The Sculptor's Feast In

Total Page:16

File Type:pdf, Size:1020Kb

The Sculptor's Feast In deepsky delights 4.5 primary and The Sculptor’s magnitude 11.5 feast in art companion. This white pair have a by Magda Streicher separation of 3.9″ [email protected] and position angle (PA) 243. There is a third companion The constellation Sculptor is situated of magnitude between Cetus to the north and Phoe- 9.3, also known nix to the south. It dates back to 1754 as h3216, with when the astronomer Nicolas Louis de a separation of Image source: www.stellarium.org Lacaille named 14 new constellations, 74.3″ and PA 297, the last of the 88 constellations recog- last measured in nized today. Originally called “L’Atelier 1956. du Sculpteur” (the sculptor’s workshop) in French. However, I like the German A mere three degrees SE of Delta Sculp- version; “Bildhauerwerkstatte”, it just toris is Blanco 1, discovered in 1949 by says it all. Victor Blanco – a very large, sparse, open cluster centred on magnitude 5 As is the case with most of the constel- Zeta Sculptoris. This area boasts a lations, it is difficult to see a sculptor in wealth of bright stars that can yield ex- this constellation’s star pattern. With a cellent observational results with binoc- bit of imagination it is just about possible ulars. Approximately 6° further south- to see the bowed head of a sculptor, pos- east is the magnitude 4.8 Eta Sculptoris, sibly busy creating a masterpiece. What very conveniently located in the central certainly is true though is that Sculptor, area of the Sculptor constellation. Open ranking thirty-sixth in size, contains star clusters in the constellation are some masterpiece objects. Let us now somewhat scarce, requiring me to fall follow the route of the chisel through the back on my list of asterisms. Streicher constellation, which appears faint but 90, a perfect zigzag grouping, can be shows off its objects with pride. found about 2° south of Eta Sculptoris. Six faint magnitude 11 stars are evenly The western part of the constellation is spaced in a NW-SE direction in perfect characterised by magnitude 4.4 Gamma symmetry over almost 12′ – but a few (west), magnitude 4.3 Beta (south) and stars to the north spoil this shape to some magnitude 4.5 Delta (north), approxi- extent. The far south-eastern, magnitude mately 6 to 7 degrees apart. Delta Sculp- 10.5 star, GSC 6997 366 in this grouping toris is a double star with a magnitude displays a very red colour. 218 mnassa vol 67 nos 11 & 12 219 december 2008 the sculptor’s feast in art Skymap produced using Cartes du Ciel The Sculptor constellation harbours a as a result of a direct collision with a huge number of galaxies like the Cart- satellite galaxy, causing the blue ring of wheel Ring Galaxy (ESO 350-G40) infant stars. with a special appearance and a distance of around 500 000 light years. It is situ- One of the most interesting galaxies is ated 2.5° south-east of Eta Sculptoris. found on the border between Sculptor Under the ideal conditions of a dark and Phoenix. NGC 55 is a splendid Bushveld sky, I made a desperate at- object with a lot of character. This tempt to glimpse this rare object with edge-on galaxy is very elongated in my 12-inch telescope. The only way an ENE to WNW direction (at 95x out was to sketch the complete star-field. magnification). The core is bright and The galaxy could barely be seen with outstanding but seems off-centre to the averted vision as a very faint, extremely west, north-western thicker part of the small out-of-focus point of light. A galaxy. A few faint stars can be seen mere 6′ north is a magnitude 13 double on the hazy surface. NGC 55 shows star which most conveniently points the some structure two-thirds of the way way, making this task slightly easier. down the south-eastern part, where the Comparison with star-maps afterwards galaxy tapers down and appears slightly showed that I was dead on target. Just broken off, surrounded by nebulosity. like that perfect image chiselled out by This broken part is also host to a small, the sculptor, so distinctive is this special hazy patch which has been catalogued object which, as photographs show, as IC 1537 (280x). The galaxy gave me forms an open wheel with a bright hub the impression of the space shuttle with or core, that it truly justifies its name. a plume of smoke just off its main body. The galaxy probably came into being James Dunlop was fortunate enough to 220 mnassa vol 67 nos 11 & 12 221 december 2008 deepsky delights be the discoverer of this galaxy, which of magnitude 5.5 Sigma Sculptoris. It he recorded as a beautiful long nebula. was discovered by Harlow Shapley on a I sometimes wonder what ancient secret photograph taken in 1937 with the 24- this exceptional galaxy harbours, almost inch Bruce Refractor in South Africa. like a sculptor, slowly and leisurely At a distance of 300 000 light-years it creating a work of art, forming it into a is possible to study the proper motion unique shape with so much character. of this system, which is centred at RA: 01h00m09s DEC:-33°42′33″, less than Approximately 7° east of NGC 55 5° north of NGC 300. is the open spiral galaxy NGC 300, also known as the Southern Pinwheel At its highest point in the sky at this time galaxy. This galaxy displays a large, of the year, Caroline Herschel’s most fa- faint, round to slightly oval smudge of mous and blessed southern galaxy can light in a northwest-southeast direction, be seen just 25′ from the border with growing very gradually brighter towards Cetus. Caroline discovered NGC 253 in its relatively small nu- cleus. Faint stars can be glimpsed embedded on the surface of the galaxy. Our deep-sky director, Auke Slotegraaf, saw this galaxy as a small cloud in his 11x80 binoculars, where a magnitude 9.5 star immersed on its south-western border. About 2.5° south-west of the galaxy, Lambda 1 and 2 form a lovely pair with a white magnitude Lucas Ferreira photographed NGC 253 with his 8-inch 6 primary and a yellow Sky-Watcher Newtonian and Pentax K110D SLR Camera magnitude 5.9 com- working at ISO 1600, by stacking forty 30 sec exposures panion star. The faint using DeepskyStacker. He writes: “WOW... was my first re- Sculptor dwarf galaxy, action when I saw this galaxy in my 25mm Plossl Eyepiece! also known as PGC It was huge and bright, it almost stretched right across my eyepiece. I certainly did not expect to see its dust lane, but 3589, (the first dwarf to there it was! It was indescribably delicate in my telescope be discovered in our lo- and reminded me of the great galaxy in Andromeda, just cal group of galaxies), is so much better positioned to observe from the southern situated around 2° south hemisphere.” 220 mnassa vol 67 nos 11 & 12 221 december 2008 the sculptor’s feast in art 1783 while searching for comets. Only although it could also have the appear- a truly dedicated observer would search ance of a dense, very distant faint open the dregs of the atmosphere so near to cluster. With higher power it appears as the horizon as NGC 253 would have ap- a bright ball of glittering lights, splash- peared from her home in England. NGC ing out in a haze. The uneven core is not 253 is situated only 50′ from the Cetus very dense, but it stands out fairly well. border and around 4.5° NNW of the Brighter stars dot the outer edge of this magnitude 4.3 sparkling blue/white Al- globular, which shows off beautifully pha Sculptoris. NGC 253 is a showpiece against the background star-field. This galaxy, very bright and almost edge-on globular is around 30 000 light-years in a southwest-northeast direction, with away and looks like a distant comet in a slightly brighter oval nucleus. The small telescopes. Sculptor’s claim to surface displays a complex structure of fame is that the southern galactic pole uneven, clumpy gas clouds, dark dust is less than one degree southwest of this lanes and knots with a handful of stars lovely globular. embedded within (218x). Around the outer edge the galaxy seems flimsy and Close to the eastern edge of the Sculp- woolly and I could almost see it hanging tor constellation and 5 degrees west of three-dimensionally in a truly dark night the Fornax constellation, the amateur sky. Slotegraaf observed the “Silver Bruno Alessi came across a lovely Coin” with 11x80 binoculars, which closed arrowhead star grouping, showed an unevenly bright ray of light wedged between stars. This almost edge-on spiral galaxy is one of the near- est galaxies beyond our local neighbour- hood. Deep-sky objects like these might well have transported Michelangelo and Da Vinci to another level in their art, if they had had the privilege of living in the modern era. Just a thought – don’t you think we are blessed? Make it a real and deliberate challenge and a guaran- teed sweet reward awaits you. Globular clusters are very popular among observers. NGC 288 is no ex- The Alessi J01232-3330 “Arrowhead” ception, situated only 1.7° south-east, asterism sketched using my 12-inch neighbouring NGC 253. It displays a Schmidt-Cassegrain telescope. North soft, busy glow with faint resolved stars, is up and east to the left.
Recommended publications
  • Arxiv:1601.00329V3 [Astro-Ph.CO] 19 Aug 2016 Early Data
    DES 2015-0085 FERMILAB-PUB-16-003-AE Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 22 August 2016 (MN LATEX style file v2.2) The Dark Energy Survey: more than dark energy - an overview Dark Energy Survey Collaboration: T. Abbott1, F. B. Abdalla2, J. Aleksic´47, S. Allam3, A. Amara4, D. Bacon6, E. Balbinot46, M. Banerji7;8, K. Bechtol56;57, A. Benoit-Levy´ 13;2;12, G. M. Bernstein10, E. Bertin12;13, J. Blazek14, C. Bonnett15, S. Bridle16, D. Brooks2, R. J. Brunner41;20, E. Buckley- Geer3, D. L. Burke11;17, G. B. Caminha51;52, D. Capozzi6, J. Carlsen6, A. Carnero-Rosell18;19, M. Carollo54, M. Carrasco-Kind20;21, J. Carretero9;47, F. J. Castander9, L. Clerkin2, T. Collett6, C. Conselice55, M. Crocce9, C. E. Cunha11, C. B. D’Andrea6, L. N. da Costa19;18, T. M. Davis49, S. Desai25;24, H. T. Diehl3, J. P. Dietrich25;24, S. Dodelson3;27;58, P. Doel2, A. Drlica-Wagner3, J. Estrada3, J. Etherington6, A. E. Evrard22;29, J. Fabbri2, D. A. Finley3, B. Flaugher3, R. J. Foley21;41, P. Fosalba9, J. Frieman27;3, J. Garc´ıa-Bellido43, E. Gaztanaga9, D. W. Gerdes22, T. Giannantonio8;7, D. A. Goldstein44;37, D. Gruen17;11, R. A. Gruendl20;21, P. Guarnieri6, G. Gutierrez3, W. Hartley4, K. Honscheid14;32, B. Jain10, D. J. James1, T. Jeltema53, S. Jouvel2, R. Kessler27;58, A. King49, D. Kirk2, R. Kron27, K. Kuehn33, N. Kuropatkin3, O. Lahav2;?, T. S. Li23, M. Lima19;35, H. Lin3, M. A. G. Maia19;18, M. Makler51, M. Manera2, C. Maraston6, J. L.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Spectroscopic Study of the Open Cluster Blanco 1
    A&A 507, 541–547 (2009) Astronomy DOI: 10.1051/0004-6361/200912772 & c ESO 2009 Astrophysics Spectroscopic study of the open cluster Blanco 1 J. F. González and H. Levato Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, Casilla 467, 5400 San Juan, Argentina e-mail: [email protected] Received 26 June 2009 / Accepted 17 August 2009 ABSTRACT Aims. As a part of our program on binaries in open clusters, we present a spectroscopic study of the bright stars of Blanco 1 aimed at detecting and characterizing spectroscopic binaries. Methods. Forty five stars previously mentioned as cluster candidates, plus another 24 stars in a wider region around the cluster were observed repeatedly during 6 years, with a spectral resolving power 13 300. Radial velocities were measured by cross-correlations. Results. We obtained a mean cluster velocity of 6.2 ± 0.3 km s−1 and determined kinematic membership. Eleven spectroscopic binaries were detected, and orbital solutions are presented for eight of them. Six binaries are confirmed to be members of the cluster. All of them are single-lined spectroscopic systems with periods in the range 1.9−1380 days. Considering all suspected binaries, the cluster binary frequency amounts to about 50%. Key words. open clusters and associations: individual: Blanco 1 – binaries: spectroscopic – techniques: radial velocities 1. Introduction [Fe/H] =+0.24 for the cluster, with an unusual chemical abun- dance pattern. More recently, Ford et al. (2005) found a metallic- While counting stars of spectral type A0 in Kapteyn’s selected ity close to solar: [Fe/H] =+0.04 ± 0.04.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Noao Fiscal Year Annual Report Fy 2011
    C NOAO SCIENTIFIC STAFF PUBLICATIONS NOAO Scientific Staff were authors and/or editors on a total of 211 publications in FY11.1 Abia, C., Cunha, K., … Smith, V.V., et al. 2011, ApJ, 737, L8, “The First Fluorine Abundance Determinations in Extragalactic Asymptotic Giant Branch Carbon Stars” Abt, H.A. 2011, AJ, 141, 165, “The Age of the Local Interstellar Bubble” Abt, H.A. 2011, RMxAC, 39, 117, “Symposium Summary” Abt, H.A. 2011, RMxAC, 39, 65, “The Tonantzintla Search for High Luminosity Stars” Abt, H.A. 2011, International Workshop on Double and Multiple Stars: Dynamics, Physics, and Instrumentation, eds. J. Docobo, V. Tamazian, Y. Balega (AIP), 14, “The Nature of Exoplanets” Abt, H.A. 2011, Future Professional Communication in Astronomy II, ed. A. Accomazzi (Springer), 77, “Astronomical Publication Rates in the US, UK, and Europe” Agudo, I., … Jannuzi, B.T., et al. 2011, ApJ, 735, L10, “On the Location of the γ-Ray Outburst Emission in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum” Assef, R.J., … Jannuzi, B.T., et al. 2011, ApJ, 728, 56, “The Mid-IR- and X-ray-Selected QSO Luminosity Function” Baines, E.K., … Ridgway, S.T., et al. 2011, ApJ, 731, 132, “The Angular Diameter and Effective Temperature of the Lithium-Rich K Giant HD 148293 from the CHARA Array” Barringer, D., Walker, C.E., Pompea, S.M., et al. 2011, ASP Conf. 443, eds. J. Jensen, J. Manning, M. Gibbs (ASP), 373, “Astronomy Meets the Environmental Sciences: Using GLOBE at Night Data” Batalha, N.M., … Howell, S.B., et al.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]
  • Exótico Cielo Profundo 9
    9 El escultor de galaxias Sculptor (Scl) Sculptoris. Escultor. · Exótico Cielo Profundo 9 de Rodolfo Ferraiuolo y Enzo De Bernardini Constelación Sculptor (Scl) Época Comienzos de la Primavera Austral Blanco 1 NGC 55 NGC 131 NGC 134 NGC 150 HD 4113 HD 4208 Objetos NGC 253 NGC 289 NGC 288 NGC 300 SDEG NGC 7793 El comienzo de la primavera austral es una gran ocasión para explorar algunos magníficos objetos de Sculptor, constelación creada en el año 1752 por el astrónomo rumano-francés Nicolai-Ludovici De La Caille, más conocido como Nicolás-Louis de Lacaille. Dentro de sus límites encontramos a, la mayoría de una veintena de galaxias, del tipo tardío, de un cercano (el más próximo al Grupo Local) y pequeño grupo, bautizado en 1959 por el astrónomo francés G. de Vaucouleurs como Grupo de Sculptor y, en 1960 por el astrónomo argentino J. L. Sérsic, Grupo del Polo Sur Galáctico, debido a que sus miembros se localizan agrupados en dirección al Polo Sur Galáctico. De este sugestivo grupo elegimos algunas hermosas galaxias que, estudiaremos junto a otros interesantes objetos más, como el cúmulo globular NGC 288, el cúmulo abierto Blanco 1, otras galaxias lejanas y, como curiosidad ya que no es habitual en la sección, veremos un par de brillantes estrellas con exoplanetas. Nuestro punto de partida será al Sur de la constelación, donde estudiaremos a NGC 300. Esta bonita galaxia espiral, clase SA(s)d, es miembro del Grupo del Polo Galáctico Sur y, fue descubierta por J. Dunlop en el año 1826, unos 8 años antes que J.
    [Show full text]
  • The Luminosity and Mass Functions of Low- Mass Stars in the Galactic Disk
    THE LUMINOSITY AND MASS FUNCTIONS OF LOW- MASS STARS IN THE GALACTIC DISK. II. THE FIELD The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bochanski, John J., Suzanne L. Hawley, Kevin R. Covey, Andrew A. West, I. Neill Reid, David A. Golimowski, and Zeljko Ivezic. “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD.” The Astronomical Journal 139, no. 6 (May 13, 2010): 2679–2699. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-6256/139/6/2679 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/93135 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astronomical Journal, 139:2679–2699, 2010 June doi:10.1088/0004-6256/139/6/2679 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD John J. Bochanski1,2, Suzanne L. Hawley1, Kevin R. Covey3, Andrew A. West2,4, I. Neill Reid5, David A. Golimowski5,andZeljkoˇ Ivezic´1 1 Astronomy Department, University of Washington, P.O. Box 351580, Seattle, WA 98195, USA; [email protected] 2 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Building 37, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 3 Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853, USA 4 Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received 2009 June 23; accepted 2010 April 21; published 2010 May 13 ABSTRACT We report on new measurements of the luminosity function (LF) and mass function (MF) of field low-mass dwarfs derived from Sloan Digital Sky Survey Data Release 6 photometry.
    [Show full text]
  • Arxiv:2011.13349V1 [Astro-Ph.EP] 26 Nov 2020
    "Draft version November 30, 2020 Typeset using LATEX twocolumn style in AASTeX62 Two young planetary systems around field stars with ages between 20 − 320 Myr from TESS George Zhou,1, 2 Samuel N. Quinn,1 Jonathan Irwin,1 Chelsea X. Huang,3 Karen A. Collins,1 Luke G. Bouma,4 Lamisha Khan,5, 1 Anaka Landrigan,5, 1 Andrew M. Vanderburg,6 Joseph E. Rodriguez,1 David W. Latham,1 Guillermo Torres,1 Stephanie T. Douglas,1 Allyson Bieryla,1 Gilbert A. Esquerdo,1 Perry Berlind,1 Michael L. Calkins,1 Lars A. Buchhave,7 David Charbonneau,1 Kevin I. Collins,8 John F. Kielkopf,9 Eric L. N. Jensen,10 Thiam-Guan Tan,11 Rhodes Hart,12 Brad Carter,12 Christopher Stockdale,13 Carl Ziegler,14 Nicholas Law,15 Andrew W. Mann,15 Steve B. Howell,16 Rachel A. Matson,16, 17 Nicholas J. Scott,16 Elise Furlan,18 Russel J. White,19 Coel Hellier,20 David R. Anderson,20, 21 Richard G. West,21 George Ricker,3 Roland Vanderspek,3 Sara Seager,3, 22, 23 Jon M. Jenkins,16 Joshua N. Winn,4 Ismael Mireles,24 Pamela Rowden,25 Daniel A. Yahalomi,1 Bill Wohler,26, 27 Clara. E. Brasseur,28 Tansu Daylan,3 and Knicole D. Colon´ 29 1Center for Astrophysics j Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA. 2Hubble Fellow 3Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4Department of Astrophysical Sciences, Princeton University, NJ 08544, USA. 5Cambridge Rindge and Latin High School 6Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA.
    [Show full text]
  • Vanderbilt University, Department of Physics & Astronomy 6301
    CURRICULUM VITAE: KEIVAN GUADALUPE STASSUN Vanderbilt University, Department of Physics & Astronomy 6301 Stevenson Center Ln., Nashville, TN 37235 Phone: 615-322-2828, FAX: 615-343-7263 [email protected] DEGREES EARNED University of Wisconsin—Madison Degree: Ph.D. in Astronomy, 2000 Thesis: Rotation, Accretion, and Circumstellar Disks among Low-Mass Pre-Main-Sequence Stars Advisor: Robert D. Mathieu University of California at Berkeley Degree: A.B. in Physics/Astronomy (double major) with Honors, 1994 Thesis: A Simultaneous Photometric and Spectroscopic Variability Study of Classical T Tauri Stars Advisor: Gibor Basri EMPLOYMENT HISTORY Vanderbilt University Founder and Director, Frist Center for Autism & Innovation, 2018-present Professor of Computer Science, School of Engineering, 2018-present Stevenson Endowed Professor of Physics & Astronomy, College of Arts & Science, 2016-present Senior Associate Dean for Graduate Education & Research, College of Arts & Science, 2015-18 Harvie Branscomb Distinguished Professor, 2015-16 Professor of Physics and Astronomy, 2011-16 Director, Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), 2007-present Founder and Director, Fisk-Vanderbilt Masters-to-PhD Bridge Program, 2004-15 Associate Professor of Physics and Astronomy, 2008-11 Assistant Professor of Physics and Astronomy, 2003-08 Fisk University Adjoint Professor of Physics, 2006-present University of Wisconsin—Madison NASA Hubble Postdoctoral Research Fellow, Astronomy, 2001-03 Area: Observational Studies of Low-Mass Star
    [Show full text]
  • The Galaxy Environment of Quasars in the Clowes-Campusano Large Quasar Group
    The Galaxy Environment of Quasars in the Clowes-Campusano Large Quasar Group Christopher Paul Haines A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Centre for Astrophysics Department of Physics, Astronomy and Mathematics University of Central Lancashire June 2001 Declaration The work presented in this thesis was carried out in the Department of Physics, Astromony and Mathematics, University of Central Lancashire. Unless otherwise stated it is the original work of the author. While registered for the degree of Doctor of Philosophy, the author has not been a registered candidate for another award of the University. This thesis has not been submitted in whole, or in part, for any other degree. Christopher Haines June 2001 Abstract Quasars have been used as efficient probes of high-redshift galaxy clustering as they are known to favour overdense environments. Quasars may also trace the large- scale structure of the early universe (0.4 1< z 1< 2) in the form of Large Quasar Groups (LQGs), which have comparable sizes (r.J 100-200hMpc) to the largest structures seen at the present epoch. This thesis describes an ultra-deep, wide-field optical study of a region containing three quasars from the largest known LJQG, the Clowes-Campusano LQG of at least 18 quasars at z 1.3, to examine their galaxy environments and to find indications of any associated large-scale structure in the form of galaxies. The optical data were obtained using the Big Throughput Camera (BTC) on the 4-m Blanco telescope at the Cerro Tololo Interamerican Observatory (CTIO) over two nights in April 1998, resulting in ultra-deep V, I imaging of a 40.6 x 34.9 arcmin 2 field centred at l0L47m30s, +05 0 30'00" containing three quasars from the LQG as well as four quasars at higher redshifts.
    [Show full text]