1,2 and Jakub Horák 1,3,* 1 Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, CZ-165 21 Prague, Czech Republic 2 Forestry & Game Management Research Institute, Strnady 136, CZ-252 02 Jílovištˇe,Czech Republic 3 Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, CZ-500 03 Hradec Králové, Czech Republic * Correspondence: [email protected] Received: 27 June 2019; Accepted: 25 July 2019; Published: 27 July 2019 Abstract: Forest plantations are still often considered the antithesis of real nature. However, plantations can host many organisms. The problem is that some of the hosted species are regarded ad hoc as pests. The main aim of our paper was to study the carpenter ant (Camponotus ligniperdus) in windstorm habitats. We studied forests in East Bohemia, Czech Republic, and focused on the spatial distribution of snapped trees and the influence of selected forest characteristics on the incidence of ant nests. We found that the nests in the study area mainly occurred in Norway spruce, which is the most commercially important tree in the majority of Central Europe. More than one quarter of the snapped trees were inhabited by the ants. We found that nests exhibited a spatially autocorrelated pattern that differed on spatial scales. The most important characteristic of the host tree for determining carpenter ant nests was the presence of brown rot, and the majority of tree nests were isolated from forest openings. -
Review and Phylogenetic Evaluation of Associations Between Microdontinae (Diptera: Syrphidae) and Ants (Hymenoptera: Formicidae)
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 538316, 9 pages http://dx.doi.org/10.1155/2013/538316 Review Article Review and Phylogenetic Evaluation of Associations between Microdontinae (Diptera: Syrphidae) and Ants (Hymenoptera: Formicidae) Menno Reemer Naturalis Biodiversity Center, European Invertebrate Survey, P.O. Box 9517, 2300 RA Leiden, The Netherlands Correspondence should be addressed to Menno Reemer; [email protected] Received 11 February 2013; Accepted 21 March 2013 Academic Editor: Jean-Paul Lachaud Copyright © 2013 Menno Reemer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The immature stages of hoverflies of the subfamily Microdontinae (Diptera: Syrphidae) develop in ant nests, as predators ofthe ant brood. The present paper reviews published and unpublished records of associations of Microdontinae with ants, in order to discuss the following questions. (1) Are all Microdontinae associated with ants? (2) Are Microdontinae associated with all ants? (3) Are particular clades of Microdontinae associated with particular clades of ants? (4) Are Microdontinae associated with other insects? A total number of 109 associations between the groups are evaluated, relating to 43 species of Microdontinae belonging to 14 genera, and to at least 69 species of ants belonging to 24 genera and five subfamilies. The taxa of Microdontinae found in association with ants occur scattered throughout their phylogenetic tree. One of the supposedly most basal taxa (Mixogaster)isassociatedwith ants, suggesting that associations with ants evolved early in the history of the subfamily and have remained a predominant feature of their lifestyle. -
Download PDF File (601KB)
Myrmecological News 16 7-23 Vienna, January 2012 The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts Jacob A. RUSSELL Abstract Intracellular bacteria from the genus Wolbachia are the most prevalent microbes found among the arthropods, shaping the ecology and evolution of their hosts through selfish and mutualistic means. The ants comprise an interesting group of Wolbachia hosts given their status as eusocial haplodiploids with commonly biased sex ratios. Although experimental hurdles have obscured Wolbachia's impacts on the ants, published findings have still managed to document unique aspects of ant-Wolbachia interactions, including exceptional levels of multiple infection, symbiont curing, and potential effects of host mobility on the spread and evolution of these heritable symbionts. To further develop hypotheses on the significance of Wolbachia and the forces that shape their distributions across the ants and beyond, I synthesize the results of a growing body of literature that has largely focused on symbiont prevalence. Results from surveys across ~ 455 species indicate that ants are common hosts, although infection levels differ among ant genera and likely across taxa with different modes of colony founding. A meta-analysis of Wolbachia distributions across ~ 2,600 other arthropod species revealed a similar pattern of variation among lower-level taxa, suggesting that the ecological and evolutionary shifts governing infection dynamics have occurred on recent timescales. Phylogenetic analyses suggest that ant-associated Wolbachia symbionts show some degree of host specificity. However, related strains are generally distributed across ants from multiple tribes and genera, while ants from different locations harbor strains from distinct lineages on the Wolbachia phylogeny. -
No Impact on Queen Turnover, Inbreeding, and Population Genetic Differentiation in the Ant Formica Selysi
Evolution, 58(5), 2004, pp. 1064±1072 VARIABLE QUEEN NUMBER IN ANT COLONIES: NO IMPACT ON QUEEN TURNOVER, INBREEDING, AND POPULATION GENETIC DIFFERENTIATION IN THE ANT FORMICA SELYSI MICHEL CHAPUISAT,1 SAMUEL BOCHERENS, AND HERVEÂ ROSSET Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne, Switzerland 1E-mail: [email protected] Abstract. Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected con¯ict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene ¯ow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a ®ve-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but signi®cant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. -
Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships
Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships Submitted by: Dipl. Biol. Robin Niechoj Supervisor: Prof. John Breen Submitted in accordance with the academic requirements for the Degree of Doctor of Philosophy to the Department of Life Sciences, Faculty of Science and Engineering, University of Limerick Limerick, April 2011 Declaration I hereby declare that I am the sole author of this thesis and that it has not been submitted for any other academic award. References and acknowledgements have been made, where necessary, to the work of others. Signature: Date: Robin Niechoj Department of Life Sciences Faculty of Science and Engineering University of Limerick ii Acknowledgements/Danksagung I wish to thank: Dr. John Breen for his supervision, encouragement and patience throughout the past 5 years. His infectious positive attitude towards both work and life was and always will be appreciated. Dr. Kenneth Byrne and Dr. Mogens Nielsen for accepting to examine this thesis, all the CréBeo team for advice, corrections of the report and Dr. Olaf Schmidt (also) for verification of the earthworm identification, Dr. Siobhán Jordan and her team for elemental analyses, Maria Long and Emma Glanville (NPWS) for advice, Catherine Elder for all her support, including fieldwork and proof reading, Dr. Patricia O’Flaherty and John O’Donovan for help with the proof reading, Robert Hutchinson for his help with the freeze-drying, and last but not least all the staff and postgraduate students of the Department of Life Sciences for their contribution to my work. Ich möchte mich bedanken bei: Katrin Wagner für ihre Hilfe im Labor, sowie ihre Worte der Motivation.