ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Chronic Jet Lag Promotes Growth and Lung Metastasis of Lewis Lung Carcinoma in C57BL/6 Mice
ONCOLOGY REPORTS 27: 1417-1428, 2012 Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice 1,2,6 1,3 1,4 1,2 1,5 MINGWEI WU , JING ZENG , YANFENG CHEN , ZHAOLEI ZENG , JINXIN ZHANG , YUCHEN CAI1,2, YANLI YE1,2, LIWU FU1,2, LIJIAN XIAN1,2 and ZHONGPING CHEN1,6 1 2 3 4 State Key Laboratory of Oncology in South China; Departments of Research, Pathology, and Head and Neck Cancer, Cancer Center, Sun Yat-Sen University; 5Department of Medical Statistics and Epidemiology, Sun Yat-Sen University; 6Department of Neurosurgery, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China Received December 8, 2011; Accepted January 17, 2012 DOI: 10.3892/or.2012.1688 Abstract. Circadian rhythm has been linked to cancer genesis are governed by a biological clock. The mammalian circadian and development, but the detailed mechanism by which circa- clock contains three components: input pathways, a central dian disruption accelerates tumor growth remains unclear. The pacemaker and output pathways. The mammalian central purpose of this study was to investigate the effect of circadian pacemaker is located in the suprachiasmatic nuclei (SCN) disruption on tumor growth and metastasis in male C57BL/6 of the anterior hypothalamus and controls the activity of the mice, using an experimental chronic jet lag model. Lewis lung peripheral clocks through the neuroendocrine and autonomic carcinoma cells were inoculated into both flanks of the mice nervous systems (1,2). Circadian rhythms govern the rhythmic following 10 days of exposure to experimental chronic jet lag changes in the behavior and/or physiology of mammals, such or control conditions. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii -
T-Box Genes in Limb Development and Disease
Open Research Online The Open University’s repository of research publications and other research outputs T-box Genes in Limb Development and Disease Thesis How to cite: Rallis, Charalampos (2004). T-box Genes in Limb Development and Disease. PhD thesis The Open University. For guidance on citations see FAQs. c 2004 Charalampos Rallis Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000fa0b Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk T-box Genes in Limb Development and Disease Charalampos Rallis Thesis submitted for the degree of Doctor of Philosophy October 2004 Division of Developmental Biology National Institute for Medical Research Mill Hill London Open University ProQuest Number: C819643 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest C819643 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. -
The Many Roles of MITF in Melanoma
e Cell Bio gl lo n g i y S Vachtenheim, Single Cell Biol 2017, 6:2 Single-Cell Biology DOI: 10.4172/2168-9431.1000162 ISSN: 2168-9431 Mini Review Open Access The Many Roles of MITF in Melanoma Jiri Vachtenheim* Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital Prague, Czech Republic Abstract Microphthalmia-associated transcription factor (MITF) plays pivotal role in the maintenance of the melanocyte lineage, differentiation of normal and malignant melanocytes and the survival of melanoma cells. MITF regulates expression of many genes with critical functions in cell differentiation, proliferation, and pro-survival properties. Melanoma is an extremely resilient tumor for which no effective therapy exists when the tumor progresses into metastasis. Melanoma is a heterogenous tumor in which the microheterogeneity arises already in the first stages of the tumor development. Because the dependence of the melanocyte lineage on MITF is critical, MITF is regarded as the paradigmatic lineage-addiction oncogene and its gene is amplified in a smaller subset of melanomas. The level of MITF protein greatly differs among the tumor cells. Intriguingly, low MITF level cells are slowly proliferating but constitute an invasive subpopulation of tumor cells. In this minireview, I briefly discuss the many roles and activities of MITF in melanoma cells and the future prospects for melanoma therapy. Keywords: MITF; Melanoma; Phenotype switching; Melanoma was shown to be the necessary epigenetic transcriptional coactivator of proliferation; Differentiation; Invasion; Apoptosis MITF [21] and some of MITF targets [22]. Introduction Importance of MITF for Melanoma Differentiation and Malignant melanoma is a highly aggressive skin cancer, the Proliferation incidence of which is steadily on the rise. -
Pancreas-Specific Deletion of Mouse Gata4 and Gata6 Causes Pancreatic Agenesis
Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis Shouhong Xuan, … , Raymond J. Macdonald, Lori Sussel J Clin Invest. 2012;122(10):3516-3528. https://doi.org/10.1172/JCI63352. Research Article Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and aG ATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas- specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. Find the latest version: https://jci.me/63352/pdf Research article Related Commentary, page 3469 Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis Shouhong Xuan,1 Matthew J. -
Sequential Organizing Activities of Engrailed, Hedgehog and Decapentaplegic in the Drosophila Wing
Development 121, 2265-2278 (1995) 2265 Printed in Great Britain © The Company of Biologists Limited 1995 Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing Myriam Zecca1, Konrad Basler1 and Gary Struhl2 1Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 2Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York NY 10032 USA SUMMARY The Drosophila wing is formed by two cell populations, the strate that dpp can exert a long-range organizing influence anterior and posterior compartments, which are distin- on surrounding wing tissue, specifying anterior or posterior guished by the activity of the selector gene engrailed (en) in pattern depending on the compartmental provenance, and posterior cells. Here, we show that en governs growth and hence the state of en activity, of the responding cells. Thus, patterning in both compartments by controlling the dpp secreted by anterior cells along the compartment expression of the secreted proteins hedgehog (hh) and boundary has the capacity to organize the development of decapentaplegic (dpp) as well as the response of cells to both compartments. Finally, we report evidence suggesting these signaling molecules. First, we demonstrate that en that dpp may exert its organizing influence by acting as a activity programs wing cells to express hh whereas the gradient morphogen in contrast to hh which appears to act absence of en activity programs them to respond to hh by principally as a short range inducer of dpp. expressing dpp. As a consequence, posterior cells secrete hh and induce a stripe of neighboring anterior cells across the Key words: engrailed, decapentaplegic, hedgehog, Drosophila, compartment boundary to secrete dpp. -
KRAS Drives Immune Evasion in a Genetic Model of Pancreatic Cancer
ARTICLE https://doi.org/10.1038/s41467-021-21736-w OPEN KRAS drives immune evasion in a genetic model of pancreatic cancer Irene Ischenko1, Stephen D’Amico1, Manisha Rao2, Jinyu Li2, Michael J. Hayman1, Scott Powers 2, ✉ ✉ Oleksi Petrenko 1,3 & Nancy C. Reich 1,3 Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate 1234567890():,; KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the sup- pression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment. 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA. 2 Department of Pathology, Stony Brook University, ✉ Stony Brook, NY, USA. 3These authors jointly supervised this work: Oleksi Petrenko, Nancy C. Reich. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:1482 | https://doi.org/10.1038/s41467-021-21736-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21736-w RAS is frequently associated with some of the deadliest and characterization of KRASG12D p53KO mouse cell lines forms of cancer. -
The Global Gene Expression Profile of the Secondary Transition During Pancreatic Development
ÔØ ÅÒÙ×Ö ÔØ The global gene expression profile of the secondary transition during pancre- atic development Stefanie J. Willmann, Nikola S. Mueller, Silvia Engert, Michael Sterr, Ingo Burtscher, Aurelia Raducanu, Martin Irmler, Johannes Beckers, Steffen Sass, Fabian J. Theis, Heiko Lickert PII: S0925-4773(15)30037-X DOI: doi: 10.1016/j.mod.2015.11.004 Reference: MOD 3386 To appear in: Received date: 19 June 2015 Revised date: 26 November 2015 Accepted date: 27 November 2015 Please cite this article as: Willmann, Stefanie J., Mueller, Nikola S., Engert, Sil- via, Sterr, Michael, Burtscher, Ingo, Raducanu, Aurelia, Irmler, Martin, Beckers, Johannes, Sass, Steffen, Theis, Fabian J., Lickert, Heiko, The global gene expres- sion profile of the secondary transition during pancreatic development, (2015), doi: 10.1016/j.mod.2015.11.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The global gene expression profile of the secondary transition during pancreatic development Stefanie J. Willmann*1,5, Nikola S. Mueller*2, Silvia Engert1, Michael Sterr1, Ingo Burtscher1, Aurelia Raducanu1, Martin Irmler3, Johannes Beckers3,4,5, -
Role of Heat Shock Transcription Factor 1 in Ovarian Cancer
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Role of Heat Shock Transcription Factor 1 in Ovarian Cancer Epithelial-Mesenchymal Transition and Drug Sensitivity Chase David Powell University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Oncology Commons Scholar Commons Citation Powell, Chase David, "Role of Heat Shock Transcription Factor 1 in Ovarian Cancer Epithelial-Mesenchymal Transition and Drug Sensitivity" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/7079 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Heat Shock Transcription Factor 1 in Ovarian Cancer Epithelial-Mesenchymal Transition and Drug Sensitivity by Chase David Powell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of cell Biology, Microbiology, and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Sandy D. Westerheide, Ph.D. Brant R. Burkhardt, Ph.D. Younghoon Kee, Ph.D Meera Nanjundan, Ph.D Date of Approval: November 3, 2017 Keywords: Heat Shock Factor 1, Ovarian Cancer, Epithelial to Mesenchymal Transition, Transforming Growth Factor β, HSP90 Inhibitors, Spheroid Culture, Intrinsic Disorder Copyright © 2017, Chase D. Powell DEDICATION I would like to dedicate this work to my wife, Anne T Powell, for all of her support, patience, and love. -
Engrailed Homeoproteins in Visual System Development
Cell. Mol. Life Sci. (2015) 72:1433–1445 DOI 10.1007/s00018-014-1776-z Cellular and Molecular Life Sciences REVIEW Engrailed homeoproteins in visual system development Andrea Wizenmann • Olivier Stettler • Kenneth L. Moya Received: 28 July 2014 / Revised: 31 October 2014 / Accepted: 6 November 2014 / Published online: 29 November 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Engrailed is a homeoprotein transcription Keywords Visual system Á Retina Á Tectum Á factor. This family of transcription factors is characterized Sensory map Á Homeoprotein Á Engrailed by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and reg- ulate protein translation in addition to gene transcription. Introduction Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in Since the discovery of homeobox genes [1, 2] there has dorsal mesencephalon contributes to the development and been accumulating evidence from all multi-cellular organization of a visual structure, the optic tectum/supe- organisms that these genes play key roles in determining rior colliculus. This structure is an important target for positional information. These genes encode homeoprotein retinal ganglion cell axons that carry visual information transcription factors that regulate the expression of down- from the retina. Engrailed regulates the expression of stream genes necessary at all developmental stages, Ephrin axon guidance cues in the tectum/superior col- including lineage determination, cell migration, cell dif- liculus. More recently it has been reported that Engrailed ferentiation, and tissue formation. Some homeoproteins are itself acts as an axon guidance cue in synergy with the also able to regulate protein translation and cell-to-cell Ephrin system and is proposed to enhance retinal topo- signaling. -
Transcriptional and Epigenetic Control of Brown and Beige Adipose Cell Fate and Function
REVIEWS Transcriptional and epigenetic control of brown and beige adipose cell fate and function Takeshi Inagaki1,2, Juro Sakai1,2 and Shingo Kajimura3 Abstract | White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. Interscapular BAT Adipose tissue has a central role in whole-body energy subjects who had previously lacked detectable BAT Brown adipose tissue (BAT) is a homeostasis. White adipose tissue (WAT) is the major depots before cold exposure, presumably owing to the specialized organ that adipose organ in mammals. It represents 10% or more emergence of new thermogenic adipocytes. This, then, produces heat. BAT is localized of the body weight of healthy adult humans and is leads to an increase in non-shivering thermogenesis in the interscapular and 6–9 perirenal regions of rodents specialized for the storage of excess energy. Humans and/or an improvement in insulin sensitivity . These and infants.