Aerospace Facts and Figures 1979/80 Lunar Landing 1969-1979

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace Facts and Figures 1979/80 Lunar Landing 1969-1979 Aerospace Facts and Figures 1979/80 Lunar Landing 1969-1979 This 27th annual edition of Aero­ space Facts and Figures commem­ orates the 1Oth anniversary of man's initial landing on the moon, which occurred on July 20, 1969 during the Apollo 11 mission. Neil Armstrong and Edwin E. Aldrin were the first moonwalkers and their Apollo 11 teammate was Com­ mand Module Pilot Michael Collins. Shown above is NASA's 1Oth anni­ versary commemorative logo; created by artist Paull Calle, it de­ picts astronaut Armstrong pre­ paring to don his helmet prior to the historic Apollo 11 launch. On the Cover: James J. Fi sher's cover art symboli zes th e Earth/ moon relationship and man's efforts to expl ore Earth 's ancien t sa tellite. Aerospace Facts and Figures m;ji8Q Aerospace Facts and Figures 1979/80 AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC. 1725 DeSales Street, N.W., Washington, D.C. 20036 Published by Aviation Week & Space Technology A MCGRAW-HILL PUBLICATION 1221 Avenue of the Americas New York, N.Y. 10020 (212) 997-3289 $6.95 Per Copy Copyright, July 1979 by Aerospace Industries Association of America, Inc. Library of Congress Catalog No. 46-25007 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1725 De Sales Street, N. W., Washington, D.C. 20036 (202) 347-2315 Director Allen H. Skaggs Chief Statistician Sally H. Bath Acknowledgments Air Transport Association Civil Aeronautics Board Export-Import Bank of the United States Federal Trade Commission General Aviation Manufacturers Association International Air Transport Association International Civil Aviation Organization National Aeronautics and Space Administration National Science Foundation U. S. Departments of Commerce (Bureau of the Census) Defense (Comptroller, Public Affairs, Army, Navy, Air Force) Energy Labor (Bureau of Labor Statistics) Transportation (Federal Aviation Administration) Contents Page 6 FOREWORD 8 AEROSPACE SUMMARY 30 AIRCRAFT PRODUCTION 47 MISSILE PROGRAMS 57 SPACE PROGRAMS 73 AIR TRANSPORTATION 90 HELICOPTER TRANSPORTATION 99 RESEARCH AND DEVELOPMENT 110 FOREIGN TRADE 124 EMPLOYMENT 134 FINANCE 145 GLOSSARY 152 INDEX Foreword This 27th edition of Aerospace Facts and Figures chronicles, in statistical and highlight fashion, the aerospace industry's performance in 1978, a good year by any standard of measurement. Sales and earnings improved over the previous year, and a sharp growth in backlog indicates continuing high levels of activity in the current year. As has been the case in recent years, the industry again set records in many categories of performance-but records are not what they used to be. It is perhaps superfluous, yet essential to proper perspective, to point out that some records-those involving dollar values-are artificially swol­ len by the high levels of inflation the nation has been experiencing. When sales figures are converted to constant, or inflation-adjusted dollars, a different picture emerges: the real record year was 1968, and sales in 1978 amount to only 70 percent of the sales record recorded in that peak year. In comparison with earlier years of this decade, however, industry ac­ tivity-as measured by constant dollar sales volume-was greater than in any year since 1970. Additionally, industry employment topped the one million mark in October 1978, for the first time since 1970. The industry' s earnings as a percentage of sales improved substantially, a welcome gain in a high-technology industry whose capital requirements are of excep- tional order. The industry is particularly proud of its 1978 performance in interna- tional trade. In a year when the nation as a whole experienced its largest trade deficit, aerospace achieved its greatest trade surplus and led all manufacturing industries in contribution to the U.S. balance of trade. The aerospace surplus of $9 billion mitigated the adverse effects of deficits in other areas of trade, stressing anew the importance of aerospace exports to the nation' s economy. Parenthetically, it might be added that this im­ pressive aerospace trade performance was accomplished at a time when competition from abroad is stronger than ever, satisfying acknowledge- 6 ment that the industry has lost none of its technological and competitive vigor despite several prior years of generally declining activity. Looking ahead, the backlog of orders for new commercial transports indicates high levels of production in that segment of the industry in near­ future years. The industry anticipates further growth in sales of non-aero­ space products and services, which have more than doubled over the past five years. Defense sales volume is less susceptible to accurate prediction. The Administration has expressed its determination to strengthen our national defenses and that intent is reflected in the new budget before Congress. The budget suggests higher levels of industry defense work in the imme­ diate future, but the long term view is clouded by the fact that such workload is dependent upon future appropriation levels in an uncertain economic climate. Similarly, the forthcoming debut of NASA's Space Shuttle, and the programs envisioned for it, might be expected to generate increased in­ dustry activity in fabrication of space equipment. But the new budget, although it adquately supports continuing Shuttle development, allows no new starts in other areas of NASA's space program. Whether future fund­ ing considerations will permit realization of the Shuttle's promise remains to be seen. Summing up, the aerospace industry is experiencing an upturn after years of decline. Indications point to continuing high levels of activity in the immediate future. Given no further declines in the world economy, the outlook for the U.S. aerospace industry in the coming decade is substantially better than it was at the start of this decade. Karl G. Harr, Jr. President Aerospace Industries Association 7 Aerospace Summary The year 1978 was characteri~ed by p~oduction of commercial transport substantial improvement m the aircraft. Additionally, there were aerospace industry's sales, earn­ substantial increases in defense and ings, backlog, export performance non-aerospace sales. nd contribution to the U.S. bal­ Here is a breakdown of the in­ :nce of trade. Statistically, it was a dustry's 1978 performance by major record year, with all-time p~aks re­ category: ported in all maj.or categones, but Sales. Total sales amounted to the figures are distorted by the ef­ $37.4 billion, an increase of more fects of inflation. However, even than $5 billion over 1977 sales the when the statistics are adjusted for previous peak. The gain was d~e to inflation, the industry's 1978 perfor­ significant increases in two of the mance was encouraging; using sales four industry product groups: air­ as a yardstick of industry activity, craft and non-aerospace. Missile 1978 was the best year since 1970. sales remained at the previous The main reason for the activity year's level and sales of space upturn was increased workload in equipment declined. Aerospace in- 8 AEROSPACE SUMMARY dustry sales as a percentage of the shipments amounted to $6.5 billion, Gross National Product increased which compares with $4.7 billion in from 1. 7 percent in 1977 to 1.8 per­ 1977. cent in 1978; the figures compare The bulk of the dollar value of with an average of two percent for 1978 shipments was in commercial the prior years of the 1970s. In re­ transports-$4.3 billion, or two­ lation to total sales of all U.S. man­ thirds of the total; the amount rep­ ufacturing industries, aerospace resents an increase of $1.4 billion sales increased from 2.4 to 2.5 per­ over the previous year. In terms of cent. numbers, the industry delivered 244 Profit. The industry's net profit transports,· 69 more than in 1977. Due to the lead time involved, these after taxes as a percentage of sales deliveries reflect orders placed in was 4.8 percent, which compares 1977 and prior years. The surge of with 4.2 percent in 1977. Industry new orders received in 1978 indi­ profit edged closer to, but remained cates even higher l~vels of transport below, the average profit for all U.S. manufacturing industries-5.4 per­ production activity in 1978 and later cent. years. Manufacture of general aviation Backlog. The industry's backlog planes increased again, both nu­ climbed sharply during 1978 and at merically and in dollar value. Ship­ year-end reached $57.8 billion, an ments totaled 17,817 units, which increase of more than $12 billion compares with 16,910 in 1977. Dol­ above the previous year's level. Air­ lar vlaue was $1.8 billion, up about line orders for new commercial $270 million. Both numbers and transports constituted the major value were the highest ever re­ component of the increase; the corded. number of transports on order in­ Civil helicopter production also creased from 465 at year-end 1977 set new records. The rotary wing to 702 at the end of 1978 and the segment of the industry delivered dollar value of orders on the books 904 helicopters, 56 more than in the climbed about $7 billion, to almost previous year and 40 more than in $16 billion. Major increases were the former record year of 1975. Dol­ also recorded in U.S. government lar value of helicopters delivered in orders for aircraft, in missile and 1978 was $326 million, up from $251 space equipment backlog, and in million in 1977 and more than $40 orders for non-aerospace products. million above the earlier high of Civil Aircraft Production. Civil $285 million in 1976. aircraft shipments of all types to­ Military Aircraft Production. Be­ taled 18,965 in 1978, up more than cause the bulk of airplanes deliv­ 1,000 over the previous year's ship­ ered to the military services in 1978 ments.
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
    Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Report of the Second United Nations Conference on the Exploration and Peaceful Uses of Outer Space
    A/CONF.101/10 REPORT OF THE SECOND UNITED NATIONS CONFERENCE ON THE EXPLORATION AND PEACEFUL USES OF OUTER SPACE Vienna, 9-21 August 1982 UNITED NATIONS [Original: English] [31 August 1982] CONTENTS Paragraphs Page ACRONYMS AND ABBREVIATIONS • viii PART ONE: DECISIONS AND RECOMMENDATIONS OF THE CONFERENCE ..... 1 7 438 1 INTRODUCTION 1 f 15 1 I. STATE OF SPACE SCIENCE AND TECHNOLOGY 16 ~ 144 6 A. Space science 20-47 6 B. Experiments in space environment . 48-61 12 C. Telecommunications 62 - 77 15 D. Meteorology 78 - 90 20 E. Remote sensing 91 ~ i07 23 F. Navigation, global positioning and geodesy 108 * 126 27 G. Space transportation and space platform technologies . 127 - 144 30 II. APPLICATIONS OF SPACE SCIENCE AND TECHNOLOGY 145 - 312 35 A. Current and potential applications of space technology 145 - 189 35 1. Telecommunications 146 - 153 35 2. Mobile communications 154 37 3. Land-mobile communications 155 - 156 37 4. Maritime communication 157 - 158 38 5. Aeronautical communication 159 39 6. Satellite-to-satellite links 160 39 7. Future communications applications 162 39 8. Satellite broadcasting 162 - 164 39 9. Remote sensing 165 - 174 40 10. Meteorology 175 -r 182 43 11. Navigation, global positioning and geodesy 183 - 188 45 12. Future applications 189 47 B. Choices and difficulties in the use of space technology 190 - 206 47 1. Choices 190 - 194 47 -iii- CONTENTS (continued) 2. Difficulties 195 - 206 48 C. Possibilities and mechanisms for enabling all States to benefit from1space technology 207 - 233 52 D. Facilitating access, use and development of space technology 234 - 246 59 E.
    [Show full text]
  • Praxis Manned Spaceflight Log 1961±2006
    Praxis Manned Space¯ight Log 1961±2006 Tim Furniss and David J. Shayler with Michael D. Shayler Praxis Manned Spaceflight Log 1961±2006 Published in association with PPraxisraxis PPublishiublishingng Chichester, UK Tim Furniss David J. Shayler Space¯ight Correspondent Astronautical Historian Flight International Astro Info Service Bideford Halesowen Devon West Midlands UK UK Michael D. Shayler Editor and Designer Astro Info Service Birmingham UK SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason B.Sc., M.Sc., Ph.D. ISBN 10: 0-387-34175-7 Springer Berlin Heidelberg New York ISBN 13: 978-0-387-34175-0 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2006937359 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project Copy Editor: Mike Shayler Typesetting: Originator Publishing Services, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Authors' Preface ......................................
    [Show full text]
  • California State University, Northridge Low Earth Orbit
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM
    Landsat: A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM Landsat: A Global Land-Observing Program Fact Sheet 023-03 (March 2003) || A Brief History of the Landsat Program || Characteristics of the Landsat System || || Applications of Landsat Data || Landsat Data Continuity Mission || Information || The Landsat Program is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) to gather Earth resource data using a series of satellites. NASA was responsible for developing and launching the spacecrafts. The USGS is responsible for flight operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution. A primary objective of the Landsat Program is to ensure a collection of consistently calibrated Earth imagery. Landsat's mission is to establish and execute a data acquisition strategy that ensures the repetitive acquisition of observations over the Earth's land mass, coastal boundaries, and coral reefs and to ensure that the data acquired are of maximum utility in supporting the scientific objective of monitoring changes in the Earth's land surface. || Top || Main Table of Contents || A Brief History of the Landsat Program In the mid-1960s, stimulated by success in planetary exploration using unmanned remote sensing satellites, the Department of the Interior, NASA, the Department of Agriculture, and others embarked on an ambitious initiative to develop and launch the first civilian Earth-observing satellite to meet the needs of resource managers and earth scientists. The USGS assumed responsibility for archiving the data acquired by the new program and for distributing the anticipated data product.
    [Show full text]
  • I Technical Memorandum 80704
    NASA-TM-80704 19800019413 N/ A i TechnicalMemorandum 80704 Meteorological Satellites- LIBRAR, YcOPY- ._, : 3'JMm ..... HAMPVATON, L. J. Allison (Editor), A. Schnapf, B. C. Diesen, III, P. S. Martin, A. Schwalb, and W. R. Bandeen JUNE 1980 NationalAeronauticsand S0aceAdministration GoddardSpace FlightCenter Greenbelt.Maryland20771 METEOROLOGICALSATELLITES LewisJ. Allison (Editor) Goddard Space Flight Center Greenbelt, Maryland Contributing Authors: Abraham Schnapf, Bernard C. Diesen, III, Philip S. Martin, Arthur Schwalb, and WilliamR. Bandeen ABSTRACT This paper presents an overviewof the meteorologicalsatellite programs that havebeen evolvingfrom 1958 to the present and reviews plans for the future meteorological and environmental satellite systems that are scheduled to be placed into servicein the early 1980's. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA,and the present TIROS-N (the third-generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational polar- orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSPpayloadscurrently under developmentto assurea continued and orderly growth of these systemsinto the 1980's. iii CONTENTS ABSTRACT ............................................... iii EVOLUTION OF THE U.S. METEOROLOGICAL SATELLITE PROGRAMS ....... 1 TIROS ............................................... 1 ESSA ...............................................
    [Show full text]
  • Association of Space Explorers XXII Planetary Congress Prague, Czech Republic 2009
    Association of Space Explorers XXII Planetary Congress Prague, Czech Republic 2009 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov Soyuz TM-11, Soyuz TM-18, Soyuz 22, Soyuz T-2 Soyuz T-9, Soyuz TM-3 Soyuz TM-29, Soyuz TM-33 Alexander Alexandrov Sergei Avdeev Alexander Balandin Soyuz TM-5 Soyuz TM-15, Soyuz TM-22, Soyuz TM-9 Soyuz TM-28 Yuri Baturin Karol Bobko Vance Brand Soyuz TM-28, Soyuz TM-32 STS 6, STS 51D, STS 51J ASTP, STS 5, STS 41B, STS 35 Jean-François Clervoy Roger Crouch Reinhold Ewald STS 66, STS 84, STS 103 STS 83, STS 94 Soyuz TM-25 John Fabian Bertalan Farkas Anatoli Filipchenko STS 7, STS 51G Soyuz 36 Soyuz 36 Jake Garn Owen Garriott Richard Garriott STS 51D Skylab 3, STS 9 Soyuz TMA-13 Georgi Grechko Chris Hadfield Henry Hartsfield Soyuz 17, Soyuz 26, Soyuz T-14 STS 74, STS 100 STS 4, STS 41D, STS 61A Miroslaw Hermaszewski Georgi Ivanov Oleg Kotov Soyuz 30 Soyuz 33 Soyuz TMA-10, Soyuz TMA-17., Expedition 22 Alexei Leonov Vladimir Lyakhov Pam Melroy Voskhod 2, ASTP Soyuz 32, Soyuz T-9, STS 92, STS 112, STS 120 Soyuz TM-6 Dumitru-Dorin Prunariu Kenneth Reightler, Jr. Vladimir Remek Soyuz 40 STS 48, STS 60 Soyuz 28 Richard Richards Viktor Savinykh Rusty Schweickart STS 28, STS 41, STS 50, STS 64 Soyuz T-4, Soyuz T-13, Soyuz Apollo 9 TM-5 Alexander Serebrov Vladimir Shatalov Yuri Usachev Soyuz T-7, Soyuz T-8, Soyuz Soyuz 4, Soyuz 8, Soyuz 10 Soyuz TM-18, Soyuz TM-23, TM-8, Soyuz TM-17 STS 101/Expedition 2/STS 102 Franz Viehbock Pavel Vinogradov Sergei Volkov Soyuz TM-13 Soyuz TM-26, Soyuz TMA-8/ Soyuz TMA-12, Expedition 17 Expedition 13 James Voss Charles Walker Yi Soyeon STS 44, STS 53, STS 69, STS 101/ STS 41D, STS 51D, STS 61B Soyuz TMA-12 Expedition 2/STS 102 Forty-nine astronauts and cosmonauts* from 14 nations gathered October 4-10, 2009 in Prague, Czech Republic for the XXII Planetary Congress of the Association of Space Explorers (ASE).
    [Show full text]
  • ASROC with Systems
    Naval Nuclear Weapons Chapter Eight Naval Nuclear Weapons The current program to modernize and expand U.S. deployed within the Navy (see Table 8.1) include anti- Naval forces includes a wide variety of nuclear weapons submarine warfare rockets (both surface (ASROC with systems. The build-up, according to the Department of W44) and subsurface launched (SUBROC with W55)), Defense, seeks "increased and more diversified offensive anti-air missiles (TERRIER with W45), and bombs and striking power.. increased attention to air defense . depth charges (B43, B57, and B61) used by a variety of [and] improvements in anti-submarine warfare."' The aircraft and helicopters, both carrier and land based (see plan is to build-up to a "600-ship Navy" concentrating Chapters Four and Se~en).~ on "deployable battle forces." Numerous new ships will The various nuclear weapons systems that are under be built, centered around aircraft carrier battle groups, development or are being considered for tactical naval surface groups, and attack submarines. New, more capa- nuclear warfare include: ble anti-air warfare ships, such as the TICONDEROGA (CG-47) class cruiser and BURKE (DDG-51) class  A new surface-to-air missile nuclear war- destroyers, will be deployed. New nuclear weapons and head (W81) for the STANDARD-2 missile, launching systems, as well as nuclear capable aircraft soon to enter production, carrier based forces, form a major part of the program. A long-range, land-attack nuclear armed As of March 1983, the nuclear armed ships of the U.S. Sea-Launched
    [Show full text]