The Effect of Slashing on the Growth of Watsonia Meriana (L.) Mill. Cv Bulbillifera in the Adelaide Hills

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Slashing on the Growth of Watsonia Meriana (L.) Mill. Cv Bulbillifera in the Adelaide Hills Plant Protection Quarterly Vol.8(3) 1993 85 ment of Conservation and Land Manage- ment and Mr. B. Lord of the Charles Sturt University, is gratefully acknowledged. The effect of slashing on the growth of Watsonia meriana (L.) Mill. cv bulbillifera in the Adelaide Hills References Australian Institute of Environmental Studies (1976). ‘The Threat of Weeds to P.A. Wilson and J.G. Conran, Department of Botany, University of Ad- Bushland, a Victorian Study’. (Inkata elaide, SA 5006, Australia. Press, Melbourne, Australia). Gillison, A.N. (1984). Gradient oriented sampling for resource surveys. In ‘Sur- Summary vey Methods for Nature Conservation’, In order to control Watsonia meriana cv suggested that it is merely a local sport ed. K. Myers and D.R. Margules. Vol 2. bulbillifera by slashing, it is necessary to which has been introduced into cultiva- Proceedings of Workshop 1983. prevent flowering and bulbil produc- tion. Currently Watsonia meriana cv Heddle, E.M. (1980). Effects of Changes in tion, as well as reduce the strength of the bulbillifera is considered a weed in Aus- Soil Moisture on the Nature Vegetation corm. The effects of slashing at a tralia, Mauritius, Réunion (Goldblatt of the Northern Swan Coastal Plain, number of heights, and at a range of 1989) and New Zealand (Parsons and Western Australia. Bulletin 92, Forests times throughout the plant’s life-history Cuthbertson 1992). The earliest record in Department of Western Australia. were investigated both for mature South Australia dates from 1842 at Lamont, D. A. (1987). Vegetation Survey plants and those derived from bulbils. Camden Park, Adelaide (Parsons and of Serpentine National Park, Map Plants derived from bulbils require Cuthbertson 1992). The species’ extent 1697C. Department of Conservation slashing prior to their thirteenth week of within Australia has been described by and Land Management, Western Aus- growth if cormlet production towards the Animal and Plant Control Commis- tralia. the next season’s growth is to be signifi- sion (1991), Cooke (1986), Parsons and Levin, R.I. and Rubin, D.S. (1980). ‘Ap- cantly affected. Mature plants should be Cuthbertson (1992) and to a lesser extent plied Elementary Statistics’. Chapter 10. slashed below the most basal node Dashorst and Jessop (1990). It tends to in- pp. 357–73. (Prentice-Hall Inc., New (about 15 cm or less) at the first appear- fest pastures and natural reserves, and Jersey, USA). ance of the inflorescence if both bulbil proliferates within unused land. It is a de- Parsons, W.T. (1973). ‘Noxious Weeds of and corm production are to be mini- clared weed in South Australia, Victoria Victoria’. pp. 176–8. (Inkata Press, Mel- mized. (Carr et al. 1992) and New South Wales. bourne, Australia). Within South Australia, it occurs most ex- Pate, J.S. and Dixon, K.W. (1982). ‘Tuber- Introduction tensively from Victor Harbour to the ous, Cormous and Bulbous Plants. Bi- The introduction of exotic and ornamen- Barossa Valley and within the South East. ology of an adaptive strategy in West- tal plants to South Australia over the past Dashorst and Jessop (1990) describe ap- ern Australia’. Chapter 3–5, pp. 142, 143 157 years has resulted in several garden proximately the areas of infestation, al- and 146. (University of Western Aus- escapees finding the climate and ecologi- though more accurate survey data are tralia Press, Perth, Western Australia). cal conditions of the state ideal in which needed. Within the Adelaide hills, the Whittaker, R.H. (1973). Direct gradient to establish (Kloot 1987a,b,c). Among the weed is evident along roadsides, heavily analysis techniques. In ‘Ordination and numerous introduced South African taxa, invading natural vegetation, and forms Classification of Communities’, ed. Watsonia meriana (L.) Mill. cv bulbillifera stands which are generally impenetrable R.H. Whittaker. Handbook of Vegeta- has invaded the foothills and pasture by other herbs and shrubs, either native or tion Science No. 5, 9–31. (Dr W. Junk, lands of the state’s southern areas with re- introduced. Agriculturally viable land is The Hague). markable speed and strength. made redundant by Watsonia infestation. Wood H. (1986). ‘Ecology 1, Practical Notes and Manual’. Riverina-Murray Species description and distribution Life history Institute of Higher Education, Division Watsonia meriana cv bulbillifera is a Watsonia meriana cv bulbillifera is a of External Studies, Wagga Wagga, cormous perennial native to Southern Af- cormous perennial, sprouting in mid Au- New South Wales. rica and is also known as W. bulbillifera J. tumn after sufficient rain. Flowering oc- Mathews and L. Bolus. Its common curs from October to mid-December, with names are bulbil watsonia, bugle lily, wild aestivation (die-back) by late January. The watsonia (Cooke 1986) and Merian’s bu- corm remains dormant over the dry sea- gle lily (Parsons and Cuthbertson 1992). son within an outer tunic of coarse matted Goldblatt (1989) considers the taxon to be fibres. The root system is relatively simple a cultivar of W. meriana, believing it to and does not penetrate the soil much be- have developed independently the ability yond 12 cm from the corm. The shoot to grow reproductive propagules (bulbils) arises from the corm apex and extends a number of times. Watsonia meriana sens. through the tunic before emergence. As str. often produces bulbils within the axils the shoot elongates, its base swells at the of the lower leaves and branch axils, al- point of junction with the parent corm though not to the extent of W. meriana cv and develops into the next season’s corm. bulbillifera, which develops bulbils at all The parent corm shrinks as the stem nodes along the flower spike (Figure 1). grows, forming a hard, dead plate-like The natural distribution of W. meriana is structure attached to the base of the new the Cape winter rainfall area of Southern corm. Plants generally consist of the cur- Africa in seasonally moist areas with rent year’s corm with a series of plates sandy or thin rocky soils. The distribution stacked beneath. In the field, some corms of cv bulbillifera is not described have been observed with thirty-five (Goldblatt 1989) and, as no collections ex- plates, indicating the minimum age of ist prior to the 19th century, Goldblatt some Watsonia stands. 86 Plant Protection Quarterly Vol.8(3) 1993 The most definitive characteristic of W. plant up to mid-way through the inflores- Cuthbertson (1992), plants developing meriana cv bulbillifera is the formation of cence. The bracts encasing the bulbils be- from bulbils do not flower until the sec- numerous vegetative propagules at the gin to split and open just prior to flower- ond or third year. Much of the available inflorescence nodes. These are referred to ing. As the plant matures, the bulbils con- information on the control of W. meriana as ‘bulbils’ by Goldblatt (1989) and Cooke tinue to grow and dry during dieback. cv bulbillifera for South Australia comes (1986) and ‘cormils’ by Parsons and These propagules are then dispersed and from personal communications from land Cuthbertson (1992). Bulbils resemble develop into small plants. Bulbils de- holders and the Animal and Plant Con- miniature corms with short curved beaks, velop in much the same way as the adult trol Commission. Previous efforts to con- and enable the plant to reproduce asexu- corms, with a small cormlet produced at trol Watsonia can be summarized under ally. The bulbils form prior to anthesis in the shoot base, above a shrunken bulbil the following categories: the axils of each node from the base of the (Figure 2). According to Parsons and i. Chemical control Parsons and Cuthbertson (1992) de- scribe the use of 2,2-DPA, Amitrol T, Flower Paraquat and TCA to control Watsonia, indicating that the most effective time of application is between the formation of the shoot and inflorescence. How- ever, the tendency of Watsonia to infest native scrub creates problems associ- ated with applying herbicides within native vegetation reserves. ii. Ecological control Grazing on Watsonia has been docu- Secondary bulbils mented by Parsons and Cuthbertson (1992) and although claimed to be poi- sonous to stock, this is not a problem within Australia. Nevertheless, stock grazing on already established stands have little effect, as discussed by Par- sons and Cuthbertson (1992). iii.Cultural control of weeds Removal of unwanted plants can occur by mechanical means such as burning, slashing, hoeing and bulldozing (Menz and Auld 1977). The most commonly used methods for Watsonia in South Australia involve corm lifting, hoeing and slashing. The strategy behind con- Bulbil sites Current corm Pre-season corm (Corm plate) Figure 2. Morphology of a first Figure 1. Morphology of Watsonia meriana cv bulbillifera showing the season bulbil shoot with next position and relative size of bulbil clusters along the inflorescene. seasons cormlet. Plant Protection Quarterly Vol.8(3) 1993 87 trolling plants with underground stor- emerged were divided into groups of 10. sen corms within each quadrat were re- age tissue through slashing is to cull the One group was cut at 25 mm above moved, dried and weighed. In each ex- plants at the stage in their life history ground level and the remainder were periment, the relative corm increment from which recovery is minimal. Pate culled successively, one group per week, was calculated for each plant and the data and Dixon (1982) summarized the im- until the onset of aestivation, with one arcsine transformed and subjected to portance of storage tissue to the annual group left unslashed as a control. When ANOVA (Zar 1986) and post hoc Tukey regeneration of species with bulbs, tu- the plants had died back, they were testing. bers or corms, as do others (Phillips and unpotted, cleaned and divided into Rix 1989).
Recommended publications
  • Flowering of Watsonia Laccata As Influenced by Corm Storage and Forcing Temperatures ⁎ J.K
    Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 631–637 www.elsevier.com/locate/sajb Flowering of Watsonia laccata as influenced by corm storage and forcing temperatures ⁎ J.K. Suh a, , J.H. Kim a, A.K. Lee a, M.S. Roh b a Dankook University, College of Bio-Resources Science, Department of Environmental Horticulture, Cheonan, Chungnam 330-714, Republic of Korea b US Department of Agriculture, Agricultural Research Service, National Arboretum, Floral and Nursery Plants Research Unit, Beltsville MD 20705, USA Received 24 March 2010; received in revised form 28 November 2010; accepted 22 December 2010 Abstract The genus Watsonia, belonging to the family Iridaceae, is comprised of about 50 species including W. laccata (Jacquin) Ker Gawler that flowers from September to November following low temperature and winter rainfall. Therefore, we hypothesized that flowering would be favored by forcing at low greenhouse temperatures. Using clonal W. laccata corms, four experiments were designed to investigate the effect of temperatures during corm storage, forcing, and their interaction on growth and flowering. Corm formation is favored by growing plants at 18°– 20°/15°–17 °C and 21°–23°/18°–20 °C, day/night temperatures. Flowering was earliest with corms produced at 24°–26°/18°–20 °C and forced at 18°–20/15°–17 °C, and was significantly delayed when forced at 27°–29°/24°–26 °C. Flowering was, however, favored by 2 or 4 weeks of high temperatures (27°–29°/24°–26 °C) prior to forcing at low temperatures (18°–20°/15°–17 °C). The number of florets was not significantly affected by corm storage, forcing temperatures, or their interaction, although forcing at high temperatures tends to reduce the floret number.
    [Show full text]
  • Invasive Geophytes of South West Australia; Recent Studies on Biology, Ecology and Management
    id22961250 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com Invasive Geophytes of south west Australia; Recent Studies on Biology, Ecology and Management Kate Brown & Grazyna Paczkowska Urban Nature Program, Department of Environment and Conservation, Swan Region •Around 53 species of invasive geophytes in south-west Australia •40 species come from the family Iridaceae •98% are from the Cape Province of South Africa •All have been introduced for horticulture and have escaped from gardens •The ability to move into relatively undisturbed native plant communities make geophytes one of the most serious groups of weeds in south-west Australia Watsonia meriana Native geophytes, Meelon Nature Reserve •How selective is the herbicide 2-2 DPA for Watsonia meriana among the flora of a clay based ephemeral wetland? •Does the native flora of these wetlands have the capacity to regenerate following control of an invasive geophyte? •Is there a role for fire in that restoration process? Watsonia meriana invasion of a clay based ephemeral wetland •5 transects, 30 1x 1m quadrats September •Recorded 2005 cover of native and (before introduced treatment) taxa in each quadrat September 2006 (one year after treatment) ANOSIM Comparing 2005 with 2006 Global R = 0.501 P < 0.01 Average Bray-Curtis dissimilarity measure = 87% 2005 2006 Species Av.Abund Av.Abund Watsonia bulbillifera 70.0 0.3 Cyathochaeta avenacea 9.0 10.0 Chorizandra enodis 2.0 2.0 Caesia micrantha 2.7 1.4 Viminaria juncea 2.0 1.1 *Briza sp. 3.2 0.2 Drosera rosulata 1.2 0.3 Tribonanthes sp.
    [Show full text]
  • Managing Watsonia Invasion in the Threatened Plant Communities of South-West Australia’S Clay-Based Wetlands
    Managing Watsonia invasion in the threatened plant communities of south-west Australia’s clay-based wetlands. K. Brown, G. Paczkowska, B. Huston and N. Withnell. Department of Environment and Conservation, W.A. Email: [email protected] The Seasonal Clay-based Wetlands of South-west Australia While the majority of seasonal wetlands in south-west Australia are connected to the regional ground water, there are a series of wetlands found on clay substrates that rely solely on rainwater to fill. These wetlands are characterised by temporally overlapping suites of annual herbs that flower and set seed as the wetlands dry through spring. Over summer the clay substrates dry to impervious pans. The plant communities of clay-based wetlands comprise a flora of over 600. At least 50% are annual or perennial herbs, 16 occur only on the clay-pans and many are rare or restricted (Figure 1). The seasonally inundated clays that support these communities are relatively productive agricultural soils and many were cleared soon after settlement. Those that remained intact were largely located on the Swan Coastal Plain in close proximity to metropolitan Perth. In more recent years large areas have disappeared under urban development and today the plant communities of seasonal clay-based wetlands are amongst the most threatened in Western Australia. The small and fragmented nature of these remaining wetlands leaves them vulnerable to a range of threatening processes. In particular weed invasion, specifically by the South African geophyte Watsonia (Watsonia meriana var. bulbillifera), is a major threat. Watsonia can disperse via cormels (tiny corms that develop along the flowering stem at the end of the flowering season), into relatively undisturbed bushland remnants, forming dense stands that effectively displace the diverse herbaceous understorey (Figure 2).
    [Show full text]
  • Watsonia Workshop Proceedings of a Workshop Held at the Department of Conservation and Land Management (CALM) on August 4 1993
    Plant Protection Quarterly Vol.8(3) 1993 77 Watsonia Workshop Proceedings of a workshop held at the Department of Conservation and Land Management (CALM) on August 4 1993. Organized by CALMs Science and Information Division and funded by the WA Roadside Conservation Committee. Editors: J. Patrick Pigott, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. C. Mary Gray, Environmental Scientist, 24 Hillview Road, Mt Lawley, WA 6050, Australia. Western Australian species of Watsonia Neville Marchant, Acting Director, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. Introduction How and when did watsonias come with settlers who arrived in Western Aus- Watsonia in Western Australia is an unu- to WA? tralia well after Georgiana Molloy. sual weed group in that there are about The characteristic of Watsonia which There are 52 species of Watsonia recog- eight species of the one genus in the State. brought so many species to this State is nized in a comprehensive treatment pub- A whole suite of species and their vari- that they have very attractive flowers. In lished in 1989 by Peter Goldblatt who has ants were introduced as garden plants in January 1830, en route to Fremantle, when reviewed all of the species described since the early days of the Swan River Colony. travellers to Western Australia called into the first one was published in 1754. The In their native habitats in southern Af- Cape Town, Georgiana Molloy spent £7 type of study made by Goldblatt, system- rica there are about 52 species of Watsonia, 17s 6d on seeds from the Cape, among atic research, entails the detailed exami- 34 of them occurring in the Cape area them oleanders, Cape gooseberries and a nation of herbarium material and litera- which has a similar climate to that of pink lily, the Watsonia.
    [Show full text]
  • Weed Control Handbook for Declared Plants in South Australia Weed Control Handbook for Declared Plants in South Australia Ii
    Weed Control Handbook for Declared Plants in South Australia Weed Control Handbook for Declared Plants in South Australia ii WEED CONTROL HANDBOOK CONTENTS FOR DECLARED PLANTS IN SOUTH AUSTRALIA Acknowledgements NRM Biosecurity INDEX TO RECOMMENDED HERBICIDES s 4HEFOLLOWING.2-/FlCERS0ETER-ICHELMORE *OEL 0HONE FOR DECLARED PLANTS OF SOUTH AUSTRALIA _____________ 01 (ORN 3ANDY#UMMINS +YM(AEBICH 0AUL'ILLEN &AX 2USSELL.ORMAN !NTON+URRAY 4ONY2ICHMAN %MAILNRMBIOSECURITY SAGOVAU -ICHAEL7ILLIAMS !LAN2OBINS 2ORY7IADROWSKI 7EBWWWPIRSAGOVAUBIOSECURITYSANRM?BIOSECURITY ABOUT THIS BOOK _________________________________ 03 )GGY(ONAN 4ONY:WAR 'REG0ATRICK 'RANT2OBERTS ¥3OUTH!USTRALIAN'OVERNMENT +EVIN4EAGUEAND0HIL%LSON 2EQUESTSANDENQUIRIESCONCERNINGREPRODUCTIONAND THE PLANTS INCLUDED IN THIS BOOK ____________________ 04 s 4HEFOLLOWING2URAL3OLUTIONS3!#ONSULTANTS RIGHTSSHOULDBEADDRESSEDTO !DRIAN(ARVEYAND*OHN0ITT "IOSECURITY3! HERBICIDE USE ____________________________________ 06 s 7EED3OCIETYOF1UEENSLAND)NCFORTHEIR '0/"OX PUBLICATION7EEDSOF3OUTHERN1UEENSLAND !DELAIDE3! WEED CONTROL METHODS ___________________________ 12 s 4HE.37$EPARTMENTOF0RIMARY)NDUSTRIESFORTHEIR )3". PRINT PUBLICATION.OXIOUSANDENVIRONMENTALWEEDCONTROL )3". PDF Non-herbicide control methods ___________________ 13 HANDBOOKnAGUIDETOWEEDCONTROLINNON CROP Disclaimer AQUATICANDBUSHLANDSITUATION Herbicide control methods _______________________ 15 5SEOFTHEINFORMATIONINTHISHANDBOOKISATYOUROWNRISK0RIMARY s 4HE%NVIRONMENT0ROTECTION!UTHORITYFORTHEIR )NDUSTRIES2EGIONS3OUTH!USTRALIA "IOSECURITY3!ANDTHEIR
    [Show full text]
  • Waterloo Urban and Industrial Expansion Flora and Fauna Survey
    Shire of Dardanup Waterloo Urban and Industrial Expansion Flora and Fauna Survey March 2015 Executive summary This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.4 and the assumptions and qualifications contained throughout the Report. The Greater Bunbury Strategy and Structure Plan identified a potential significant urban expansion area located to the east of the Eaton locality and an industrial expansion area in Waterloo, in the Shire of Dardanup. The Shire of Dardanup (the Shire) and the Department of Planning have commenced preparation of District Structure Plans (DSP) for the urban expansion area and the industrial expansion area. The DSP will be informed by several technical studies including flora and fauna surveys. The Shire has commissioned GHD Pty Ltd (GHD) to undertake a flora and fauna survey and reporting for the Project. The Project Area is situated in the locality of Waterloo in the Shire of Dardanup. The Project Area includes the urban development area to the north of the South- west Highway (SWH) and the industrial development area to the south of the SWH. GHD undertook a desktop assessment of the Project Area and a flora and fauna field assessment with the first phase conducted from 13 to 14 August, 2014 and the second phase conducted from 29 to 31 October 2014. The purpose of this assessment was to identify the parts of the Project Area that have high, moderate and low ecological values so that the Shire can develop the DSP in consideration of these ecological values. This assessment identified the biological features of the Project Area and the key results are as follows.
    [Show full text]
  • Wild Watsonia (DPI Vic)
    May 2000 Wild watsonia LC0251 Keith Turnbull Research Institute, Frankston ISSN 1329-833X This Landcare Note describes the weed Wild watsonia, West Gippsland, the central highlands and the Geelong Watsonia meriana var. bulbillifera, and related species region. and outlines options for its management. Description Common Name An erect perennial herb forming large clumps; similar to Wild watsonia, bulbil watsonia gladiolus, with strap-like leaves, slender reddish flowering stems 0.5 to 2 m high, pink, orange or red flowers, Botanical Name underground corms and clusters of small corms (known as Watsonia meriana (L.) Miller var. bulbillifera (J.W. bulbils or cormils) on the stems. Leaves and flowering Matthews & L. Bolus) D.A. Cooke heads are produced annually. Family Iridaceae (Iris family) Status Under the Catchment and Land Protection Act, wild watsonia is a Regionally Controlled Weed in the Glenelg, Corangamite, Port Phillip West, Port Phillip East, North East, East Gippsland and West Gippsland Regions. Land owners in areas where wild watsonia is Regionally Controlled must take all reasonable steps to control it and prevent its spread on their land and the roadsides which adjoin their land. Wild watsonia is mainly a weed of roadsides, railway reserves, the edges of water courses, open woodland, unimproved pastures and neglected areas. Origin and Distribution Native to South Africa, wild watsonia was originally introduced to Australia as a garden ornamental. It was considered naturalised in Victoria by 1907 and was spread widely in the 1940s as a fashionable garden plant. It is also a weed in New Zealand and on the Indian Ocean islands of Mauritius and Reunion.
    [Show full text]
  • Bulletin of the UC Santa Cruz Arboretum & Botanic Garden
    Bulletin of the UC Santa Cruz Arboretum & Botanic Garden South African Australian New Zealand California Native Aroma/Succulent Butterfly Garden Garden Garden Garden Gardens Garden Contents A day in the gardens this time of year is full of surprises, sometimes Message from the Staff …………………. 1 sunny and hot like a summer day, other times cool and cloudy. No Arboretum News …………………………… 2 matter the weather, the mornings are full of birdsong, fresh air, and calm energy, all Staff & Board Updates ………………….. 2 great for exploring what's blooming—and, if you Watsonia Hybrids ……………………….. 5 find a bench in the gardens and sit still for a few moments, the resident animals will start to Plant Q & A ….......................................... 7 emerge. It’s also a great time to put on your gardening gloves and volunteer to help keep our Gallery of Photos ………………………… 8 gardens gorgeous and thriving. If interested in UCSC Plant Research …………………… 9 joining us, visit the Volunteer webpage to view opportunities available and send in the online Buy Local / Calendar of Events ………… 10 application. —Katie Cordes, Staff & Board Members / Contacts ……. 11 Volunteer Program Coordinator 12 SPRING 2019 BULLETIN 2 Work has already begun on extending the plant sales area behind Norrie’s Gift & Garden Shop, which will enable us to display a much larger quantity of plants year round. The new plant display will add about 800 square feet of area, and plants will all be kept on new nursery tables, rather than on the ground. There will be a railing on the driveway side, partially replacing the large and rotting timber planters now being used to display the plant pots.
    [Show full text]
  • Occasional Papers
    NUMBER 69, 55 pages 25 March 2002 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2000 PART 2: NOTES NEAL L. EVENHUIS AND LUCIUS G. ELDREDGE, EDITORS BISHOP MUSEUM PRESS HONOLULU C Printed on recycled paper Cover: Metrosideros polymorpha, native ‘öhi‘a lehua. Photo: Clyde T. Imada. Research publications of Bishop Museum are issued irregularly in the RESEARCH following active series: • Bishop Museum Occasional Papers. A series of short papers PUBLICATIONS OF describing original research in the natural and cultural sciences. Publications containing larger, monographic works are issued in BISHOP MUSEUM five areas: • Bishop Museum Bulletins in Anthropology • Bishop Museum Bulletins in Botany • Bishop Museum Bulletins in Entomology • Bishop Museum Bulletins in Zoology • Pacific Anthropological Reports Institutions and individuals may subscribe to any of the above or pur- chase separate publications from Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA. Phone: (808) 848-4135; fax: (808) 848-4132; email: [email protected]. The Museum also publishes Bishop Museum Technical Reports, a series containing information relative to scholarly research and collections activities. Issue is authorized by the Museum’s Scientific Publications Committee, but manuscripts do not necessarily receive peer review and are not intended as formal publications. Institutional libraries interested in exchanging publications should write to: Library Exchange Program, Bishop Museum Library, 1525 Bernice Street,
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 32 2006 Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden T. Jonathan Davies Royal Botanic Gardens, Kew John C. Manning National Botanical Institute Kirstenbosch Michelle van der Bank Rand Afrikaans University Vincent Savolainen Royal Botanic Gardens, Kew Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Goldblatt, Peter; Davies, T. Jonathan; Manning, John C.; van der Bank, Michelle; and Savolainen, Vincent (2006) "Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/32 MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 399-41 I © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY OF IRIDACEAE SUBFAMILY CROCOIDEAE BASED ON A COMBINED MULTIGENE PLASTID DNA ANALYSIS 1 5 2 PETER GOLDBLATT, · T. JONATHAN DAVIES, JOHN C. MANNING,:l MICHELLE VANDER BANK,4 AND VINCENT SAVOLAINEN2 'B. A. Krukoff Curator of African Botany, Missouri Botanical Garden, St. Louis, Missouri 63166, USA; 2Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; 3National Botanical Institute, Kirstenbosch, Private Bag X7, Cape Town, South Africa; 4 Botany Department, Rand Afrikaans University, Johannesburg, South Africa 5 Corresponding author ([email protected]) ABSTRACT The phylogeny of Crocoideae, the largest of four subfamilies currently recognized in Tridaceae, has eluded resolution until sequences of two more plastid DNA regions were added here to a previously published matrix containing sequences from four DNA plastid regions.
    [Show full text]
  • Wild Watsonia Common and Scientific Names
    Source: http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/weeds/a-z-of- weeds/wild-watsonia Downloaded 15/12/2015. Wild Watsonia Common and scientific names Wild watsonia, bulbil watsonia Watsonia meriana (L.) Miller var. bulbillifera (J.W. Matthews & L. Bolus) D.A. Cooke Family Iridaceae (Iris family) Origin and distribution Native to South Africa, wild watsonia was originally introduced to Australia as a garden ornamental. It was considered naturalised in Victoria by 1907 and was spread widely in the 1940s as a fashionable garden plant. It is also a weed in New Zealand and on the Indian Ocean islands of Mauritius and Reunion. It has a number of undesirable horticultural features and may best be classified as a variety that evolved naturally in an environment subject to human disturbance rather than a cultivar. Fertile plants producing seed are rare in Australia and some authors consider bulbil watsonia to be sterile. Wild watsonia is found through most of the State except for the north-west, but mainly occurs as an environmental weed in depressions and swampy areas on heavier soils in southern Victoria, particularly in the Melbourne area, Dandenong Ranges, Mornington Peninsula, South and West Gippsland, the central highlands and the Geelong region. Description An erect perennial herb forming large clumps; similar to gladiolus, with strap-like leaves, slender reddish flowering stems 0.5 to 2 m high, pink, orange or red flowers, underground corms and clusters of small corms (known as bulbils or cormils) on the stems. Leaves and flowering heads are produced annually. Corms and cormils start to grow in late autumn and foliage is produced during the winter.
    [Show full text]