The British Astronomical Association
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile -
134, December 2007
British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 134, December 2007 Contents AB Andromedae Primary Minima ......................................... inside front cover From the Director ............................................................................................. 1 Recurrent Objects Programme and Long Term Polar Programme News............4 Eclipsing Binary News ..................................................................................... 5 Chart News ...................................................................................................... 7 CE Lyncis ......................................................................................................... 9 New Chart for CE and SV Lyncis ........................................................ 10 SV Lyncis Light Curves 1971-2007 ............................................................... 11 An Introduction to Measuring Variable Stars using a CCD Camera..............13 Cataclysmic Variables-Some Recent Experiences ........................................... 16 The UK Virtual Observatory ......................................................................... 18 A New Infrared Variable in Scutum ................................................................ 22 The Life and Times of Charles Frederick Butterworth, FRAS........................24 A Hard Day’s Night: Day-to-Day Photometry of Vega and Beta Lyrae.........28 Delta Cephei, 2007 ......................................................................................... 33 -
Physical Processes in the Interstellar Medium
Physical Processes in the Interstellar Medium Ralf S. Klessen and Simon C. O. Glover Abstract Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understand- ing its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolu- tion, the formation of stars, cosmic nucleosynthesis, the origin of large com- plex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental building blocks of planets, all these processes are intimately coupled to the physics of the interstellar medium. However, despite its importance, its structure and evolution is still not fully understood. Observations reveal that the interstellar medium is highly tur- bulent, consists of different chemical phases, and is characterized by complex structure on all resolvable spatial and temporal scales. Our current numerical and theoretical models describe it as a strongly coupled system that is far from equilibrium and where the different components are intricately linked to- gether by complex feedback loops. Describing the interstellar medium is truly a multi-scale and multi-physics problem. In these lecture notes we introduce the microphysics necessary to better understand the interstellar medium. We review the relations between large-scale and small-scale dynamics, we con- sider turbulence as one of the key drivers of galactic evolution, and we review the physical processes that lead to the formation of dense molecular clouds and that govern stellar birth in their interior. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany e-mail: [email protected], [email protected] 1 Contents Physical Processes in the Interstellar Medium ............... -
Programme Book
BETELGEUSE WORKSHOP 2012 THE PHYSICS OF RED SUPERGIANTS 26-29 NOVEMBER, 2012 PARIS (FRANCE) PROGRAMME BOOK ii Acknowledgements ...........................................................................................................iv! Scientific3Organizing3Committee .........................................................................................v! Local3Organizing3Committee ...............................................................................................v! Local3information ..............................................................................................................vi! Venue .......................................................................................................................................................................................vi! Public!transportation........................................................................................................................................................vi! Meeting!room ..................................................................................................................................................................... vii! Instructions3for3the3Proceedings ......................................................................................viii! List3of3participants .............................................................................................................ix! Daily3schedule .................................................................................................................xiii! -
Modern Astronomy: Lives of the Stars
Modern Astronomy: Lives of the Stars Presented by Dr Helen Johnston School of Physics Spring 2016 The University of Sydney Page There is a course web site, at http://www.physics.usyd.edu.au/~helenj/LivesoftheStars.html where I will put • PDF copies of the lectures as I give them • lecture recordings • copies of animations • links to useful sites Please let me know of any problems! The University of Sydney Page 2 This course is a deeper look at how stars work. 1. Introduction: A tour of the stars 2. Atoms and quantum mechanics 3. What makes a Star? 4. The Sun – a typical Star 5. Star Birth and Protostars 6. Stellar Evolution 7. Supernovae 8. Stellar Graveyards 9. Binaries 10. Late Breaking News The University of Sydney Page 3 There will be an evening of star viewing in the Blue Mountains, run by A/Prof John O’Byrne on Saturday 29 October Details of where to go and how to get there are in a separate handout. John has also offered to show some of the night-sky using our telescope on the roof of this building, during one of the lectures in November (date to be determined). If the weather is good, I will do a short lecture that evening, and we’ll go to the roof around 7:30 pm. The University of Sydney Page 4 Lecture 1: Stars: a guided tour Prologue: Where we are and The nature of science you are here When we look at the night sky, we see a vista dominated by stars. -
Academic Reading in Science Teacher's Answer Book
Academic Reading in Science Teacher’s Answer Book Copyright 2011 © Chris Elvin Published by EFL Club Press ISBN1451575238 Website http://www.eflclub.com Contact: [email protected] EFL Club Press Shimosakunobe 7-12-11 Takatsu-ku Kawasaki-shi 213-0033 Japan You may purchase Academic Reading in Science Teacher’s Answer Book from major bookstores online or offline. The accompanying students’ bookAcademic Reading in Science (ISBN1451566085) is also available at the same or similar locations. Acknowledgements The publisher would like to thank all contributors to Wikipedia for their excellent and accurate articles on science. About Chris Elvin Chris Elvin has an honors degree in organic chemistry from Liverpool University and a masters degree in TESOL from Temple University Japan. He is also the author of The Sixties: Activities for Students of English as a Second or Foreign Language, and Now You’re Talking. He has over twenty years experience of teaching English as a foreign language and has been a contributor to Wikipedia since 2006. Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. -
19 65Apj. . .141. .155W the PROBLEM of BETA LYRAE. II. the MASSES and the SHAPES N. J. Woolf Princeton University Observatory Re
.155W THE PROBLEM OF BETA LYRAE. II. THE MASSES AND THE SHAPES .141. N. J. Woolf Princeton University Observatory 65ApJ. Received December 16, 1963; revised August 21, 1964 19 ABSTRACT By consideration of the present rate of mass transfer, the primary of Beta Lyrae is shown to have its photosphere in contact with its critical equipotential. The primary is slightly less distorted than the Roche model because its rotation is slower than synchronism demands. These results are used in a new determination of the mass ratio of the system. The mass ratio is smaller than previous estimates by Huang and by the author. The mass ratio is now in agreement with one of the two possible spectroscopic esti- mates of this quantity. Arguments from the observed spectrum and from the six-color photometric study of the system are given to support Huang’s suggestion that the secondary is a star imbedded in a disk. From the luminosity of the star in the disk, it is inferred that at least half the mass of the secondary must be in the disk. It is suggested that the disk has been produced as a result of the mass transfer from the primary conveying considerable angular momentum with the mass. The time scale for the disk to lose angular momentum is probably longer than the time scale for mass transfer, while the expected future life of the primary is longer than either of these. Thus it is reasonable that we see the system in its present state. It is pointed out that Beta Lyrae should soon evolve into a system with resemblances to V356 Sgr. -
Variable Star Section Circular 179 (Des Loughney, March 2019) Discussed the LY Aurigae System and Suggested Making Observations of It
` ISSN 2631-4843 The British Astronomical Association Variable Star Section Circular No. 180 June 2019 Office: Burlington House, Piccadilly, London W1J 0DU Contents From the Director 3 Spectroscopy training workshop – Andy Wilson 4 CV & E News – Gary Poyner 5 BAAVSS campaign to observe the old Nova HR Lyr – Jeremy Shears 6 Narrow Range Variables, made for digital observation – Geoff Chaplin 9 AB Aurigae – John Toone 10 The Symbiotic Star AG Draconis – David Boyd 13 V Bootis revisited – John Greaves 16 OJ287: Astronomers asking if Black Holes need wigs – Mark Kidger 19 The Variable Star Observations of Alphonso King – Alex Pratt 25 Eclipsing Binary News – Des Loughney 26 LY Aurigae – David Connor 29 Section Publications 31 Contributing to the VSSC 31 Section Officers 32 Cover Picture M88 and AL Com in outburst: Nick James Chelmsford, Essex UK 2019 Apr 29.896UT 90mm, f4.8 with ASI294 MC Exposure 20x120s 2 Back to contents From the Director Roger Pickard And so, with this issue I bid you farewell as Section Director, as advised in the previous Circular. However, as agreed with Jeremy and the other officers, I shall retain the title of Assistant Director, principally to help with charts and old data input. However, I shall still be happy to receive emails from members who I have corresponded with in the past, especially those I've helped under the Mentoring Scheme. SUMMER MIRAS But a note on data submission. Some of you have been sending your "current" observations to the Pulsating Stars M = Max, m = min. Secretary, Shaun Albrighton, but you should be sending them to the Section Secretary, Bob Dryden. -
Basics of Astrophysics Revisited. I. Mass- Luminosity Relation for K, M and G Class Stars
Basics of astrophysics revisited. I. Mass- luminosity relation for K, M and G class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of slow rotating stars is proportional to their angular momentums of rotation. Cause should be outside of standard solar model. Slow rotating giants and dim dwarfs are not out of „main sequence” in this concept. Predictive power of stellar mass-radius- equatorial rotation speed-luminosity relation has been offered to test in numerous examples. Keywords: mass-luminosity relation, stellar rotation, stellar mass prediction, stellar rotation prediction ...Such vibrations would proceed from deep inside the sun. They are a fast way of transporting large amounts of energy from the interior to the surface that is not envisioned in present theory.... They could stir up the material inside the sun, which current theory tends to see as well layered, and that could affect the fusion dynamics. If they come to be generally accepted, they will require a reworking of solar theory, and that carries in its train a reworking of stellar theory generally. These vibrations could reverberate throughout astronomy. (Science News, Vol. 115, April 21, 1979, p. 270). Actual expression for stellar mass-luminosity relation (fig.1) Fig.1 Stellar mass- luminosity relation. Credit: Ay20. L- luminosity, relative to the Sun, M- mass, relative to the Sun. remain empiric and in fact contain unresolvable contradiction: stellar luminosity basically is connected with their surface area (radius squared) but mass (radius in cube) appears as a factor which generate luminosity. That purely geometric difference had pressed astrophysicists to place several classes of stars outside of „main sequence” in the frame of their strange theoretic constructions. -
April 2020 Journal
The Journal of The Royal Astronomical Society of Canada PROMOTING ASTRONOMY IN CANADA April/avril 2020 Volume/volume 114 Le Journal de la Société royale d’astronomie du Canada Number/numéro 2 [801] Inside this issue: Cepheid Variables in Andromeda Supernova Redshifts 2019 Awards Corona Australis The Best of Monochrome. Drawings, images in black and white, or narrow-band photography. The magnificent California Nebula was imaged by Ron Brecher’s home observatory in Guelph, Ontario. It is a 16-hour exposure through a 106mm ƒ/3.6 refractor, combining 12hr20m collected with a one-shot colour camera and 4hr30m collected with a monochrome camera. April / avril 2020 | Vol. 114, No. 2 | Whole Number 801 contents / table des matières Research Articles / Articles de recherche 92 Dish on the Cosmos: King of The Radio Sky by Erik Rosolowsky 56 Cepheid Variables in the Andromeda Galaxy from Simon Fraser University’s Trottier 94 Celestial Review: Algol at Minimum Observatory by Dave Garner by Howard Trottier et al. 96 Imager’s Corner: CGX-L Review 67 Matching Supernova Redshifts with Special by Blair MacDonald Relativity and no Dark Energy by Simon Brissenden 100 Observing: Springtime Observing with Coma Berenices by Chris Beckett Feature Articles / Articles de fond 80 Pen and Pixel: Orion / Comet PANSTARRS Departments / Départements C/2017 T2 / Dumbbell Nebula / Cone Nebula. 50 President’s Corner Blake Nancarrow / Klaus Brasch / Tom Owen / Gary Palmer by Dr. Chris Gainor Columns / Rubriques 51 News Notes / En manchettes Compiled by Jay Anderson 71 Skyward: First Light and Something Old, Something New 101 Awards for 2019 by David Levy Compiled by James Edgar 73 CFHT Chronicles: Behind the Data at CFHT 112 Astrocryptic and February Answers by Mary Beth Laychak by Curt Nason 77 Binary Universe: Take Control of Your Mount iii Great Images by Blake Nancarrow by Luca Vanzella 89 John Percy’s Universe: Assassin: The Survey by John R.