Pulsed Power Engineering Switching Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Diodes 2113
CHAPTER54 Learning Objectives ➣ Zener Diode SPECIAL ➣ Voltage Regulation ➣ Zener Diode as Peak Clipper DIODES ➣ Meter Protection ➣ Zener Diode as a Reference Element ➣ Tunneling Effect ➣ Tunnel Diode ➣ Tunnel Diode Oscillator ➣ Varactor Diode ➣ PIN Diode ➣ Schottky Diode ➣ Step Recovery Diode ➣ Gunn Diode ➣ IMPATT Diode Ç A major application for zener diodes is voltage regulation in dc power supplies. Zener diode maintains a nearly constant dc voltage under the proper operating conditions. 2112 Electrical Technology 54.1. Zener Diode It is a reverse-biased heavily-doped silicon (or germanium) P-N junction diode which is oper- ated in the breakdown region where current is limited by both external resistance and power dissipa- tion of the diode. Silicon is perferred to Ge because of its higher temperature and current capability. As seen from Art. 52.3, when a diode breaks down, both Zener and avalanche effects are present although usually one or the other predominates depending on the value of reverse voltage. At reverse voltages less than 6 V, Zener effect predominates whereas above 6 V, avalanche effect is predomi- nant. Strictly speaking, the first one should be called Zener diode and the second one as avalanche diode but the general practice is to call both types as Zener diodes. Zener breakdown occurs due to breaking of covalent bonds by the strong electric field set up in the depletion region by the reverse voltage. It produces an extremely large number of electrons and holes which constitute the reverse saturation current (now called Zener current, Iz) whose value is limited only by the external resistance in the circuit. -
Lecture 09 Closing Switches.Pdf
High-voltage Pulsed Power Engineering, Fall 2018 Closing Switches Fall, 2018 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Switch fundamentals The importance of switches in pulsed power systems In high power pulse applications, switches capable of handling tera-watt power and having jitter time in the nanosecond range are frequently needed. The rise time, shape, and amplitude of the generator output pulse depend strongly on the properties of the switches. The basic principle of switching is simple: at a proper time, change the property of the switch medium from that of an insulator to that of a conductor or the reverse. To achieve this effectively and precisely, however, is rather a complex and difficult task. It involves not only the parameters of the switch and circuit but also many physical and chemical processes. 2/44 High-voltage Pulsed Power Engineering, Fall 2018 Switch fundamentals Design of a switch requires knowledge in many areas. The property of the medium employed between the switch electrodes is the most important factor that determines the performance of the switch. Classification Medium: gas switch, liquid switch, solid switch Triggering mechanism: self-breakdown or externally triggered switches Charging mode: Statically charged or pulse charged switches No. of conducting channels: single channel or multi-channel switches Discharge property: volume discharge or surface discharge switches 3/44 High-voltage Pulsed Power Engineering, Fall 2018 Characteristics of typical switches A. Trigger pulse: a fast pulse supplied externally to initiate the action of switching, the nature of which may be voltage, laser beam or charged particle beam. -
Arxiv:1701.07063V2 [Physics.Ins-Det] 23 Mar 2017 ACCEPTED by IEEE TRANSACTIONS on PLASMA SCIENCE, MARCH 2017 1
This work has been accepted for publication by IEEE Transactions on Plasma Science. The published version of the paper will be available online at http://ieeexplore.ieee.org. It can be accessed by using the following Digital Object Identifier: 10.1109/TPS.2017.2686648. c 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv:1701.07063v2 [physics.ins-det] 23 Mar 2017 ACCEPTED BY IEEE TRANSACTIONS ON PLASMA SCIENCE, MARCH 2017 1 Review of Inductive Pulsed Power Generators for Railguns Oliver Liebfried Abstract—This literature review addresses inductive pulsed the inductor. Therefore, a coil can be regarded as a pressure power generators and their major components. Different induc- vessel with the magnetic field B as a pressurized medium. tive storage designs like solenoids, toroids and force-balanced The corresponding pressure p is related by p = 1 B2 to the coils are briefly presented and their advantages and disadvan- 2µ tages are mentioned. Special emphasis is given to inductive circuit magnetic field B with the permeability µ. The energy density topologies which have been investigated in railgun research such of the inductor is directly linked to the magnetic field and as the XRAM, meat grinder or pulse transformer topologies. One therefore, its maximum depends on the tensile strength of the section deals with opening switches as they are indispensable for windings and the mechanical support. -
HY-5948A Hydrogen Triode Thyratron
SUNSTAR传感与控制 http://www.sensor-ic.com/ TEL:0755-83376549 FAX:0755-83376182E-MAIL: [email protected] HY-5948A Hydrogen Triode Thyratron Description The HY-5948A is a hydrogen-filled, triode thyratron. The hydrogen gas fill facilitates reliable operation at moderately-high pulse repetition rates when compared to similar deuterium filled thyratrons. The reservoir is designed to be operated at a nominal setting of 4.0 Vac. High pulse currents are achievable using only free or forced air convection cooling. The tube may be mounted by its mounting flange in any position. Specifications Absolute Ratings (Maximum)(Non-Simultaneous) epy, Peak Forward Anode Voltage (Notes 1, 2, 3) ...................................................................... 25 kV ib, Peak Forward Anode Current (Notes 4, 5) .............................................................................. 5 Ka ibx, Peak Reverse Anode Current (Note 6) .................................................................................. .1 ib epx, Peak Reverse Anode Voltage (Note 6) ............................................................................... 25 kV epy, Min, Minimum Anode Supply Voltage ..............................................................................1 k Vdc tp, Anode Current Pulse Duration (Note 5) ............................................................................. 10μsec Ib, Average Anode Current .................................................................................................... 2.2 Adc Ip, RMS Average Current (Note 9) ........................................................................................47.5 -
Michael J. Chudobiak Ii
New Approaches For Designing High Voltage, High Current Silicon Step Recovery Diodes for Pulse Sharpening Applications by Michael John Chudobiak, B.Sc. (Hons.) A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ottawa-Carleton Institute for Electrical Engineering Department of Electronics Carleton University Ottawa, Ontario, Canada July 30, 1996 Copyright 1996, Michael J. Chudobiak ii Acceptance Sheet iii Abstract Two promising new approaches for designing step recovery diodes (SRDs) for operation at voltages of several hundred volts are considered in this thesis. An entirely new type of step recovery diode is presented, which can operate with reverse voltages of several hundred volts and which exhibits exceptionally long lifetimes of several microseconds. These diodes have been named “wide field step recovery diodes (WFSRDs)”. Experimental results for two batches of fabricated devices are presented for 300 V operation into a 50 Ω load. Pulse sharpening operation with rise times as low as 0.9 ns and storage times as large as 9 ns has been observed for fabricated diodes with effective carrier lifetimes of 4500 ns. Pulse sharpening operation has also been observed with rise times as low as 0.6 ns and storage times as large as 30 ns for fabricated diodes with effective carrier lifetimes of 950 ns. These diodes have a diffused p-π-n structure. A comprehensive design theory is developed by considering the nature of the reverse transient in the diode. A method of calculating the breakdown voltage of diffused structures without resorting to simulations is also presented. -
The Evolution of the Hydrogen Thyratron C.A.Pirrie and H
The Evolution of the Hydrogen Thyratron C.A.Pirrie and H. Menown Marconi Applied Technologies Ltd Chelmsford, U.K. Abstract and Introduction. as for the hydrogen thyratron. The CV22, rated to 20 kV and 50 amps, was used extensively in early British radars, as were The evolution of the hydrogen thyratron from its early other Hg vapour thyratrons like the CV12, which was rated to beginnings to the present day is presented from the perspective 15kV and 200 amps. These devices suffered from several of one manufacturer. Radar requirements drove the drawbacks however. Firstly, mercury vapour pressure is a development of the hydrogen thyratron as a repetitive, high sensitive function of temperature, and thus the entire envelope power line-type modulator switch. Before the invention of the needed kept at a controlled temperature, generally around hydrogen thyratron, line-type radar modulators used a variety 60oC. Secondly, the energy at which Hg ions destroy the oxide of switches. It is worthwhile considering one of these in cathode is relatively low, and cathode bombardment was often particular, the mercury vapour thyratron, because this device the cause of end of life (if grid emission did not get there first). contained many of the necessary design features that were to Thirdly, they had a de-ionisation time by virtue of the ionic be incorporated into the hydrogen thyratron. mass that limited repetition rates to a few hundred pulses per second. Their ability to withstand inverse voltage was poor The Mercury Vapour Thyratron. and thus if the magnetron should arc, not an infrequent occurrence, the Hg thyratron would arc-back, to its own An example of an Hg vapour thyratron is shown in figure 1. -
Electronic Instrumentation for Measuring Detonation in Spark And
AN ABSTRACT OF TEE TEES IS OF for (Naine) (Degree) (Majr'r) Date Thesis presented-__Qa.iL-- T itle - .'42 _ _f.2W.0 -------------------------------------------------- Redacted for privacy Abstract Approved: ------------------ (Major Professor) Th. extreie1y transient nature of the mgtn. cn)n1tiOn roceec rsq.res th9t spocial intruiîtaticri be used to ittx1y the e.rociitoi ihezoitienn. Tho nethoda wKioh hwvo been used to sti.c1y 1ne propogation and cyli.rder pressure sra 1oacrbed and the 1iaitattorB cf the present istrw'ïmtRtion are pointed out, A r.c trpø cnCire irliuiCOEtor drro1ope in the laborntories of tho Stardard Oil Corpftny of California onployir the *noto-s;r1otion prino-tp).c is dAcribd. Thie engine indicator oonii5te essentially of a rnioto8trictivo nickel alloy red sur- rowed by two coilt of rire and hold fïrtt1'- agarist diaphrrn which is exposed to the oylincicr recure, To oie coil a voltße 13 r-i11od from a f1athliht b&tt.rjr. The seoon coil i5 C1ìCOt(d 'rouh a loti gain ar-:].tfior to the vertieal plMes of 1 cat'ode ray osoiUnraph. Tho cylinder preaure ii trans.t±ed to the rod end the longitudinal 3tre resu1tin changoß the r.ant1e pernability so that t ae is gorierated i th 8GCOI2J 0011 whiO) 16 directly nroportirnial fo rate of pressure ohene within the erine oylinder. OsoilloCrar8 XO presented bovin rete preesuro change va. tine diagrams of the combustion ?rOOeS hi n high speed Diosel engine, Ot1r asurent msde ou both Diesol eni3 aso1ino engines dth the "aneto-ttriotion enìine indicntor are ':i van, In addition to thu emïne jidioator several other cleotronic deyioec usad in itudyinC engine coution aro deeoribod cd illuatratod by photographs. -
Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM
energies Article Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM Michał Szulborski 1,* , Sebastian Łapczy ´nski 1, Łukasz Kolimas 1 , Łukasz Kozarek 2 and Desire Dauphin Rasolomampionona 1 1 Institute of Electrical Power Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland; [email protected] (S.Ł.); [email protected] (Ł.K.); [email protected] (D.D.R.) 2 ILF Consulting Engineers Polska Sp. z o.o., 02-823 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-662-119-014 Received: 23 September 2020; Accepted: 14 October 2020; Published: 20 October 2020 Abstract: Proper busbar selection based on analytical calculations is of great importance in terms of power grid functioning and its safe usage. Experimental tests concerning busbars are very expensive and difficult to be executed. Therefore, the great advantage for setting the valid parameters for busbar systems components are analytical calculations supported by FEM (finite element method) modelling and analysis. Determining electrodynamic forces in busbar systems tends to be crucial with regard to subsidiary, dependent parameters. In this paper analytical calculations of asymmetric three-phase busbar system were carried out. Key parameters, like maximal electrodynamic forces value, mechanical strength value, busbar natural frequency, etc., were calculated. Calculations were conducted with an ANSYS model of a parallel asymmetric busbar system, which confirmed the obtained results. Moreover, showing that a model based on finite elements tends to be very helpful in the selection of unusually-shaped busbars in various electrotechnical applications, like switchgear. -
Elegant Power Engineering Services & Consultants
Elegant Power Engineering Services & Consultants Registered Office Address : SRI RAM APARTMENTS, No. A5 PLOT NO. 28/8, LENIN NAGAR 10TH MAIN ROAD, AMBATTUR, CHENNAI – 600053. INDIA Operating Office Address : No.14, 14/1 PALANIAPPA NAGAR, PUTHUR, AMBATTUR, CHENNAI-600053 INDIA Contact : Mr.Arun Skype id : elegant.power Phone : +91 44 26581085/+91 9677397647 E-mail : [email protected] [email protected] [email protected] For More details, visit http://www.epesc.in Elegant Power Engineering Services & Consultants Introduction Elegant Power Engineering services & consultants was founded on November 2014 by dynamic and well experienced professionals We are motivated & focused on our goals & strive to ensure that “Only the most professional service is provided for our clients” Our skilled & Experienced Workforce are all trained to the required levels & all are fully conversant with all aspects of Industry standards & best practice Elegant Power Engineering services & Consultants prime focus is to provide diverse range of Electrical services on Commercial, Industrial, Residential & Retail Projects across the Globe. For More details, visit http://www.epesc.in Elegant Power Engineering Services & Consultants i) ENGINEERING SERVICES Detailed Electrical Design Engineering of HV systems, Distribution systems, Substation, Switchyards, Transmission. Providing precise calculations both Manual & Other software based(Such as Etap) on Short circuit analysis, cable sizing, transformer sizing, Generator sizing, Pump sizing calculation, Battery sizing, APFC Panel/Capacitor bank sizing, Bus bar sizing, Voltage drop calculation, Current transformer sizing, Selection of Parameters for Instrument Transformers, Size of DOL/star delta starter, etc. Substation Earthing design, Lighting system, Designing the high mast lighting-illumination earthing calculation, lightning calculation, etc Relay settings & Relay co-ordination. -
Concentration in Electric Power Engineering
Bachelor of Science in Electrical Engineering Concentration in Electric Power Engineering The Michigan Tech Department of Electrical and Computer Engineering is pleased to announce the launch of a Concentration in Electric Power Engineering, within the degree Bachelor of Science in Electrical Engineering. This concentration is intended for those students whose primary interest is in electrical engineering, and who seek to apply their skills in electric power. Examples of such applications include control, communications, electromagnetics, electronics, power and To complete the BSEE with a concentration in Electric Power energy systems, and signal processing. Engineering a student must include the following coursework: Students enrolled in the concentration will EE 3120 Electric Energy Systems 3 take a number of required and elective EE 4221 Power System Analysis I 3 courses in electric energy, power, and control EE 4222 Power Systems Analysis II 3 systems. Opportunities for capstone design EE 4226 Power Engineering Lab 1 projects in the electric power efield ar And 6 credits or more from: 6 EE 4219 Intro to Electric Machinery and Drives anticipated and students enrolled in the EE 4220 Intro to Electric Machinery and Drives Lab concentration will be encouraged to EE 4227 Power Electronics participate in those projects. EE 4228 Power Electronics Lab EE 4262 Digital and Non‐linear Control The BSEE Concentration in Electric Power EE 5200 Advanced Methods in Power Systems Engineering gives graduates a competitive EE 5230 Power System Operations EE 5223 Power System Protection advantage with potential employers in high‐ EE 5224 Power System Protection Lab demand industry sectors including electrical EE 5240 Computer Modeling of Power Systems utilities, electrical equipment, and industry EE 5250 Distribution Engineering EE 5260 Wind Power control. -
Rittal Handbook 34
Power distribution Busbar systems Overview ....................................................................................................205 Mini-PLS busbar system (40 mm) ...............................................................206 RiLine shrouded busbar systems (60 mm) ..................................................212 RiLine fuse elements...................................................................................236 RiLine accessories......................................................................................251 Ri4Power Form 1-4 Overview ....................................................................................................267 Baying systems TS 8 ....................................................................................76 Installation accessories for modular front design .........................................552 Maxi-PLS busbar systems ..........................................................................268 Flat-PLS busbar systems............................................................................271 Connection components for Maxi-PLS/Flat-PLS.........................................274 Busbar systems (100/185/150 mm)............................................................278 Cover systems Form 1................................................................................281 Compartment configuration Form 1-4.........................................................283 Ri4Power accessories ................................................................................289 -
Gigawatt Pulsed Power Technologies and Applications
Gigawatt Pulsed Power Technologies and Applications Patrik Appelgren Doctoral Thesis School of Electrical Engineering Space and Plasma Physics Royal Institute of Technology Stockholm, Sweden 2011 KTH School of Electrical Engineering Space and Plasma Physics TRITA-EE 2011:034 Royal Institute of Technology ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7415-962-2 Sweden Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fysikalisk elektroteknik den 20:e maj 2011 kl. 10.00 i sal F3, Lindstedtsvägen 26, Kungliga Tekniska Högskolan, Stockholm. © Patrik Appelgren, maj 2011 Tryck: Universitetsservice US AB iii Gigawatt Pulsed Power Technologies and Applications Patrik Appelgren Abstract This thesis summarizes work on electrical pulsed power technologies and applications of very high electric power, of gigawatt levels, and involving high explosives. One pulsed power technology studied utilizes high explosives to generate electromagnetic energy while one application studied uses electromagnetic energy to disrupt fast-moving metal jets created using high explosives. The pulsed power source studied is a helical explosively driven magnetic flux compression generator. This kind of device converts the chemically stored energy in a high explosive into electromagnetic energy in the form of a powerful current pulse. Two generators were studied in order to investigate their performance and to understand their operation. An electrical circuit model was used to simulate the electrical behaviour and a hydrocode was used to simulate the explosion and mechanical deformation of the device. The experimental results obtained were peak currents of 269 kA and 436 kA corresponding to current amplification ratios of 47 and 39.