Modern Astronomy: Lives of the Stars

Total Page:16

File Type:pdf, Size:1020Kb

Modern Astronomy: Lives of the Stars Modern Astronomy: Lives of the Stars Presented by Dr Helen Johnston School of Physics Spring 2016 The University of Sydney Page There is a course web site, at http://www.physics.usyd.edu.au/~helenj/LivesoftheStars.html where I will put • PDF copies of the lectures as I give them • lecture recordings • copies of animations • links to useful sites Please let me know of any problems! The University of Sydney Page 2 This course is a deeper look at how stars work. 1. Introduction: A tour of the stars 2. Atoms and quantum mechanics 3. What makes a Star? 4. The Sun – a typical Star 5. Star Birth and Protostars 6. Stellar Evolution 7. Supernovae 8. Stellar Graveyards 9. Binaries 10. Late Breaking News The University of Sydney Page 3 There will be an evening of star viewing in the Blue Mountains, run by A/Prof John O’Byrne on Saturday 29 October Details of where to go and how to get there are in a separate handout. John has also offered to show some of the night-sky using our telescope on the roof of this building, during one of the lectures in November (date to be determined). If the weather is good, I will do a short lecture that evening, and we’ll go to the roof around 7:30 pm. The University of Sydney Page 4 Lecture 1: Stars: a guided tour Prologue: Where we are and The nature of science you are here When we look at the night sky, we see a vista dominated by stars. If we look with a large telescope, we can see much fainter objects, and most of the faint ones turn out to be entire galaxies. Each of these galaxies is made up of trillions of stars, together with loose clouds of gas and dust that occupy the space between the stars. NGC 3982 from Hubble Our own Galaxy – the Milky Way – is just such a galaxy, except that (being inside it) we have had to deduce its shape. When you look up at the night sky, nearly everything you see is inside the Milky Way. All these glorious objects are the subject of this course. We will see how our Galaxy is a thriving eco-system, where stars are born, live their lives, and die, and in each stage affecting the environment for other stars. I will not be taking a historical approach, but describing what we know now. But everything I tell you is based on observations, often long and painstaking. The University of Sydney Page 12 long chain of long chain of long chain of indirect reasoning, direct reasoning, less reasoning, high observation, informed observation confidence confidence high confidence guesswork Confidence how jets how how stars stars evolve some stars are form supernovae work in binaries explode The University of Sydney Page 13 There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know. – Donald Rumsfeld, 2002 The University of Sydney Page 15 Properties of the stars When we look at stars, we see brightness and colour. We need to make careful measurements to work out fundamental properties: • luminosity (true brightness) • temperature • size • mass It took astronomy thousands of years to get to this point. The University of Sydney Page 18 Stars are identified by their spectral type, which is a letter-number combination, based on features in their spectra. O B A F G K M The University of Sydney Page 20 Plotting the intensity as a function of wavelength, we can see that not only does the light shift towards bluer wavelength as we go from M stars to O and B stars, but the strength and types of the absorption lines change as well. The University of Sydney Page 21 Stars all have very nearly the same composition: the differences in their spectra are almost entirely due to temperature. The University of Sydney Page 22 The Hertzsprung-Russell diagram If we examine the intrinsic properties of stars – their brightness, temperature, and mass – we quickly notice that there are patterns in the way stars are made up. Explaining these correlations has been one of the main focuses of 20th century astronomy; we’ll be exploring the reasons in the next few weeks. Ejnar Hertzsprung and Henry Norris Russell plotted the brightness of stars against their colour, in a diagram which now bears their names. The University of Sydney Page 23 bright This is an H-R diagram using data from the Hipparcos satellite, which measured distances to over 100,000 stars. Patterns are immediately apparent in where stars lie. brightness faint blue red The University of Sydney temperature Page 24 90% of stars fall on the main sequence, a narrow strip running from cool and faint to hot and bright. The University of Sydney Page 25 Most of the remaining stars lie in a band from faint(ish) and yellow to extremely bright and red. To be both cool and very bright, these giants stars must be enormous: the subgiants giants. The University of Sydney Page 26 Even brighter than the giants, and hence even larger, are the supergiants, which occupy a region supergiants across all colours. The University of Sydney Page 27 Then there are some stars below the main sequence, which are very hot and very faint, which must mean they are very small – the white dwarfs. white dwarfs The University of Sydney Page 28 O B A F G K M supergiants Here are all those regions together, as well as the spectral classes indicated across the top. giants In this lecture, we’re going to main subgiants sequence take a tour around these (dwarfs) various types of stars, to see what they are like up close and personal. white dwarfs The University of Sydney Page 29 The main sequence Let’s start with the main sequence, which makes up the bulk of stars. This is a band of stars running across the diagram. This means that the temperature of the star is correlated with its brightness – as stars get hotter, they also get brighter. The University of Sydney Page 30 It is hard to contemplate just how much the brightness of stars varies from one end of the main sequence to the other. The brightest star is more than 50,000 times brighter than the Sun, while the faintest is a million times fainter. To light the day with a faint M star, we would have to orbit at a distance of 150,000 km – half the distance to the Moon. Around a bright O star, we would need to orbit at a distance of 200 AU – five times the distance to Pluto – to receive the same amount of light we get from our Sun. The University of Sydney Page 31 O B A F G K M M and K stars: the coolest stars Let’s start our tour with the coolest stars, in the bottom right-hand corner: the M and K dwarf stars. The University of Sydney Page 32 M stars are extremely common, so that even though their masses are small (a few tenths of a solar mass), they make up about half of the mass of stars in the Galaxy. For every A star like Sirius, there are 100 M stars; for every O star, there are 1.7 million M stars. It is surprising, then, to learn that there is not a single M star visible to the naked eye. K stars have masses between roughly 0.5 and 0.7 times the Sun’s mass, and there are about 1/6 as many of them as there are M stars. The University of Sydney Page 33 The nearest star to the Sun, Proxima Centauri (which may be in orbit around the binary α Centauri) is an M5 star. Despite being at the same distance, it is 11 magnitudes fainter than the brightest star, α Cen A, which is almost a twin to our own Sun. α Cen B, the fainter member of the α Centauri binary, is a K1 dwarf. α Cen A and B are both hidden in the glare; The University of Sydney Proxima is arrowed at the lower right. Page 34 The diameter of Proxima Cen is 1/7th that of the Sun, or just 1.5 times Jupiter. Its distance from α Cen is 15,000 AU (0.21 ly), and it is probably bound, with an orbital period of about 500,000 years. The University of Sydney Page 35 The star with the highest known proper motion, Barnard’s Star, which is zipping along at an astounding 10.4 arc seconds per year, is also an M5 star. The University of Sydney Page 36 Amongst other notable K dwarf stars: 61 Cygni, the first “star” to have its parallax measured, is actually a pair of K dwarfs, K5–K7. The faint star Gliese 710 is a 9th magnitude K7 or M1 star, which is currently 19 pc away. It is approaching the Sun, and will come within nearly 1 light-year of the Sun, about 1.5 million years from now. At its closest, it will reach 0.6 The University of Sydney magnitude. Page 37 The temperatures of M stars are about 2000–4000 K. This is cool enough to allow molecules to form in their atmospheres; in hotter stars the atoms have enough energy to break molecular bonds, so K stars don’t show as many molecular lines in their spectra.
Recommended publications
  • Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
    Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • 13076197 Tanvir Tabassum Final Version of Submission.Pdf
    Finding Close Encounters: Toward a consensus on the influence of the stellar flybys on the Solar System over 10 million years Supervised by: Author: Dr Fabo Feng Tabassum Shahriar Tanvir Dr James L Collett Professor Hugh Jones Centre for Astrophysics Research School of Physics, Astronomy and Mathematics University of Hertfordshire Submitted to the University of Hertfordshire in partial fulfilment of the requirements of the degree of Master of Science by Research. October 2018 Abstract This thesis is a study of possible stellar encounters of the Sun, both in the past and in the future within ±10 Myr of the current epoch. This study is based on data gleaned from the first Gaia data release (Gaia DR1). One of the components of the Gaia DR1 is the TGAS catalogue. TGAS contained five astrometric parameters for more than two million stars. Four separate catalogues were used to provide radial velocities for these stars. A linear motion approximation was used to make a cut within an initial catalogue keeping only the stars that would have perihelia within 10 pc. 1003 stars were found to have a perihelion distance less than 10 pc. Each of these stars was then cloned 1000 times from their covariance matrix from Gaia DR1. The stars’ orbits were numerically integrated through a model galactic potential. After the integration, a particularly interesting set of candidates was selected for deeper study. In particular stars with a mean perihelion distance less than 2 pc were chosen for a deeper study since they will have significant influence on the Oort cloud. 46 stars were found to have a mean perihelion distance less than 2 pc.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • Rigel & the Witch Nebula
    Vol. 20, No. 11 Two-Time Winner of the Astronomical League’s Mabel Sterns Award ☼ 2006 & 2009 November 2012 In This Issue Rigel & the Witch Nebula CCAS Fall 2012 Events .......................... 2 Nicholas’s Humor Corner ....................... 2 October 2012 Meeting Minutes .............. 2 New iPad App from NASA .................... 3 November 2012 Member Speaker .......... 3 The Sky Over Chester County: November 2012 ................................... 4 November 2012 Observing Highlights ........................................... 5 NASA’s Space Place............................... 6 CCAS Directions: Brandywine Valley Association .............................. 7 Through the Eyepiece: The Open Clusters in Auriga: M36, M37 and M38...................................... 8 Membership Renewals .......................... 10 New Member Welcome ........................ 10 CCAS Directions: WCU Map ......................................... 10 Treasurer’s Report ................................ 10 CCAS Information Directory ...................................... 11-12 IC 2118, the Witch Head Nebula spans about 50 light-years and is composed of interstellar Membership Renewals Due dust grains reflecting Rigel's starlight. Photo courtesy of Rogelio Bernal Andreo 11/2012 Buczynski Hepler Important November 2012 Dates Holenstein O’Hara Taylor 6th • Last Quarter Moon, 7:36 p.m. Zibinski 13th • New Moon, 5:08 p.m. 12/2012 Bogusch 17th • Leonid Meteor Shower Peaks Franchi O'Leary 20th • First Quarter Moon, 9:32 a.m. Phipps Ramasamy 28th• Full Moon, 9:46 a.m. 01/2013 Golub Labroli Linskens Loeliger Prasad Rich Smith November 2012 • Chester County Astronomical Society www.ccas.us Observations • 1 Autumn 2012 Minutes from the October 9, 2012 CCAS Monthly Meeting Society Events by Ann Miller, CCAS Secretary November 2012 15 members in attendance were welcomed by our president Roger Taylor. 2nd • West Chester University Planetarium Don Knabb our observing chair gave us our monthly sky tour on Stellari- Show: “Dethroning Earth,” in the Schmucker um.
    [Show full text]
  • In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs
    Weather on Other Worlds IV: In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs Item Type text; Electronic Thesis Authors Flateau, Davin C. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 07:25:39 Link to Item http://hdl.handle.net/10150/594630 WEATHER ON OTHER WORLDS IV: IN-DEPTH STUDY OF PHOTOMETRIC VARIABILITY AND RADIATIVE TIMESCALES FOR ATMOSPHERIC EVOLUTION IN FOUR L DWARFS by Davin C. Flateau A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • Sky & Telescope
    Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments.
    [Show full text]
  • 134, December 2007
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 134, December 2007 Contents AB Andromedae Primary Minima ......................................... inside front cover From the Director ............................................................................................. 1 Recurrent Objects Programme and Long Term Polar Programme News............4 Eclipsing Binary News ..................................................................................... 5 Chart News ...................................................................................................... 7 CE Lyncis ......................................................................................................... 9 New Chart for CE and SV Lyncis ........................................................ 10 SV Lyncis Light Curves 1971-2007 ............................................................... 11 An Introduction to Measuring Variable Stars using a CCD Camera..............13 Cataclysmic Variables-Some Recent Experiences ........................................... 16 The UK Virtual Observatory ......................................................................... 18 A New Infrared Variable in Scutum ................................................................ 22 The Life and Times of Charles Frederick Butterworth, FRAS........................24 A Hard Day’s Night: Day-to-Day Photometry of Vega and Beta Lyrae.........28 Delta Cephei, 2007 ......................................................................................... 33
    [Show full text]
  • Physical Processes in the Interstellar Medium
    Physical Processes in the Interstellar Medium Ralf S. Klessen and Simon C. O. Glover Abstract Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understand- ing its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolu- tion, the formation of stars, cosmic nucleosynthesis, the origin of large com- plex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental building blocks of planets, all these processes are intimately coupled to the physics of the interstellar medium. However, despite its importance, its structure and evolution is still not fully understood. Observations reveal that the interstellar medium is highly tur- bulent, consists of different chemical phases, and is characterized by complex structure on all resolvable spatial and temporal scales. Our current numerical and theoretical models describe it as a strongly coupled system that is far from equilibrium and where the different components are intricately linked to- gether by complex feedback loops. Describing the interstellar medium is truly a multi-scale and multi-physics problem. In these lecture notes we introduce the microphysics necessary to better understand the interstellar medium. We review the relations between large-scale and small-scale dynamics, we con- sider turbulence as one of the key drivers of galactic evolution, and we review the physical processes that lead to the formation of dense molecular clouds and that govern stellar birth in their interior. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany e-mail: [email protected], [email protected] 1 Contents Physical Processes in the Interstellar Medium ...............
    [Show full text]
  • Programme Book
    BETELGEUSE WORKSHOP 2012 THE PHYSICS OF RED SUPERGIANTS 26-29 NOVEMBER, 2012 PARIS (FRANCE) PROGRAMME BOOK ii Acknowledgements ...........................................................................................................iv! Scientific3Organizing3Committee .........................................................................................v! Local3Organizing3Committee ...............................................................................................v! Local3information ..............................................................................................................vi! Venue .......................................................................................................................................................................................vi! Public!transportation........................................................................................................................................................vi! Meeting!room ..................................................................................................................................................................... vii! Instructions3for3the3Proceedings ......................................................................................viii! List3of3participants .............................................................................................................ix! Daily3schedule .................................................................................................................xiii!
    [Show full text]
  • Stellar Encounters with the Oort Cloud Based on Hipparcos Data Joan Garciça-Saçnchez, 1 Robert A. Preston, Dayton L. Jones, and Paul R
    THE ASTRONOMICAL JOURNAL, 117:1042È1055, 1999 February ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. STELLAR ENCOUNTERS WITH THE OORT CLOUD BASED ON HIPPARCOS DATA JOAN GARCI A-SA NCHEZ,1 ROBERT A. PRESTON,DAYTON L. JONES, AND PAUL R. WEISSMAN Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 JEAN-FRANCÓ OIS LESTRADE Observatoire de Paris-Section de Meudon, Place Jules Janssen, F-92195 Meudon, Principal Cedex, France AND DAVID W. LATHAM AND ROBERT P. STEFANIK Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1998 May 15; accepted 1998 September 4 ABSTRACT We have combined Hipparcos proper-motion and parallax data for nearby stars with ground-based radial velocity measurements to Ðnd stars that may have passed (or will pass) close enough to the Sun to perturb the Oort cloud. Close stellar encounters could deÑect large numbers of comets into the inner solar system, which would increase the impact hazard at Earth. We Ðnd that the rate of close approaches by star systems (single or multiple stars) within a distance D (in parsecs) from the Sun is given by N \ 3.5D2.12 Myr~1, less than the number predicted by a simple stellar dynamics model. However, this value is clearly a lower limit because of observational incompleteness in the Hipparcos data set. One star, Gliese 710, is estimated to have a closest approach of less than 0.4 pc 1.4 Myr in the future, and several stars come within 1 pc during a ^10 Myr interval.
    [Show full text]
  • Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710
    Bachelor Thesis University of Groningen Kapteyn Astronomical Institute Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710 August 5, 2019 Author: Rens Juris Tesink Supervisors: Kateryna Frantseva and Nickolas Oberg Abstract Context: Our Sun is thought to have an Oort cloud, a spherically symmetric shell of roughly 1011 comets orbiting with semi major axes between ∼ 5 × 103 AU and 1 × 105 AU. It is thought to be possible that other stars also possess comet clouds. Gliese 710 is a star expected to have a close encounter with the Sun in 1.35 Myrs. Aims: To simulate the comet clouds around the Sun and Gliese 710 and investigate the effect of the close encounter. Method: Two REBOUND N-body simulations were used with the help of Gaia DR2 data. Simulation 1 had a total integration time of 4 Myr, a time-step of 1 yr, and 10,000 comets in each comet cloud. And Simulation 2 had a total integration time of 80,000 yr, a time-step of 0.01 yr, and 100,000 comets in each comet cloud. Results: Simulation 2 revealed a 1.7% increase in the semi-major axis at time of closest approach and a population loss of 0.019% - 0.117% for the Oort cloud. There was no statistically significant net change of the inclination of the comets during this encounter and a 0.14% increase in the eccentricity at the time of closest approach. Contents 1 Introduction 3 1.1 Comets . .3 1.2 New comets and the Oort cloud . .5 1.3 Structure of the Oort cloud .
    [Show full text]