Academic Reading in Science Teacher's Answer Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work. -
Fstate Scientist: Omond Mckillop Solandt and Government Science
fState Scientist: Omond McKillop Solandt and Government Science in War and Hostile Peace, 1939-1956/ Scientifique.de l'Etat: Omond McKillop Solandt et la Science du Gouvernement lors de la Guerre et de la Paix Hostile, 1939-1956 A Thesis Submitted to the Division of Graduate Studies of the Royal Military College of Canada by Jason Sean Ridler, MA Royal Military College of Canada, 2001 BA (Hons.) York University, 1999 In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2008 ©This thesis may be used within the Department of National Defence but copyright for open publication remains the property of the author. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47901-8 Our file Notre reference ISBN: 978-0-494-47901-8 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. -
Saving the Information Commons a New Public Intere S T Agenda in Digital Media
Saving the Information Commons A New Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts NEW AMERICA FOUNDA T I O N PUBLIC KNOWLEDGE Saving the Information Commons A Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts Washington, DC Ack n owl e d g m e n t s This report required the support and collaboration of many people. It is our pleasure to acknowledge their generous advice, encouragement, financial support and friendship. Recognizing the value of the “information commons” as a new paradigm in public policy, the Ford Foundation generously supported New America Foundation’s Public Assets Program, which was the incubator for this report. We are grateful to Gigi Sohn for helping us develop this new line of analysis and advocacy. We also wish to thank The Open Society Institute for its important support of this work at the New America Foundation, and the Center for the Public Domain for its valuable role in helping Public Knowledge in this area. Within the New America Foundation, Michael Calabrese was an attentive, helpful colleague, pointing us to useful literature and knowledgeable experts. A special thanks to him for improv- ing the rigor of this report. We are also grateful to Steve Clemons and Ted Halstead of the New America Foundation for their role in launching the Information Commons Project. Our research and writing of this report owes a great deal to a network of friends and allies in diverse realms. For their expert advice, we would like to thank Yochai Benkler, Jeff Chester, Rob Courtney, Henry Geller, Lawrence Grossman, Reed Hundt, Benn Kobb, David Lange, Jessica Litman, Eben Moglen, John Morris, Laurie Racine and Carrie Russell. -
Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
- PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. -
Topographic Power Spectra of Cratered Terrains: 10.1002/2014JE004746 Theory and Application to the Moon
JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Topographic power spectra of cratered terrains: 10.1002/2014JE004746 Theory and application to the Moon Key Points: Margaret A. Rosenburg1, Oded Aharonson2, and Re’em Sari3 • Impact cratering produces characteristic variations in the 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Department topographic PSD of Earth and Planetary Sciences, Weizmann Institute of Technology, Rehovot, Israel, 3Racah Institute of Physics, Hebrew • The size-frequency distribution and shape of craters control University of Jerusalem, Jerusalem, Israel PSD variations • We investigate the topographic PSD on model terrains and Impact cratering produces characteristic variations in the topographic power spectral density lunar topography Abstract (PSD) of cratered terrains, which are controlled by the size-frequency distribution of craters and the spectral content (shape) of individual features. These variations are investigated here in two parallel Correspondence to: approaches. First, a cratered terrain model, based on Monte Carlo emplacement of craters and benchmarked M. A. Rosenburg, [email protected] by an analytical formulation of the one-dimensional PSD, is employed to generate topographic surfaces at a range of size-frequency power law exponents and shape dependencies. For self-similar craters, the slope of the PSD, , varies inversely with that of the production function, , leveling off to 0 at high (surface Citation: Rosenburg, M. A., O. Aharonson, topography dominated by the smallest craters) and maintaining a roughly constant value ( ∼ 2) at low and R. Sari (2015), Topographic (surface topography dominated by the largest craters). The effects of size-dependent shape parameters power spectra of cratered terrains: and various crater emplacement rules are also considered. -
Annual Report 2013.Pdf
ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4 -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
On R.E Size Effect Measurements Fermi
V "" ON R.E SIZE EFFECT MEASUREMENTS FERMI SURFACE IN INDIUM D.G.deGROOT V-' VRIJE UNIVERSITEIT TE AMSTERDAM ON R.F. SIZE EFFECT MEASUREMENTS AND THE FERMI SURFACE IN INDIUM ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE VRIJE UNIVERSITEIT TE AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS MR.I.A.DIEPENHORST, HOOGLERAAR IN DE FACULTEIT DER RECHTSGELEERDHEID, IN HET OPENBAAR TE VERDEDIGEN OP DONDERDAG 2 MEI 1974 TE 13.30 UUR IN HET HOOFDGEBOUW DER UNIVERSITEIT, DE BOELELAAN 1105 DOOR DIRK GEERT DE GROOT. GEBOREN TE EINDHOVEN *hk r r PROMOTOR: DR. A. LODDER COREFERENT: DR. J.H.P. VAN WEEREN This investigation was part of the research program of the "Stichting voor Fundamenteel Onderzoek der Materie (F.O.M.)", which is financially supported by the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.)". STELLINGEN 1. Het is gewenst in de berekening van de laag freguente ruis in de verzadigingsstroom in avalanche diodes naast de schrootruis in de injectiestroom andere ruiscomponenten te betrekken. 2. Bij het onderzoek van anomalieen in de transmissie van electromagnetische golven door metaalkristallen vormt de ondergrond in de transmissie in vele gevallen een niet te scheiden component van het signaal. 3. De benaming O.P.W. berekening voor een pseudopotentiaal interpolatie schema, waarbij de Fouriercomponenten van de pseudopotentiaal als aan te passsen parameters worden ge- hanteerd, wekt ten onrechte de indruk dat de gebruikte golffuncties orthogonaal staan op de atomaire pit golf- functies. 4. Het is gewenst dat de Nederlandse regering een prejudiciele beschikking uitlokt, die tot gevolg zal hebben dat dienst- merken onder de beschermende werking van de Eenvormige Beneluxwet op de Warenmerken worden gebracht. -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date:__7/30/07_________________ I, __ MUNISH GUPTA_____________________________________, hereby submit this work as part of the requirements for the degree of: DOCTORATE OF PHILOSOPHY (Ph.D) in: MATERIALS SCIENCE AND ENGINEERING It is entitled: LOW-PRESSURE AND ATMOSPHERIC PRESSURE PLASMA POLYMERIZED SILICA-LIKE FILMS AS PRIMERS FOR ADHESIVE BONDING OF ALUMINUM This work and its defense approved by: Chair: __Dr. F. JAMES BOERIO ___ ______ __Dr. GREGORY BEAUCAGE __ ___ __ __Dr. RODNEY ROSEMAN _____ ___ __Dr. JUDE IROH _ _____________ _______________________________ LOW-PRESSURE AND ATMOSPHERIC PRESSURE PLASMA POLYMERIZED SILICA-LIKE FILMS AS PRIMERS FOR ADHESIVE BONDING OF ALUMINUM A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D) in the Department of Chemical and Material Engineering of the College of Engineering 2007 by Munish Gupta M.S., University of Cincinnati, 2005 B.E., Punjab Technical University, India, 2000 Committee Chair: Dr. F. James Boerio i ABSTRACT Plasma processes, including plasma etching and plasma polymerization, were investigated for the pretreatment of aluminum prior to structural adhesive bonding. Since native oxides of aluminum are unstable in the presence of moisture at elevated temperature, surface engineering processes must usually be applied to aluminum prior to adhesive bonding to produce oxides that are stable. Plasma processes are attractive for surface engineering since they take place in the gas phase and do not produce effluents that are difficult to dispose off. Reactive species that are generated in plasmas have relatively short lifetimes and form inert products. -
USGS Professional Paper 1692
USG S Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism Professional Paper 1692 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism By Roy A. Bailey Professional Paper 1692 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey Information Services Box 25286, Denver Federal Center Denver, CO 80225 This report and any updates to it are available online at: http://pubs.usgs.gov//pp/p1692/ Additional USGS publications can be found at: http://geology.usgs.gov/products.html For more information about the USGS and its products: Telephone: 1–888–ASK–USGS (1–888–275–8747) World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement of the U.S. Government. Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission to reproduce those items must be secured from the individual copyright owners. Cataloging-in-publication data are on file with the Library of Congress (URL http://www.loc.gov/). -
Una Aproximación Física Al Universo Local De Nebadon
4 1 0 2 local Nebadon de Santiago RodríguezSantiago Hernández Una aproximación física al universo (160.1) 14:5.11 La curiosidad — el espíritu de investigación, el estímulo del descubrimiento, el impulso a la exploración — forma parte de la dotación innata y divina de las criaturas evolutivas del espacio. Tabla de contenido 1.-Descripción científica de nuestro entorno cósmico. ............................................................................. 3 1.1 Lo que nuestros ojos ven. ................................................................................................................ 3 1.2 Lo que la ciencia establece ............................................................................................................... 4 2.-Descripción del LU de nuestro entorno cósmico. ................................................................................ 10 2.1 Universo Maestro ........................................................................................................................... 10 2.2 Gran Universo. Nivel Espacial Superunivesal ................................................................................. 13 2.3 Orvonton. El Séptimo Superuniverso. ............................................................................................ 14 2.4 En el interior de Orvonton. En la Vía Láctea. ................................................................................. 18 2.5 En el interior de Orvonton. Splandon el 5º Sector Mayor ............................................................ 19