The Wright Stuff
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARE DRONES a FORCE for GOOD? How Drones Are Being Used to Benefit Society
BRIEF FOOD AND DRINK CULTURE GEAR SPORTS STYLE WOMEN HOME > BANNER- HOME > MAGAZINE ARE DRONES A FORCE FOR GOOD? How drones are being used to benefit society By Matthew Priest Words: Max Mueller NEWSLETTER SUBSCRIPTION Get the lowdown on the week ahead to your inbox, together with reviews, exclusive competitions and the occasional funny list. Enter Your Email SUBSCRIBE MOST POPULAR THIS WEEK Read Shared Galleries HOW TO BULK UP LIKE A RUGBY PLAYER Drones usually feature in the news due to their controversial use as weapons of war or, more prosaically, for their use as fun but largely impractical toys. But what if the technology could be used to help the environment or save lives? This month, the UAE is again promoting the humanitarian use of drones with a $1 million competition that features the best designs from around the world. Here is a bird’s eye view of the technology and its pitfalls, in the Middle East and beyond. *** WHAT I’VE LEARNT: FLAVIO BRIATORE Fukushima Daiichi nuclear power station, April 10, 2015. Four years after the March 2011 meltdown, a stream of images is being recorded inside reactor No 1, one of three that was badly damaged after the plant was hit by a devastating tsunami. As the remote-controlled robot crawls through debris, the on-board searchlight struggles to penetrate a thick dust cloud. It also has to navigate charred concrete girders coated in solidified molten metal that now resemble warped stalactites. CESARO: 8 THINGS WE’VE At the bottom of the video screen is a digital display of the radiation exposure. -
Experience Early Aviation with Fully
REVIEW Maxford’s vintage- themed models look extremely authentic when they are in the air, although pilots EXPERIENCE EARLY will probably want to spring for the available optional pilot figures to more AVIATION WITH capably create a convincing scalelike profile. FULLY FUNCTIONING WATCH A VIDEO! WING WARPING Access additional Maxford USA 1/9 Rumpler Taube EP 64-Inch ARF content by visiting By Jon Barnes | [email protected] www.ModelAviation. Photos by the author com/bonuscontent. THERE IS NO DENYING the surfaces, which would in the the Etrich Taube. Why the logic behind man’s eager efforts future become the standard for seeming disparity? It is primarily to take to the sky in a flying almost all aircraft, was the yaw because, with no licensing fees, machine. Engineers of the early axis. at least 14 companies built vari- 20th century understandably Designed by Igo Etrich in 1909, ations of the initial design. The attempted to mimic the methods the Taube first flew in 1910. It two-seat Rumpler Taube ulti- used by birds to change direction would become the first mass-pro- mately proved to be the most and altitude. At least one early duced aircraft in Germany, and common type and thus most effort to imitate the eminently go on to be used for military pur- appropriately the subject of flexible tail and wing feathers of poses by several of the nations Maxford’s attention. a bird can be seen in a mono- embroiled that were in World Maxford USA’s propensity to plane known as the Taube. War I. -
Planning of Nuclear Power Systems
ASKO VUORINEN Planning of Nuclear Power Systems To Save the Planet Ekoenergo Oy August, 2011 The nuclear power could generate 27 % of electricity by 2050 and 34 % by 2075. Nuclear electricity generation can make the biggest change in reducing greenhouse gas emissions and it would be possible to limit the global temperature increase to 2 degrees Celsius by the year 2100. 1 Copyright © 2011 Ekoenergo Oy Lokirinne 8 A 25, 02320 Espoo, Finland Telephone (+358) 440451022 The book is available for internet orders www.optimalpowersystems.com Email (for orders and customer service enquires): [email protected] All rights reserved. No part of this publication may be reproduced, stored in retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, scanning or otherwise, except under terms of copyright, without the permission in writing of the Publisher. Requests to the publisher should be addressed to Ekoenergo Oy, Lokirinne 8 A 25, 02320 Espoo, Finland or emailed to [email protected]. Comments to the author can be sent directly to [email protected]. Cover page: the Planet and Atoms. Created by my son Architect Teo-Tuomas Vuorinen 2 Table of Contents PREFACE ....................................................................................................................................................................... 13 .ACKNOWLEDGEMENTS .............................................................................................................................................. -
The Bleriot Xi: a Study in Aerodynamics by Robert G
THE BLERIOT XI: A STUDY IN AERODYNAMICS BY ROBERT G. WALDVOGEL If you wished to study aerodynamics, you would only need to look at the very early aircraft designs, such as the Bleriot XI. There are no high bypass ratio turbofans, nor upper deck lounges, nor global positioning systems. Instead, the aircraft is a sheer expression of the design solutions needed to overcome the four forces of flight: lift, weight, thrust, and drag. One of these “studies” can be made at Cole Palen’s Old Rhinebeck Aerodrome in Rhinebeck, New York. The culmination of ten previous configurations built by Louis Bleriot, who had reinvested 60,000 French francs amassed during an automobile lamp manufacturing venture to develop a technologically successful airplane in a race with such names as the Wright Brothers, Henri Farman, Santos Dumont, and Glenn Curtiss, the Bleriot XI itself had become the world’s first practical monoplane. The Bleriot VII, providing its initial foundation, had appeared with a partially enclosed fuselage to house its single pilot; wings braced to a tubular cabane framework over the cockpit; a four-bladed, 50-hp Antoinette engine; a large, dual-elevon horizontal tail; a small rudder; and swivelable, independently-sprung wheels. Although it crashed on December 18, 1907, it had nevertheless provided the foundation for a later, definitive design. The Bleriot VIII, rapidly following, had retained the low-wing configuration, but had featured pivoting, wing tip ailerons and a tricycle undercarriage, each comprised of single wheels. Although the Bleriot IX had been a larger variant of the VIII, and the Bleriot X had introduced a pusher-propeller arrangement with triple canard rudders, these intermediate steps had offered little to the ultimate design and therefore had been quickly discarded. -
Design and Flight Testing of Inflatable Wings with Wing Warping
05WAC-61 Design and Flight Testing of Inflatable Wings with Wing Warping Jamey D. Jacob, Andrew Simpson, and Suzanne Smith University of Kentucky, Lexington, KY 40506 Copyright c 2005 Society of Automotive Engineers, Inc. ABSTRACT The paper presents work on testing of inflatable wings for unmanned aerial vehicles (UAVs). Inflatable wing his- tory and recent research is discussed. Design and con- struction of inflatable wings is then covered, along with ground and flight testing. Discussions include predictions and correlations of the forces required to warp (twist) the wings to a particular shape and the aerodynamic forces generated by that shape change. The focus is on charac- terizing the deformation of the wings and development of a model to accurately predict deformation. Relations be- Figure 1: Goodyear Model GA-468 Inflatoplane. tween wing stiffness and internal pressure and the impact of external loads are presented. Mechanical manipula- tion of the wing shape on a test vehicle is shown to be an effective means of roll control. Possible benefits to aero- craft was developed as a military rescue plane that could dynamic efficiency are also discussed. be dropped behind enemy lines to rescue downed pilots. Technology development, including delivery of dozens of INFLATABLE WINGS aircraft, continued until the early 1970s. PREVIOUS WORK While the concept of inflatable The Apteron unmanned aerial vehicle with inflatable structures for flight originated centuries ago, inflatable wings was developed in the 1970s by ILC Dover, Inc. wings were only conceived and developed within the last The Apteron (Figure 2) had a 1.55 m (5.1 ft) wingspan, few decades. -
Design and Flight Testing of a Warping Wing for Autonomous Flight Control
University of Kentucky UKnowledge Theses and Dissertations--Mechanical Engineering Mechanical Engineering 2012 DESIGN AND FLIGHT TESTING OF A WARPING WING FOR AUTONOMOUS FLIGHT CONTROL Edward Brady Doepke University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Doepke, Edward Brady, "DESIGN AND FLIGHT TESTING OF A WARPING WING FOR AUTONOMOUS FLIGHT CONTROL" (2012). Theses and Dissertations--Mechanical Engineering. 20. https://uknowledge.uky.edu/me_etds/20 This Master's Thesis is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. -
Introduction to Aerospace Engineering
Introduction to Aerospace Engineering Lecture slides Challenge the future 1 15-12-2012 Introduction to Aerospace Engineering 5 & 6: How aircraft fly J. Sinke Delft University of Technology Challenge the future 5 & 6. How aircraft fly Anderson 1, 2.1-2.6, 4.11- 4.11.1, 5.1-5.5, 5.17, 5.19 george caley; wilbur wright; orville wright; samuel langley, anthony fokker; albert plesman How aircraft fly 2 19th Century - unpowered Otto Lilienthal (1848 – 1896) Was fascinated with the flight of birds (Storks) Studied at Technical School in Potsdam Started experiment in 1867 Made more than 2000 flights Build more than a dozen gliders Build his own “hill” in Berlin Largest distance 250 meters Died after a crash in 1896. No filmed evidence: film invented in 1895 (Lumiere) How aircraft fly 3 Otto Lilienthal Few designs How aircraft fly 4 Hang gliders Derivatives of Lilienthal’s gliders Glide ratio E.g., a ratio of 12:1 means 12 m forward : 1 m of altitude. Typical performances (2006) Gliders (see picture): V= ~30 to >145 km/h Glide ratio = ~17:1 (Vopt = 45-60 km/h) Rigid wings: V = ~ 35 to > 130 km/h Glide ratio = ~20:1 (Vopt = 50-60 km/h) How aircraft fly 5 Question With Gliders you have to run to generate enough lift – often down hill to make it easier. Is the wind direction of any influence? How aircraft fly 6 Answer What matters is the Airspeed – Not the ground speed. The higher the Airspeed – the higher the lift. So if I run 15 km/h with head wind of 10 km/h, than I create a higher lift (airspeed of 25 km/h) than when I run at the same speed with a tail wind of 10 km/h (airspeed 5 km/h)!! That’s why aircraft: - Take of with head winds – than they need a shorter runway - Land with head winds – than the stopping distance is shorter too How aircraft fly 7 Beginning of 20th century: many pioneers Early Flight 1m12s Failed Pioneers of Flight 2m53s How aircraft fly 8 1903 – first powered HtA flight The Wright Brothers December 17, 1903 How aircraft fly 9 Wright Flyer take-off & demo flight Wright Brothers lift-off 0m33s How aircraft fly 10 Wright Brs. -
The Wright Brothers Played with As Small Boys
1878 1892 The Flying Toy: A small toy “helicopter”— made of wood with two twisted rubber bands to turn a small propeller—that the Wright brothers played with as small boys. The Bicycle Business: The Wright brothers opened a bicycle store in 1892. Their 1900 experience with bicycles aided them in their The Wright Way: investigations of flight. The Process of Invention The Search for Control: From their observations of how buzzards kept their balance, the Wright brothers began their aeronautical research in 1899 with a kite/glider. In 1900, they built their first glider designed to carry a pilot. Wilbur and Orville Wright Inventors Wilbur and Orville Wright placed their names firmly in the hall of great 1901 American inventors with the creation of the world’s first successful powered, heavier-than-air machine to achieve controlled, sustained flight Ohio with a pilot aboard. The age of powered flight began with the Wright 1903 Flyer on December 17, 1903, at Kill Devil Hills, NC. The Wright brothers began serious experimentation in aeronautics in 1899 and perfected a controllable craft by 1905. In six years, the Wrights had used remarkable creativity and originality to provide technical solutions, practical mechanical Birthplace design tools, and essential components that resulted in a profitable aircraft. They did much more than simply get a flying machine off the ground. They established the fundamental principles of aircraft design and engineering in place today. In 1908 and 1909, they demonstrated their flying machine pub- licly in the United States and Europe. By 1910, the Wright Company was of Aviation manufacturing airplanes for sale. -
Building Envelope Applications Utilizing Drone Technologies
Raymond Engineering – Georgia, Inc. 401104237 DRONING ON ABOUT DRONES Ray Ramos, PE July 12, 2017 Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. __________________________________________ Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. Copyright Materials This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited. Course This course gives the audience an understanding of the history of drones and associated technology; and how the development and use of drones have evolved over time. Additionally, the course includes performing an actual drone demonstration showing how a drone currently works and how they can be used by building/property owners, architects, engineers, consultants, and/or contractors. Learning At the end of the this course, participants will be able to: • Learning Objective 1: Understanding how drones got their start and have evolved over time. • Learning Objective 2: Overview of the types of drones and uses. • Learning Objective 3: Use and operations issues and how to resolve them • Learning Objective 4: To perform a drone demonstration in order to showcase it’s capabilities. -
Restoration, Preservation, and Conservation of the 1905 Wright Flyer III
Jeanne Palermo Restoration, Preservation, and Conservation of the 1905 Wright Flyer III he 1905 Wright Flyer III at museum village which he proceeded to build and Carillon Historical Park in endow. A major theme of the museum would be Dayton, Ohio, is one of the most transportation: how it changed Dayton, and how significant aircraft in the history Dayton changed transportation. Deeds’ desire to of aviation.T This relatively unknown airplane is include a Wright airplane in his museum led to called the world’s first practical airplane because, the restoration of the 1905 Wright Flyer III. with this aircraft, the Wright brothers solved all Initially, Deeds expected to construct a the remaining problems of sustained and con- replica of the 1903 “Kitty Hawk” Flyer. It was trolled flight. The 1905 Wright Flyer III is also the Orville Wright who felt that enough parts of the first plane ever to carry a passenger. 1905 machine existed to do a restoration. Wright History himself was in possession of the engine, propellers, Following their first flights at Kitty Hawk, and metal chain guides that the Wrights had North Carolina, in December 1903, Wilbur and brought back to their shop in Dayton. The frame Orville Wright returned home to Dayton for had been left in a shed at Kitty Hawk following Christmas knowing that, while they had suc- the plane’s final flights in 1908. That May, the ceeded in their dream of flying, much work plane had been refitted from its original configu- remained to make flying practical. The 1903 ration with a pilot prone on the lower wing, to Wright Flyer flew four relatively short, straight- two upright seats for a pilot and passenger. -
Exploring the History of Engineering at the Linda Hall Library
Exploring the History of Engineering at the Linda Hall Library Benjamin Gross, Ph.D. VP for Research & Scholarship Linda Hall Library September 18, 2018 City of Fountains,Engineers, HeartHeart ofof thethe NationNation https://www.kauffman.org/ https://http://commons.wikimedia.orgeclubofkc.org/ / City of Engineers, Heart of the Nation https://www.kctechcouncil.com/ Engineering Triumphs Kansas City Bridge (1869) Kauffman Center for the Performing Arts (2011) LHL https://www.azahner.com/ …and Tragedies Kemper Arena (1979) Hyatt Regency Hotel (1981) http://www.kcur.org/ https://www.kansascity.com/ Recent Achievements Google Fiber (2012) KC Streetcar (2016) https://www.nytimes.com/ https://www.nytimes.com/ Linda Hall Library A Plenary in Three Parts 1) The Roots of American Engineering 2) A Remarkable Gift 3) New Frontiers in the History of Engineering LHL I. The Roots of American Engineering Images from The Panorama of Professions and Trades (Edward Hazen, 1836) The Middlesex Canal • 1793: Formation of Middlesex Canal Company • Goal: Linking Charles and Merrimack Rivers (27 miles) • Loammi Baldwin (1744-1807) • Cabinetmaker and Revolutionary War veteran • No experience building canals • Reliance on foreign expertise (William Weston) ”The greatest work of the kind which has been completed in the United States.” –Albert Gallatin http://www.middlesexcanal.orghttps://en.wikipedia.org/ European Engineering Traditions British civil engineers French military engineers LHL LHL British Civil Engineers • Characteristics • Open to all social classes -
On the Wright Brothers' Flight Path
Discovery Guide Propellers Elevators in the back in the front Be a “Plane Clothes” Detective On the Wright brothers’ Rudder Wings Flight Path Did you know that? ★ All the Wright airplanes are ★ The 1909 Wright Military Flyer covered with cotton fabric called was flight tested at Fort Myer in muslin (the “plane clothes”). Arlington, Virginia. ★ Many of the silver parts of the ★ When the elevators are in front of Wright airplanes are wood the wings, it is called a canard painted with a mixture of shellac configuration. and aluminum. ★ The Wright brothers’ patent was ★ All Wright airplanes use a chain for the 1902 glider, not a and-sprocket transmission to powered airplane. link the engine and the ★ The 1911 Wright EX Vin Fiz was propellers. the first to fly across the United ★ The first powered, heavier-than States. It took 49 days. air, sustained flights with a pilot were made on December 17, Learn more about the Wright brothers 1903, by Orville and Wilbur on the Museum’s web site, Wright. www.nasm.si.edu/wrightbrothers Be on the look out for Smithsonian National Air and Space Museum Propellers ★ Tails ★ Wings The Wright Brothers & the Invention of the Aerial Age exhibition is made possible through the generous support of Alcoa. Additional support has been provided by The Alvin, Lottie and Rachel Gray Fund, Fred and Barbara Telling, SI National Board, Fish & Neave, The Gayle H. and Peter Bickers Foundation, The Funger Foundation, Inc., (But don’t be surprised if the propellers are in the back!) NormaLee and Morton Funger, Daniel Greenberg, Susan Steinhauser and the Greenberg Foundation, Leighton and Carol Read, Mr.