Flowering of Watsonia Laccata As Influenced by Corm Storage and Forcing Temperatures ⁎ J.K

Total Page:16

File Type:pdf, Size:1020Kb

Flowering of Watsonia Laccata As Influenced by Corm Storage and Forcing Temperatures ⁎ J.K Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 631–637 www.elsevier.com/locate/sajb Flowering of Watsonia laccata as influenced by corm storage and forcing temperatures ⁎ J.K. Suh a, , J.H. Kim a, A.K. Lee a, M.S. Roh b a Dankook University, College of Bio-Resources Science, Department of Environmental Horticulture, Cheonan, Chungnam 330-714, Republic of Korea b US Department of Agriculture, Agricultural Research Service, National Arboretum, Floral and Nursery Plants Research Unit, Beltsville MD 20705, USA Received 24 March 2010; received in revised form 28 November 2010; accepted 22 December 2010 Abstract The genus Watsonia, belonging to the family Iridaceae, is comprised of about 50 species including W. laccata (Jacquin) Ker Gawler that flowers from September to November following low temperature and winter rainfall. Therefore, we hypothesized that flowering would be favored by forcing at low greenhouse temperatures. Using clonal W. laccata corms, four experiments were designed to investigate the effect of temperatures during corm storage, forcing, and their interaction on growth and flowering. Corm formation is favored by growing plants at 18°– 20°/15°–17 °C and 21°–23°/18°–20 °C, day/night temperatures. Flowering was earliest with corms produced at 24°–26°/18°–20 °C and forced at 18°–20/15°–17 °C, and was significantly delayed when forced at 27°–29°/24°–26 °C. Flowering was, however, favored by 2 or 4 weeks of high temperatures (27°–29°/24°–26 °C) prior to forcing at low temperatures (18°–20°/15°–17 °C). The number of florets was not significantly affected by corm storage, forcing temperatures, or their interaction, although forcing at high temperatures tends to reduce the floret number. Burn symptom at the tips of leaves was frequently observed, and further studies are required to understand the cause of the tip burn and how to correct the symptom. © 2010 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Controlled flowering; Corms; Dormancy; Leaf-tip burn symptoms; New floral crops; Watsonia laccata 1. Introduction 20.5 °C and 9.9 °C (Ascough et al., 2007a,b). Growth and flowering of W. tabularis (Eck.) J. W. Mathews & L. Bolus was The endemic flora of the Cape area in South Africa includes influenced by paclobutrazol to produce a compact container germplasm of many geophytes such as Lachenalia (Duncan, plant (Thompson et al., 2005; Wulster and Ombrello, 2000). 1988), Ornithogalum (Du Plessis and Duncan, 1989), and However, cultural information related to corm production, Sparaxis and other Iridaceae (Ehrich et al., 2009) which have growth, and flowering of Watsonia, is not available. the potential to develop into new floral crops (Helme and Recently, information on seed germination and in vitro Trinder-Smith, 2006). One of these attractive genera, Watsonia, propagation of four winter-rainfall Watsonia Mill species that closely related to Gladiolus, is comprised of about 50 species included W. laccata (Ascough et al., 2007a,b), and leaf cutting (Goldblatt, 1999). Seeds of W. laccata, a species native to an propagation of Lachenalia aloides (L. F.) Engl. ‘Pearsonii’ and area with winter-rainfall area, germinated well at temperatures Ornithogalum dubium Houtt. hybrid that are endemic to South ranging 10°–20 °C, whereas germination was inhibited at Africa was reported (Roh and Lawson, 1992). Controlled temperatures ranging 25°–40 °C. The average maximum and flowering as influenced by temperatures during bulb storage minimum temperatures at the native sites were, respectively and greenhouse forcing of Lachenalia and Ornithogalum and four Iridaceae that include Freesia and Sparaxis (Ehrich et al., ⁎ Corresponding author. Tel.: +82 41 5503642; fax: +82 41 5633643. 2009) was investigated. Both storage of bulbs and forcing in the E-mail address: [email protected] (J.K. Suh). greenhouse require low temperatures around 10°–12.5 °C to 0254-6299/$ - see front matter © 2010 SAAB. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.sajb.2010.12.007 632 J.K. Suh et al. / South African Journal of Botany 77 (2011) 631–637 produce quality plants with optimum flower bud development greenhouses were maintained at 18°–20°/15°–17 °C, 21°–23°/ and inflorescence elongation (Roh, 2004; Roh et al., 1998; Roh 18°–20 °C, 24°–26°/21°–23 °C, and 27°–29°/24°–26 °C. Date and Hong, 2007). A protocol for year-round forcing of of flowering was recorded at anthesis of the first florets, scape Lachenalia hybrid was also developed (Roh et al., 1995). plus inflorescence length was measured, and the number of Flowering time of W. laccata in nature is from September to florets was counted. At anthesis, the presence of a second and November following low temperature and the winter-rainfall third inflorescence from each corm was recorded. On Apr. 3, all season. Forcing Ixia hybrids at 18 °C day/10 °C night in plants were moved to a greenhouse at 21°/15.6 °C and watered conjunction with paclobutrazol treatment produced attractive once a week until leaves were dried. Harvested corms were plants (Wulster and Ombrello, 2000). Flowering of Freezia laxa stored at a constant 20 °C until grading and used in other (Thunb.) Goldblatt & J.C. Manning and other South African experiments. There were 24 plants planted singly in 10-cm pot Iridaceae was mainly controlled by temperature at 13 °C at per treatment, each plant being treated as an experimental unit in night with day temperature at 17 °C or above, and dormancy a completely randomized design. could be maintained and flowering was delayed at temperature above 20 °C (Ehrich et al., 2009). Therefore, we hypothesized 2.3. Effect of temperature during corm enlargement before that flowering could be affected by temperatures ranging from harvest and during forcing (Expt. 2) 10° to 20 °C. However, no information on how temperatures affect these developments is in Watsonia available at present. Corms grown in greenhouses as described in Expt. 1 were Using corms of clonal W. laccata population, several experi- harvested following the schedule indicated (Table 1), and stored ments were planned to understand the effect of forcing at 20 °C until planting on Sept. 27, 1995. The size of corms was temperature on growth, flowering, and corm production, of 7–9 cm in circumference and the leaf length varied from b1cm temperature during corm enlargement before harvest and during (corms grown at 30°–32°/27°–29 °C) to 2–3 cm (corms grown forcing, of forcing temperature and the duration, of different at 21°–23°/18°–20 °C and 24°–26°/2°–23 °C). The depth of duration of forcing temperature, and of bulb storage after corm planting was about 2–3 cm. Following planting, pots were harvest and forcing temperature. placed in air conditioned greenhouses maintained at 18°–20°/ 15°–17 °C, 21°–23°/18°–20 °C, 24°–26°/21°–23 °C, and 2. Materials and methods 27°–29°/24°–26 °C. Experimental design was a 4 (tempera- tures during corm enlargement)×4 (temperatures during 2.1. Source of plant material and general culture forcing) factorial design with 24 plants per treatment. Date of leaf emergence was recorded, and at anthesis, length of leaves, Watsonia laccata corms collected from Bredasdorp, Cape scapes, and inflorescences, the number of florets, and the length Province, South Africa, were received from Missouri Botanical of leaf tip burn showing severe symptoms were recorded and tip Garden (Goldblatt 4855; St. Louis, MO) in 1987, and multiplied of leaves expressing burn symptoms were collected. When at the US Dept. of Agriculture, Agricultural Research Service, leaves were longer than 3 cm, the date of leaf emergence was Floral and Nursery Plants Research Unit, Beltsville, MD, USA counted from the potting date. until 1996. During the corm multiplication years, plants showing color break symptoms similar to the tulip color breaks 2.4. Effect of different duration of temperature treatment on at anthesis were removed. During the multiplication period for growth and flowering (Expt. 3) corms, greenhouse temperatures were maintained at 21 °C during the day (08:00 HR–16:00 HR) and 15.6 °C (21°/ Corms (5–6 cm in circumference) enlarged in a greenhouse 15.6 °C) during the night, although day temperatures during maintained at 21°–23°/18°–20 °C were used. Corms were summer exceeded 28°–32 °C. Three corms were potted per potted on Sept. 28, 1995, and received constant 18°–20°/15°– 15 cm pot in a growing medium (soil:perlite:peat moss, 1:1:1 by 17 °C or constant 27°–29°/24°–26 °C for 12 weeks. Some pots volume) and 0.8 grams of a slow release fertilizer 14N-6P-8.1K received 2, 4, 6, 8, and 10 weeks at 18°–20°/15°–17 °C and was applied at planting and supplemented with 200 ppm N from then were moved to a greenhouse maintained at 27°–29°/24°– a 20N-8.6P-11.7K water soluble fertilizer once a month. In all 26 °C for 10, 8, 6, 4, and 2 weeks, respectively, for a total of experiments, data was subjected to analysis of variance, and 12 weeks. Following temperature treatments, all corms were means were compared by Duncan's Multiple Range Test using forced in a greenhouse maintained at 21°–23°/18°–20 °C. SAS Software (Statistical Analysis System, 2002). The number of days to leaf emergence and flowering was counted from the Table 1 potting day. Forcing temperature and subsequent handling of plants for harvesting corms in 1994 (Expt. 1). 2.2. Effect of forcing temperature on growth, flowering, and Forcing temperature Beginning of Last watering Corm harvest corm production (Expt. 1) (°C) drying plants 21–23/18–20C Apr.
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • SIGNA: Species Iris Group of North America 1998 32Th Species Seed Exchange
    SIGNA: Species Iris Group of North America 1998 32th Species Seed Exchange Greetings: Orders will be filled in the order received. Return immediately for the best selection. Our first shipment of seeds will begin January 10. Orders received after that date will be filled as time permits. No orders will be filled if received after March 1, 1999. After each item in the seed list you will find a number estimating the total number of seeds available. Donations with fewer than 100 seeds will most likely be sold out early. Be sure to check substitutes when ordering any of these seeds. They will D.Q! be used as substitutes. Seeds in short supply may be packed with as few as 4 seeds. If you want items with more seeds per packet, order items in greater supply. Please note the following abreviations used in the seedlist: H P means Hand Pollinated, coli. means Wild Collected, and ex. indicates that the plants that seeds were collected from were originally from another source (which may be a person, another seed exchange, or a wild location) which immediately follows the abbreviation. The alphabetical groups (A, B, C, etc.) used in the seed list follow the outline provided in the SIGNA Species Iris Study Manual published in 1972, e.g. sub-section Pogoniris, series Pumilae is under A, sub-section Pogoniris, series Intermedeae in under B and so on. The Study Manual, The Iris by Brian Mathew, and Iris of China by James Waddick and Zhao Yu-tang (l"e used as references when verifying names.
    [Show full text]
  • Managing Watsonia Invasion in the Threatened Plant Communities of South-West Australia’S Clay-Based Wetlands
    Managing Watsonia invasion in the threatened plant communities of south-west Australia’s clay-based wetlands. K. Brown, G. Paczkowska, B. Huston and N. Withnell. Department of Environment and Conservation, W.A. Email: [email protected] The Seasonal Clay-based Wetlands of South-west Australia While the majority of seasonal wetlands in south-west Australia are connected to the regional ground water, there are a series of wetlands found on clay substrates that rely solely on rainwater to fill. These wetlands are characterised by temporally overlapping suites of annual herbs that flower and set seed as the wetlands dry through spring. Over summer the clay substrates dry to impervious pans. The plant communities of clay-based wetlands comprise a flora of over 600. At least 50% are annual or perennial herbs, 16 occur only on the clay-pans and many are rare or restricted (Figure 1). The seasonally inundated clays that support these communities are relatively productive agricultural soils and many were cleared soon after settlement. Those that remained intact were largely located on the Swan Coastal Plain in close proximity to metropolitan Perth. In more recent years large areas have disappeared under urban development and today the plant communities of seasonal clay-based wetlands are amongst the most threatened in Western Australia. The small and fragmented nature of these remaining wetlands leaves them vulnerable to a range of threatening processes. In particular weed invasion, specifically by the South African geophyte Watsonia (Watsonia meriana var. bulbillifera), is a major threat. Watsonia can disperse via cormels (tiny corms that develop along the flowering stem at the end of the flowering season), into relatively undisturbed bushland remnants, forming dense stands that effectively displace the diverse herbaceous understorey (Figure 2).
    [Show full text]
  • Watsonia Workshop Proceedings of a Workshop Held at the Department of Conservation and Land Management (CALM) on August 4 1993
    Plant Protection Quarterly Vol.8(3) 1993 77 Watsonia Workshop Proceedings of a workshop held at the Department of Conservation and Land Management (CALM) on August 4 1993. Organized by CALMs Science and Information Division and funded by the WA Roadside Conservation Committee. Editors: J. Patrick Pigott, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. C. Mary Gray, Environmental Scientist, 24 Hillview Road, Mt Lawley, WA 6050, Australia. Western Australian species of Watsonia Neville Marchant, Acting Director, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. Introduction How and when did watsonias come with settlers who arrived in Western Aus- Watsonia in Western Australia is an unu- to WA? tralia well after Georgiana Molloy. sual weed group in that there are about The characteristic of Watsonia which There are 52 species of Watsonia recog- eight species of the one genus in the State. brought so many species to this State is nized in a comprehensive treatment pub- A whole suite of species and their vari- that they have very attractive flowers. In lished in 1989 by Peter Goldblatt who has ants were introduced as garden plants in January 1830, en route to Fremantle, when reviewed all of the species described since the early days of the Swan River Colony. travellers to Western Australia called into the first one was published in 1754. The In their native habitats in southern Af- Cape Town, Georgiana Molloy spent £7 type of study made by Goldblatt, system- rica there are about 52 species of Watsonia, 17s 6d on seeds from the Cape, among atic research, entails the detailed exami- 34 of them occurring in the Cape area them oleanders, Cape gooseberries and a nation of herbarium material and litera- which has a similar climate to that of pink lily, the Watsonia.
    [Show full text]
  • The Effect of Slashing on the Growth of Watsonia Meriana (L.) Mill. Cv Bulbillifera in the Adelaide Hills
    Plant Protection Quarterly Vol.8(3) 1993 85 ment of Conservation and Land Manage- ment and Mr. B. Lord of the Charles Sturt University, is gratefully acknowledged. The effect of slashing on the growth of Watsonia meriana (L.) Mill. cv bulbillifera in the Adelaide Hills References Australian Institute of Environmental Studies (1976). ‘The Threat of Weeds to P.A. Wilson and J.G. Conran, Department of Botany, University of Ad- Bushland, a Victorian Study’. (Inkata elaide, SA 5006, Australia. Press, Melbourne, Australia). Gillison, A.N. (1984). Gradient oriented sampling for resource surveys. In ‘Sur- Summary vey Methods for Nature Conservation’, In order to control Watsonia meriana cv suggested that it is merely a local sport ed. K. Myers and D.R. Margules. Vol 2. bulbillifera by slashing, it is necessary to which has been introduced into cultiva- Proceedings of Workshop 1983. prevent flowering and bulbil produc- tion. Currently Watsonia meriana cv Heddle, E.M. (1980). Effects of Changes in tion, as well as reduce the strength of the bulbillifera is considered a weed in Aus- Soil Moisture on the Nature Vegetation corm. The effects of slashing at a tralia, Mauritius, Réunion (Goldblatt of the Northern Swan Coastal Plain, number of heights, and at a range of 1989) and New Zealand (Parsons and Western Australia. Bulletin 92, Forests times throughout the plant’s life-history Cuthbertson 1992). The earliest record in Department of Western Australia. were investigated both for mature South Australia dates from 1842 at Lamont, D. A. (1987). Vegetation Survey plants and those derived from bulbils. Camden Park, Adelaide (Parsons and of Serpentine National Park, Map Plants derived from bulbils require Cuthbertson 1992).
    [Show full text]
  • JABG25P097 Barker
    JOURNAL of the ADELAIDE BOTANIC GARDENS AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY flora.sa.gov.au/jabg Published by the STATE HERBARIUM OF SOUTH AUSTRALIA on behalf of the BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM © Board of the Botanic Gardens and State Herbarium, Adelaide, South Australia © Department of Environment, Water and Natural Resources, Government of South Australia All rights reserved State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia © 2012 Board of the Botanic Gardens & State Herbarium, Government of South Australia J. Adelaide Bot. Gard. 25 (2011) 97–103 © 2012 Department of Environment, Water and Natural Resources, Govt of South Australia Name changes associated with the South Australian census of vascular plants for the calendar year 2011 R.M. Barker & P.J. Lang and the staff and associates of the State Herbarium of South Australia State Herbarium of South Australia, DENR Science Resource Centre, P.O. Box 2732, Kent Town, South Australia 5071 Email: [email protected]; [email protected] Keywords: Census, plant list, new species, introductions, weeds, native species, nomenclature, taxonomy. The following tables show the changes, and the phrase names in Eremophila, Spergularia, Caladenia reasons why they were made, in the census of South and Thelymitra being formalised, e.g. Eremophila sp. Australian vascular plants for the calendar year 2011. Fallax (D.E.Symon 12311) was the informal phrase The census is maintained in a database by the State name for the now formally published Eremophila fallax Herbarium of South Australia and projected on the Chinnock.
    [Show full text]
  • Wild Watsonia (DPI Vic)
    May 2000 Wild watsonia LC0251 Keith Turnbull Research Institute, Frankston ISSN 1329-833X This Landcare Note describes the weed Wild watsonia, West Gippsland, the central highlands and the Geelong Watsonia meriana var. bulbillifera, and related species region. and outlines options for its management. Description Common Name An erect perennial herb forming large clumps; similar to Wild watsonia, bulbil watsonia gladiolus, with strap-like leaves, slender reddish flowering stems 0.5 to 2 m high, pink, orange or red flowers, Botanical Name underground corms and clusters of small corms (known as Watsonia meriana (L.) Miller var. bulbillifera (J.W. bulbils or cormils) on the stems. Leaves and flowering Matthews & L. Bolus) D.A. Cooke heads are produced annually. Family Iridaceae (Iris family) Status Under the Catchment and Land Protection Act, wild watsonia is a Regionally Controlled Weed in the Glenelg, Corangamite, Port Phillip West, Port Phillip East, North East, East Gippsland and West Gippsland Regions. Land owners in areas where wild watsonia is Regionally Controlled must take all reasonable steps to control it and prevent its spread on their land and the roadsides which adjoin their land. Wild watsonia is mainly a weed of roadsides, railway reserves, the edges of water courses, open woodland, unimproved pastures and neglected areas. Origin and Distribution Native to South Africa, wild watsonia was originally introduced to Australia as a garden ornamental. It was considered naturalised in Victoria by 1907 and was spread widely in the 1940s as a fashionable garden plant. It is also a weed in New Zealand and on the Indian Ocean islands of Mauritius and Reunion.
    [Show full text]
  • Bulletin of the UC Santa Cruz Arboretum & Botanic Garden
    Bulletin of the UC Santa Cruz Arboretum & Botanic Garden South African Australian New Zealand California Native Aroma/Succulent Butterfly Garden Garden Garden Garden Gardens Garden Contents A day in the gardens this time of year is full of surprises, sometimes Message from the Staff …………………. 1 sunny and hot like a summer day, other times cool and cloudy. No Arboretum News …………………………… 2 matter the weather, the mornings are full of birdsong, fresh air, and calm energy, all Staff & Board Updates ………………….. 2 great for exploring what's blooming—and, if you Watsonia Hybrids ……………………….. 5 find a bench in the gardens and sit still for a few moments, the resident animals will start to Plant Q & A ….......................................... 7 emerge. It’s also a great time to put on your gardening gloves and volunteer to help keep our Gallery of Photos ………………………… 8 gardens gorgeous and thriving. If interested in UCSC Plant Research …………………… 9 joining us, visit the Volunteer webpage to view opportunities available and send in the online Buy Local / Calendar of Events ………… 10 application. —Katie Cordes, Staff & Board Members / Contacts ……. 11 Volunteer Program Coordinator 12 SPRING 2019 BULLETIN 2 Work has already begun on extending the plant sales area behind Norrie’s Gift & Garden Shop, which will enable us to display a much larger quantity of plants year round. The new plant display will add about 800 square feet of area, and plants will all be kept on new nursery tables, rather than on the ground. There will be a railing on the driveway side, partially replacing the large and rotting timber planters now being used to display the plant pots.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 32 2006 Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden T. Jonathan Davies Royal Botanic Gardens, Kew John C. Manning National Botanical Institute Kirstenbosch Michelle van der Bank Rand Afrikaans University Vincent Savolainen Royal Botanic Gardens, Kew Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Goldblatt, Peter; Davies, T. Jonathan; Manning, John C.; van der Bank, Michelle; and Savolainen, Vincent (2006) "Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/32 MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 399-41 I © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY OF IRIDACEAE SUBFAMILY CROCOIDEAE BASED ON A COMBINED MULTIGENE PLASTID DNA ANALYSIS 1 5 2 PETER GOLDBLATT, · T. JONATHAN DAVIES, JOHN C. MANNING,:l MICHELLE VANDER BANK,4 AND VINCENT SAVOLAINEN2 'B. A. Krukoff Curator of African Botany, Missouri Botanical Garden, St. Louis, Missouri 63166, USA; 2Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; 3National Botanical Institute, Kirstenbosch, Private Bag X7, Cape Town, South Africa; 4 Botany Department, Rand Afrikaans University, Johannesburg, South Africa 5 Corresponding author ([email protected]) ABSTRACT The phylogeny of Crocoideae, the largest of four subfamilies currently recognized in Tridaceae, has eluded resolution until sequences of two more plastid DNA regions were added here to a previously published matrix containing sequences from four DNA plastid regions.
    [Show full text]