Engrailed Homeoproteins in Visual System Development

Total Page:16

File Type:pdf, Size:1020Kb

Engrailed Homeoproteins in Visual System Development Cell. Mol. Life Sci. (2015) 72:1433–1445 DOI 10.1007/s00018-014-1776-z Cellular and Molecular Life Sciences REVIEW Engrailed homeoproteins in visual system development Andrea Wizenmann • Olivier Stettler • Kenneth L. Moya Received: 28 July 2014 / Revised: 31 October 2014 / Accepted: 6 November 2014 / Published online: 29 November 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Engrailed is a homeoprotein transcription Keywords Visual system Á Retina Á Tectum Á factor. This family of transcription factors is characterized Sensory map Á Homeoprotein Á Engrailed by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and reg- ulate protein translation in addition to gene transcription. Introduction Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in Since the discovery of homeobox genes [1, 2] there has dorsal mesencephalon contributes to the development and been accumulating evidence from all multi-cellular organization of a visual structure, the optic tectum/supe- organisms that these genes play key roles in determining rior colliculus. This structure is an important target for positional information. These genes encode homeoprotein retinal ganglion cell axons that carry visual information transcription factors that regulate the expression of down- from the retina. Engrailed regulates the expression of stream genes necessary at all developmental stages, Ephrin axon guidance cues in the tectum/superior col- including lineage determination, cell migration, cell dif- liculus. More recently it has been reported that Engrailed ferentiation, and tissue formation. Some homeoproteins are itself acts as an axon guidance cue in synergy with the also able to regulate protein translation and cell-to-cell Ephrin system and is proposed to enhance retinal topo- signaling. The proteins of the Engrailed family can exert all graphic precision. three functions, regulate gene transcription and protein translation, and act in an extracellular signaling pathway. All three of these functions of Engrailed are put into play for the correct development of the visual system in vertebrates. A. Wizenmann (&) Department of Anatomy, Institute of Clinical Anatomy and Cell Analysis, University of Tu¨bingen, O¨ sterbergstrasse 3, 72074 Non-cell autonomous homeoprotein activity and visual Tu¨bingen, Germany system development e-mail: [email protected] O. Stettler The non-cell autonomous developmental function of ho- Laboratoire CRRET EAC 7149, Universite´ Paris-Est Cre´teil, 61, meoproteins has only recently been deciphered and opens an Av. du Ge´ne´ral de Gaulle, 94010 Cre´teil Cedex, France entirely new view on developmental processes. Pax 6 is nec- essary for eye development in many species [3–6] and this was K. L. Moya (&) Colle`ge de France, Center for Interdisciplinary Research in attributed to its cell autonomous activity. However, when the Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin intercellular passage of Pax6 is disrupted in zebrafish Berthelot, 75005 Paris, France embryos, fish develop dissymmetric eyes, one eye or no eye e-mail: [email protected] phenotypes [7]. The homeoprotein Otx2 is expressed in the K. L. Moya retina and is important for retinal ganglion cell (RGC) prenatal Labex Memolife, PSL Research University, Paris, France specification and, after birth, for the maintenance of cone 123 1434 A. Wizenmann et al. photoreceptors, bipolar cells and RGCs [8]. Since postnatal different organisms (for review see: [29]). Vertebrate RGCs do not express Otx2, this dependence on Otx2 for homologues were discovered in chick, mice, frogs and fish maintenance or neuroprotection [9] is another example of [28, 30–32]. Vertebrates in general have 2–3 Engrailed non-cell autonomous homeoprotein activity. genes and in most species they confer specific identity to Beyond the retina, Otx2 can be transferred to the visual defined areas and neurons. cortex from external sources and blocking its transfer and Engrailed proteins contain highly conserved homeodo- accumulation in parvalbumin cells within layers III and IV mains (Fig. 1), domains involved in active repression of of visual cortex regulates the opening, closure or reopening transcription [33], and domains that bind important co-fac- (in the adult) of a critical period for the plasticity of the tors like Groucho and Extradenticle (Exd)/Pbx [34, 35]. The visual cortex [10–12]. phosphorylation of specific residues increases DNA binding Engrailed proteins now have a twofold role for the [36]. With Exd as a cofactor Drosophila Engrailed, normally development of the subcortical visual connections: first, a repressor, can also act as transcriptional activator in vivo Engrailed transcriptional activity is important for the for- [37]. Like other homeodomain proteins Engrailed protein mation of subcortical visual structures in the brain; second also acts as translational regulator and interacts with elF4E its protein translation and cell–cell signaling properties [38–40]. Surprisingly, Engrailed also possesses domains that guide retinal axons in the formation of visual maps. allow the protein to be secreted and internalized [41]. That Engrailed transcription factors contain these domains and Engrailed transfer between cells has been reported for some time but only recently has the physiological significance of this been The Drosophila gene Engrailed was first identified in 1929 fully appreciated (for reviews see [12], [42]). as an autosomal recessive gene [13]. Since the mutant possessed a dent in the scutellum Eker called it Engrailed The vertebrate visual system and topographic maps after ‘engraile´’ a heraldic term from middle-age French meaning ‘dented by hail’. Engrailed turned out to be a key An essential aspect of nervous system development is the selector gene that is involved in the development of pos- establishment of precise functional neuronal connections in terior compartments of appendages and segments [14–16] the brain. Locally, these connections can form specific and the nervous system [17, 18] during Drosophila devel- networks (i.e. a cerebral maps) that topographically opment. Since then, one or more Engrailed proteins have reproduce the spatial organization of the peripheral sensory been described in many metazoans from echinoderms [19], receptors. The development of precise projections implies nematodes [20], annelids [21], brachiopods [22], platyhel- that growing axons, (1) carry an identity of their place of minthes [23], molluscs [24], cephalochordates [25], origin; (2) follow the correct pathway towards their target; onychophorans [26] priapulids [27] and in vertebrates [28]. and (3) recognize a local ‘‘stop signal’’ to synapse on their Duplications generated several Engrailed paralogues in proper target cells. The overall process requires in addition, Secretion Motif Internalisation part of NES motive (Penetrin) Phosphorylation sequence EH1 EH2 EH3 EH4 EH5 N C elF4E Groucho PBX Homeodomain Transcriptional binding binding binding respression domain domain domains Fig. 1 Functional domains of Engrailed proteins. En1/2 contain a phosphorylation appears to regulate En1/2s association with mem- classic homeodomain. Within the homeodomain, Engrailed proteins brane fractions enriched in cholesterol and glycosphingolipids. NES have a secretion and an internalization motif (Penetratin). At the is the nuclear transport signal within the homebox. Modified from N-terminal region a binding site for elf4E and a phosphorylation site Morgan 2006. See text and Morgan 2006 for references were identified. Elf4E initiates protein translation and the 123 Engrailed homeoproteins 1435 superior colliculus (SC) in mammals. The retina is repre- sented topographically in the oTe/SC such that axons from temporal retina project to the anterior oTe/SC, and axons from nasal retina project to the posterior oTe/SC. The dorso-ventral axis of the retina is represented along the latero-medial axis of the tectum (see Fig. 2). One early theory for how this precise map is established during development was suggested by Sperry more than 50 years ago as the ‘chemoaffinity hypothesis’. Based on eye rotation experiments in amphibians he postulated two orthogonal ‘cytochemical’ gradients in the retina, so as to impose positional identity onto each retinal ganglion cell ‘in a kind of chemical code’ along the naso-temporal and dorso-ventral axis of the eye [44]. These gradients would then be matched with complementary gradients in the tectal Fig. 2 Topographical organization of the retinotectal system and the target field of the retinal projection (Fig. 2). Mathematical graded expression of guidance cues and receptors. Anterior tectum receives the input from temporal axons, posterior tectum receives models for the arrangement of these gradients, and the input from nasal axons. Within the tectum the earliest graded capacity of growth cones to correctly navigate along these expression is that of En1/2, which shows a high expression in the gradients were proposed by Gierer [45–47]. Subsequently, posterior and a low expression in the anterior tectum. Later different numerous studies in vivo and in vitro provided evidence for Eph As and Ephrins—the member depends on the species—are expressed in counter gradients along the tempero-nasal axis of the the existence of positional cues along the rostrocaudal and retina and the anterior–posterior axis of the tectum.
Recommended publications
  • Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
    Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development.
    [Show full text]
  • T-Box Genes in Limb Development and Disease
    Open Research Online The Open University’s repository of research publications and other research outputs T-box Genes in Limb Development and Disease Thesis How to cite: Rallis, Charalampos (2004). T-box Genes in Limb Development and Disease. PhD thesis The Open University. For guidance on citations see FAQs. c 2004 Charalampos Rallis Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000fa0b Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk T-box Genes in Limb Development and Disease Charalampos Rallis Thesis submitted for the degree of Doctor of Philosophy October 2004 Division of Developmental Biology National Institute for Medical Research Mill Hill London Open University ProQuest Number: C819643 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest C819643 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q.
    [Show full text]
  • Alternative Splicing Modulates Ubx Protein Function in Drosophila Melanogaster
    Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.112086 Alternative Splicing Modulates Ubx Protein Function in Drosophila melanogaster Hilary C. Reed,* Tim Hoare,† Stefan Thomsen,‡ Thomas A. Weaver,† Robert A. H. White,† Michael Akam* and Claudio R. Alonso‡,1 *Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, †Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and ‡School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom Manuscript received November 13, 2009 Accepted for publication December 17, 2009 ABSTRACT The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments—encoded by individual exons—that modify the distance between the homeodomain and a cofactor-interaction module termed the ‘‘YPWM’’ motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd).
    [Show full text]
  • Pancreas-Specific Deletion of Mouse Gata4 and Gata6 Causes Pancreatic Agenesis
    Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis Shouhong Xuan, … , Raymond J. Macdonald, Lori Sussel J Clin Invest. 2012;122(10):3516-3528. https://doi.org/10.1172/JCI63352. Research Article Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and aG ATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas- specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. Find the latest version: https://jci.me/63352/pdf Research article Related Commentary, page 3469 Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis Shouhong Xuan,1 Matthew J.
    [Show full text]
  • Sequential Organizing Activities of Engrailed, Hedgehog and Decapentaplegic in the Drosophila Wing
    Development 121, 2265-2278 (1995) 2265 Printed in Great Britain © The Company of Biologists Limited 1995 Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing Myriam Zecca1, Konrad Basler1 and Gary Struhl2 1Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 2Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York NY 10032 USA SUMMARY The Drosophila wing is formed by two cell populations, the strate that dpp can exert a long-range organizing influence anterior and posterior compartments, which are distin- on surrounding wing tissue, specifying anterior or posterior guished by the activity of the selector gene engrailed (en) in pattern depending on the compartmental provenance, and posterior cells. Here, we show that en governs growth and hence the state of en activity, of the responding cells. Thus, patterning in both compartments by controlling the dpp secreted by anterior cells along the compartment expression of the secreted proteins hedgehog (hh) and boundary has the capacity to organize the development of decapentaplegic (dpp) as well as the response of cells to both compartments. Finally, we report evidence suggesting these signaling molecules. First, we demonstrate that en that dpp may exert its organizing influence by acting as a activity programs wing cells to express hh whereas the gradient morphogen in contrast to hh which appears to act absence of en activity programs them to respond to hh by principally as a short range inducer of dpp. expressing dpp. As a consequence, posterior cells secrete hh and induce a stripe of neighboring anterior cells across the Key words: engrailed, decapentaplegic, hedgehog, Drosophila, compartment boundary to secrete dpp.
    [Show full text]
  • HOX CLUSTER INTERGENIC SEQUENCE EVOLUTION by JEREMY DON RAINCROW a Dissertation Submitted to the Graduate School-New Brunswick R
    HOX CLUSTER INTERGENIC SEQUENCE EVOLUTION By JEREMY DON RAINCROW A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey and The Graduate School of Biomedical Sciences University of Medicine and Dentistry of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Cell and Developmental Biology written under the direction of Chi-hua Chiu and approved by ______________________________________________ ______________________________________________ ______________________________________________ ______________________________________________ New Brunswick, New Jersey October 2010 ABSTRACT OF THE DISSERTATION HOX GENE CLUSTER INTERGENIC SEQUENCE EVOLUTION by JEREMY DON RAINCROW Dissertation Director: Chi-hua Chiu The Hox gene cluster system is highly conserved among jawed-vertebrates. Specifically, the coding region of Hox genes along with their spacing and occurrence is highly conserved throughout gnathostomes. The intergenic regions of these clusters however are more variable. During the construction of a comprehensive non-coding sequence database we discovered that the intergenic sequences appear to also be highly conserved among cartilaginous and lobe-finned fishes, but much more diverged and dynamic in the ray-finned fishes. Starting at the base of the Actinopterygii a turnover of otherwise highly conserved non-coding sequences begins. This turnover is extended well into the derived ray-finned fish clade, Teleostei. Evidence from our population genetic study suggests this turnover, which appears to be due mainly to loosened constraints at the macro-evolutionary level, is highlighted by evidence of strong positive selection acting at the micro-evolutionary level. During the construction of the non-coding sequence database we also discovered that along with evidence of both relaxed constraints and positive selection emerges a pattern of transposable elements found within the Hox gene cluster system.
    [Show full text]
  • Homeotic Gene Action in Embryonic Brain Development of Drosophila
    Development 125, 1579-1589 (1998) 1579 Printed in Great Britain © The Company of Biologists Limited 1998 DEV1254 Homeotic gene action in embryonic brain development of Drosophila Frank Hirth, Beate Hartmann and Heinrich Reichert* Institute of Zoology, University of Basel, Rheinsprung 9, CH-4051 Basel, Switzerland *Author for correspondence (e-mail: [email protected]) Accepted 18 February; published on WWW 1 April 1998 SUMMARY Studies in vertebrates show that homeotic genes are absence of labial, mutant cells are generated and positioned involved in axial patterning and in specifying segmental correctly in the brain, but these cells do not extend axons. identity of the embryonic hindbrain and spinal cord. To Additionally, extending axons of neighboring wild-type gain further insights into homeotic gene action during CNS neurons stop at the mutant domains or project ectopically, development, we here characterize the role of the homeotic and defective commissural and longitudinal pathways genes in embryonic brain development of Drosophila. We result. Immunocytochemical analysis demonstrates that first use neuroanatomical techniques to map the entire cells in the mutant domains do not express neuronal anteroposterior order of homeotic gene expression in the markers, indicating a complete lack of neuronal identity. Drosophila CNS, and demonstrate that this order is An alternative glial identity is not adopted by these mutant virtually identical in the CNS of Drosophila and mammals. cells. Comparable effects are seen in Deformed mutants but We then carry out a genetic analysis of the labial gene in not in other homeotic gene mutants. Our findings embryonic brain development. Our analysis shows that demonstrate that the action of the homeotic genes labial loss-of-function mutation and ubiquitous overexpression of and Deformed are required for neuronal differentiation in labial results in ectopic expression of neighboring the developing brain of Drosophila.
    [Show full text]
  • Mechanisms of Specificity for Hox Factor Activity
    Journal of Developmental Biology Review Mechanisms of Specificity for Hox Factor Activity Arya Zandvakili 1,2 and Brian Gebelein 3,* 1 Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA 2 Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] 3 Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA * Correspondence: [email protected]; Tel.: +1-513-636-3366 Academic Editors: Vincenzo Zappavigna and Simon J. Conway Received: 5 April 2016; Accepted: 4 May 2016; Published: 9 May 2016 Abstract: Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE).
    [Show full text]
  • Characterisation of HPC3, a New Human Polycomb Group Protein
    Characterisation of HPC3, A NEW HUMAN POLYCOMB GROUP PROTEIN Julia I. Bardos Thesis presented for the degree of Doctor of Philosophy from the University of London August 2001 Molecular Structure and Function Laboratory Imperial Cancer Research Fund 44 Lincoln’s Inn Fields London WC2A 3PX ProQuest Number: U643553 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643553 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A b s t r a c t A b str a c t Polycomb Group (PcG) proteins are a conserved group of transcriptional repressors, mainly known for their role in stably maintaining the repressed state of homeotic and Hox genes, after their expression patterns have been established early in embryonic development. Thus, the Polycomb Group constitutes an important part of a cellular transcriptional memory system. Loss of PcG function leads to homeotic transformations in Drosophila and corresponding shifts in Hox gene expression in vertebrates. PcG proteins form multiprotein complexes of varying composition that associate with chromatin, and it has been postulated that they achieve gene silencing by altering higher order chromatin structure.
    [Show full text]
  • Transcriptional and Epigenetic Control of Brown and Beige Adipose Cell Fate and Function
    REVIEWS Transcriptional and epigenetic control of brown and beige adipose cell fate and function Takeshi Inagaki1,2, Juro Sakai1,2 and Shingo Kajimura3 Abstract | White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. Interscapular BAT Adipose tissue has a central role in whole-body energy subjects who had previously lacked detectable BAT Brown adipose tissue (BAT) is a homeostasis. White adipose tissue (WAT) is the major depots before cold exposure, presumably owing to the specialized organ that adipose organ in mammals. It represents 10% or more emergence of new thermogenic adipocytes. This, then, produces heat. BAT is localized of the body weight of healthy adult humans and is leads to an increase in non-shivering thermogenesis in the interscapular and 6–9 perirenal regions of rodents specialized for the storage of excess energy. Humans and/or an improvement in insulin sensitivity . These and infants.
    [Show full text]
  • Evolving Pathways Key Themes in Evolutionary Developmental Biology
    Evolving Pathways Key Themes in Evolutionary Developmental Biology Evolutionary developmental biology, or ‘evo-devo’, is the study of the relationship between evolution and development. Dealing specifically with the generative mechanisms of organismal form, evo-devo goes straight to the core of the developmental origin of variation, the raw material on which natural selection (and random drift) can work. Evolving Pathways responds to the growing volume of data in this field, with its potential to answer fundamental questions in biology, by fuelling debate through contributions that represent a diversity of approaches. Topics range from developmental genetics to comparative morphology of animals and plants alike, including palaeontology. Researchers and graduate students will find this book a valuable overview of current research as we begin to fill a major gap in our perception of evolutionary change. ALESSANDRO MINELLI is currently Professor of Zoology at the University of Padova, Italy. An honorary fellow of the Royal Entomological Society, he was a founding member and Vice-President of the European Society for Evolutionary Biology. He has served as President of the International Commission on Zoological Nomenclature, and is on the editorial board of multiple learned journals, including Evolution & Development. He is the author of The Development of Animal Form (2003). GIUSEPPE FUSCO is Assistant Professor of Zoology at the University of Padova, Italy, where he teaches evolutionary biology. His main research work is in the morphological
    [Show full text]
  • Homeotic Transformations and Limb Defects in Hox All Mutant Mice
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Homeotic transformations and limb defects in Hox All mutant mice Kersten M. Small and S. Steven Potter ~ Division of Basic Science Research, Children's Hospital Research Foundation, Cincinnati, Ohio 45229 USA Hox All is one of the expanded set of vertebrate homeo box (Hox) genes with similarities to the Drosophila homeotic gene, Abdominal-B (Abd-B). These Abd-B-type Hox genes have been shown to be expressed in the most caudal regions of the developing vertebrate embryo and in overlapping domains within the developing limbs, suggesting that these genes play important roles in pattern formation in both appendicular and axial regions of the body. In this report whole-mount in situ hybridization in mouse embryos gave a precise description of Hox All gene expression in the developing limbs and in the axial domain of the developing body. In addition, we generated a targeted mutation in Hox All and characterized the resulting phenotype to begin to dissect developmental functions of the Abd-B subfamily of Hox genes. Hox All mutant mice exhibited double homeotic transformations, with the thirteenth thoracic segment posteriorized to form an additional first lumbar vertebra and with the sacral region anteriorized, generating yet another lumbar segment. Furthermore, skeletal malformations were observed in both forelimbs and hindlimbs. In mutant forelimbs, the ulna and radius were misshapen, the pisiform and triangular carpal bones were fused, and abnormal sesamoid bone development occurred. In mutant hindlimbs the tibia and fibula were joined incorrectly and malformed at their distal ends.
    [Show full text]