Flight Testing Simulations of the Wright 1902 Glider and 1903 Flyer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610!
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610! Version 2.0 – Nov 2018! Page 1! Controls, Aerodynamics, and Stability • Elevator, Rudder, Aileron! • Wing planform! • Lift and Wing Design! • Wing section (airfoil)! • Tail group (empennage)! • Center of lift, center of gravity! • Characteristics of a “speed stable” airplane! Page 2! Ailerons, Elevators, and Rudder! Control Roll, Pitch, and Yaw! Ailerons! • Roll, left and right! Elevators! • Pitch, up and down) ! Rudder! • Yaw, left and right! Page 3! Radio Controls! Elevator! Power! (Pitch)! Rudder! Ailerons! (yaw)! (roll)! Trim Controls! Page 4! Wing Planform! • Rectangular (best for trainers)! • Tapered! • Elliptical! • Swept! • Delta! Page 5! Lift! Lift! Lift comes from:! • Angle of Attack! Drag! • Wing Area! Direction of flight! • Airfoil Shape ! • Airspeed! Weight! In level flight, Lift = Weight! Page 6! Lift is greatly reduced when the Wing Stalls! • Stall can occur when:! • Too slow! • Pulling too much up elevator! • Steep bank angle! • Any combination of these three! • Occurs at critical angle of attack, about 15 degrees ! • Trainers have gentle stall characteristics. The warbird you want to fly someday might not.! • One wing can stall before the other, resulting in a sharp roll, and if it continues, a spin. A good trainer won’t do this.! Page 7! Airfoil Shapes! Flat bottom airfoil! “Semi-symmetrical” airfoil! • much camber (mid-line is curved)! • has some camber ! • Often used on trainers and Cubs! • sometimes used on trainers! • Good at low speeds! • Good all-around -
AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft. -
Federal Aviation Administration, DOT § 61.45
Federal Aviation Administration, DOT Pt. 61 Vmcl Minimum Control Speed—Landing. 61.35 Knowledge test: Prerequisites and Vmu The speed at which the last main passing grades. landing gear leaves the ground. 61.37 Knowledge tests: Cheating or other VR Rotate Speed. unauthorized conduct. VS Stall Speed or minimum speed in the 61.39 Prerequisites for practical tests. stall. 61.41 Flight training received from flight WAT Weight, Altitude, Temperature. instructors not certificated by the FAA. 61.43 Practical tests: General procedures. END QPS REQUIREMENTS 61.45 Practical tests: Required aircraft and equipment. [Doc. No. FAA–2002–12461, 73 FR 26490, May 9, 61.47 Status of an examiner who is author- 2008] ized by the Administrator to conduct practical tests. PART 61—CERTIFICATION: PILOTS, 61.49 Retesting after failure. FLIGHT INSTRUCTORS, AND 61.51 Pilot logbooks. 61.52 Use of aeronautical experience ob- GROUND INSTRUCTORS tained in ultralight vehicles. 61.53 Prohibition on operations during med- SPECIAL FEDERAL AVIATION REGULATION NO. ical deficiency. 73 61.55 Second-in-command qualifications. SPECIAL FEDERAL AVIATION REGULATION NO. 61.56 Flight review. 100–2 61.57 Recent flight experience: Pilot in com- SPECIAL FEDERAL AVIATION REGULATION NO. mand. 118–2 61.58 Pilot-in-command proficiency check: Operation of an aircraft that requires Subpart A—General more than one pilot flight crewmember or is turbojet-powered. Sec. 61.59 Falsification, reproduction, or alter- 61.1 Applicability and definitions. ation of applications, certificates, 61.2 Exercise of Privilege. logbooks, reports, or records. 61.3 Requirement for certificates, ratings, 61.60 Change of address. -
And Octavia Butler's Kindred Across the Sensory Line Emily Anne Bonner University of Tennessee, [email protected]
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tennessee, Knoxville: Trace University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2018 Subversive Speculations: Reading Ann Petry's The Street and Octavia Butler's Kindred across the Sensory Line Emily Anne Bonner University of Tennessee, [email protected] Recommended Citation Bonner, Emily Anne, "Subversive Speculations: Reading Ann Petry's The Street and Octavia Butler's Kindred across the Sensory Line. " Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5048 This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Emily Anne Bonner entitled "Subversive Speculations: Reading Ann Petry's The Street and Octavia Butler's Kindred across the Sensory Line." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in English. Michelle D. Commander, Major Professor We have read this thesis and recommend its acceptance: Thomas F. Haddox, Mary E. Papke Accepted for the -
Glider Handbook, Chapter 2: Components and Systems
Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil. -
Efficient Light Aircraft Design – Options from Gliding
Efficient Light Aircraft Design – Options from Gliding Howard Torode Member of General Aviation Group and Chairman BGA Technical Committee Presentation Aims • Recognise the convergence of interest between ultra-lights and sailplanes • Draw on experiences of sailplane designers in pursuit of higher aerodynamic performance. • Review several feature of current sailplanes that might be of wider use. • Review the future for the recreational aeroplane. Lift occurs in localised areas A glider needs efficiency and manoeuvrability Drag contributions for a glider Drag at low speed dominated by Induced drag (due to lift) Drag at high ASW-27 speeds Glider (total) drag polar dominated by profile drag & skin friction So what are the configuration parameters? - Low profile drag: Wing section design is key - Low skin friction: maximise laminar areas - Low induced drag – higher efficiencies demand greater spans, span efficiency and Aspect Ratio - Low parasitic drag – reduce excrescences such as: undercarriage, discontinuities of line and no leaks/gaps. - Low trim drag – small tails with efficient surface coupled with low stability for frequent speed changing. - Wide load carrying capacity in terms of pilot weight and water ballast Progress in aerodynamic efficiency 1933 - 2010 1957: Phoenix (16m) 1971: Nimbus 2 (20.3m) 2003: Eta (30.8m) 2010: Concordia (28m) 1937: Wiehe (18m) Wooden gliders Metal gliders Composite gliders In praise of Aspect Ratio • Basic drag equation in in non-dimensional, coefficient terms: • For an aircraft of a given scale, aspect ratio is the single overall configuration parameter that has direct leverage on performance. Induced drag - the primary contribution to drag at low speed, is inversely proportional to aspect ratio • An efficient wing is a key driver in optimising favourable design trades in other aspects of performance such as wing loading and cruise performance. -
Fitzpatrick Biography
The James L. G. Fitz Patrick Papers Archives & Special Collections College of Staten Island Library, CUNY 2800 Victory Blvd., 1L-216 Staten Island, NY 10314 © 2005, 2018 The College of Staten Island, CUNY Finding Aid by James A. Kaser Overview of the Collection Collection No. : CM-4 Title: The James L. G. Fitz Patrick Papers Creator: James L. G. Fitz Patrick (1906-1998) Dates: c. 1926-1998 Extent: Approximately 1.5 Linear Feet Abstract: Prof. James L. G. Fitzpatrick was a faculty member and administrator at the Staten Island Community College from 1959 to 1976. He taught and served as Head of the Department of Mechanical Technology. He was appointed the first Academic Dean of the college in 1959, serving as Dean of the Faculty and acting under the college president to administer the academic program. He also coordinated a large part of the planning for the college’s campus in Sunnyside, completed in 1967. Fitz Patrick became Dean for Operations and Development in 1971 and held that position until his retirement in 1976. Fitz Patrick was widely recognized as an expert on natural flight and aeronautics. This fragmentary collection mostly documents some of Fitz Patrick’s research activities. Administrative Information Preferred Citation The James L. G. Fitz Patrick Papers, Archives & Special Collections, Department of the Library, College of Staten Island, CUNY, Staten Island, New York Acquisition The papers were donated by Fitz Patrick’s stepson, Harold J. Smith. Processing Information Collection processed by the staff of Archives & Special Collections. 1 Restrictions Access Access to this record group is unrestricted. -
Catalogue of Paintings, Sculptures and Other Objects Exhibited During The
ART ' INSTITUTE OF CHICAGO CATALOGUE • OF PAINTINGS, ScuLPTURES AND OTHER OBJECTS EXHIBITED DURING THE WoRLD'S CoNGREssEs MAY 15 TO OCT. 31, 1893. THE ART INSTITUTE, Lake Front, opposite Adams Street, Chicago. THE ART INSTITUTE OF CHICAGO. CATALOGUE -OF- PAINTINGS, SCULPTURES AND OTHER OBJECTS EXHIBITED DURING THE WORLD'S CON- GRESSES. · SEPTEMBER, I893. CHICAGO, LAKE FRONT, HEAD OF ADAMS STREET. TRUSTEES OF THE ART INSTITUTE OF CHICAGO, !892-J. CHARLES L. HUTCHINSON, SAMUEL M. NICKERSON, DAVID W. IRWIN, MARTIN A. RYERSON, EDWARD E. A YER, WILLIAM . T. BAKER, ELIPHALET W. BLATCHFORD, NATHANIEL K. FAIRBANK, JAMES H. DOLE, ALBERT A. SPRAGUE, JOHN C. BLACK, ADOI;PHUS C. BARTLETT, . JOHN J. GLESSNER, CHARLES D. HAMILL, EDSON KEITH, TURLINGTON W. HARVEY. ALLISON V. ARM01J.R, HOMER N. HIBBARD, MARSHALL FIELD, GEORGE N . CULVER, PHILANDER C. HANFORD. OFFICERS CHARLES L. HUTCHINSON, JAMES H. DOLE, President. V{ce-President. LYMAN J . GAGE, N.H. CARPENTER, Treasurer. Secretary. W . M. R. FRENCH, ALFRED EMERSON, Director. Curator of Classical Antiquities. EXECUTIVE COMMITTEE <;HARLES L. HUTCHINSON, CHARLES D. HAMILL, JA)iES H. DOLE, JOHN C. BLACK, ALBERT A. SPRAGUE, MARTIN A. RYERSON, WILLIAM T . BAKER. THE ART INSTITUTE OF CHICAGO was incorporated May 24, 1879, for the purpose of maintaining a Museum and School of Art. The present building is built by the Art Institute and the World's Columbian Exposition jointly, at a cost of ~625,000, upon land granted by the city. At the end of the Fair the building will become the permanent and exclusive possession of· the Art Institute . During the Fair it is occupied by the World's Congresses. -
The Wright Stuff
1203cent.qxd 11/13/03 2:19 PM Page 1 n a chilly North Carolina edge. It is likely that this informa- Omorning 100 years ago, two tion became the basis for the design brothers from Dayton, Ohio, at- of their early gliders. It also led them tempted a feat others considered im- to contact Octave Chanute, an possible, and their success changed American engineer who was the world. leading the way for experiments in Today we take air travel for aeronautics. granted, and rarely give a second thought to our capability to fly liter- Three problems ally anywhere in the world. But one The Wrights realized from the be- hundred years ago, the endeavors ginning that they had to solve three of the Wrights and other aeronau- problems: tical pioneers were widely viewed • Balance and control. as foolhardy. Although some of the THE WRIGHT • Wing shape and resulting lift. world’s most creative minds were • Application of power to the converging on a solution to the flight structure. problem, well-respected scientists STUFF: Of the three, they correctly recog- such as Lord Kelvin thought flight Materials in the Wright Flyer nized that balance and control were impossible. the least understood and probably In fact, Simon Newcomb, pro- The flight of the Wright Flyer was the most critical. To solve that fessor of mathematics and as- the “first in the history of the world problem, they turned to gliding ex- tronomy at Johns Hopkins Univer- periments. sity and vice-president of the in which a machine carrying a man National Academy of Sciences, had had raised itself by its own power The 1900 glider declared only 18 months before the into the air in full flight, had sailed After a few preliminary experi- successful flight at Kitty Hawk, forward without reduction of speed, ments with small kites, they built “Flight by machines heavier than air and had finally landed at a point as their first glider in 1900. -
The Birth of Powered Flight in Minnesota / Gerald N. Sandvick
-rH^ AEROPLANE AUTOMOBILE MOTORCYCLE RACES il '^. An Event in the History of the Northwest-Finish Flight by Aeroplanes GLEN H. CURTISS and Seat> for 25,000 People at these Price* 'ml Tu'Wly •nvi>n Bou-a nr Otaod HtiiiKl T(o BARNEY OLDFIELD DON'T MISS IT F IniiiKp at (Irnnd HUnd Bpxti .... UD wbo have tnvclcd fMter than any othrr lium«ii hrintrn A MaKnili'-fi" Pronrtun-.t llinb Spctd F.viutft. Not a I'ull Monn.-iit G :l•"^ <n Mill) ttn rolu diiyi. Jiiiir ^i. 'iX it. Sb $SO.M in k rKRc from Start to Khiifth. Tlie latttt-st Aeropbinf. tlic K.isH-i.t Aiito Car, \ii'imin><-l'». iiineial ulmliminu. lio>, pukMl in ptrblns the Fu.^iest }|orst.' PitTeiJ AKanisi V.ach Otlur In H Gr«siil Triple Kacfl >ii-"lnii pm ant (ocnipim nr iLiii>ri'iiplM) BOC AEROPLANE vs. AUTOMOBaE K(>*prT>-il Urn'a en 8<ila, Hli>ii<Miyo11>, Mctre^llao UvMc Co., 41 OIdfl«i(i. with bu llghlr.inj Ben; r»r. ^nd Kimrbirr. BIKili ttu^'-i nnut). •)• r>U, Wir^ke « DfWTT. PltUl Ud Bohert. wUb bU DuTtcq ckr, bgalnit world t rn^'irds on » iir VxT .-•n.-xil iilnnuti.-n mrtrnr. WnlUr B Wllmot. OMWtkl outar tfftck WALTER R. WILMOT. General Mqr. M.u.k.. %:. iii.i llmi-r, Miiiiif.'MI* T 0 Phooe, ABHM IT*. THE BIRTH OF POWERED FLIGHT IN MINNESOTA Gerald N. Sandvick AVIATION in Minnesota began in the first decade of the Aviation can be broadly divided into two areas: aero 20th century. -
09 Stability and Control
Aircraft Design Lecture 9: Stability and Control G. Dimitriadis Introduction to Aircraft Design Stability and Control H Aircraft stability deals with the ability to keep an aircraft in the air in the chosen flight attitude. H Aircraft control deals with the ability to change the flight direction and attitude of an aircraft. H Both these issues must be investigated during the preliminary design process. Introduction to Aircraft Design Design criteria? H Stability and control are not design criteria H In other words, civil aircraft are not designed specifically for stability and control H They are designed for performance. H Once a preliminary design that meets the performance criteria is created, then its stability is assessed and its control is designed. Introduction to Aircraft Design Flight Mechanics H Stability and control are collectively referred to as flight mechanics H The study of the mechanics and dynamics of flight is the means by which : – We can design an airplane to accomplish efficiently a specific task – We can make the task of the pilot easier by ensuring good handling qualities – We can avoid unwanted or unexpected phenomena that can be encountered in flight Introduction to Aircraft Design Aircraft description Flight Control Pilot System Airplane Response Task The pilot has direct control only of the Flight Control System. However, he can tailor his inputs to the FCS by observing the airplane’s response while always keeping an eye on the task at hand. Introduction to Aircraft Design Control Surfaces H Aircraft control -
The Wright Brothers Played with As Small Boys
1878 1892 The Flying Toy: A small toy “helicopter”— made of wood with two twisted rubber bands to turn a small propeller—that the Wright brothers played with as small boys. The Bicycle Business: The Wright brothers opened a bicycle store in 1892. Their 1900 experience with bicycles aided them in their The Wright Way: investigations of flight. The Process of Invention The Search for Control: From their observations of how buzzards kept their balance, the Wright brothers began their aeronautical research in 1899 with a kite/glider. In 1900, they built their first glider designed to carry a pilot. Wilbur and Orville Wright Inventors Wilbur and Orville Wright placed their names firmly in the hall of great 1901 American inventors with the creation of the world’s first successful powered, heavier-than-air machine to achieve controlled, sustained flight Ohio with a pilot aboard. The age of powered flight began with the Wright 1903 Flyer on December 17, 1903, at Kill Devil Hills, NC. The Wright brothers began serious experimentation in aeronautics in 1899 and perfected a controllable craft by 1905. In six years, the Wrights had used remarkable creativity and originality to provide technical solutions, practical mechanical Birthplace design tools, and essential components that resulted in a profitable aircraft. They did much more than simply get a flying machine off the ground. They established the fundamental principles of aircraft design and engineering in place today. In 1908 and 1909, they demonstrated their flying machine pub- licly in the United States and Europe. By 1910, the Wright Company was of Aviation manufacturing airplanes for sale.