The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1601.00329V3 [Astro-Ph.CO] 19 Aug 2016 Early Data
DES 2015-0085 FERMILAB-PUB-16-003-AE Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 22 August 2016 (MN LATEX style file v2.2) The Dark Energy Survey: more than dark energy - an overview Dark Energy Survey Collaboration: T. Abbott1, F. B. Abdalla2, J. Aleksic´47, S. Allam3, A. Amara4, D. Bacon6, E. Balbinot46, M. Banerji7;8, K. Bechtol56;57, A. Benoit-Levy´ 13;2;12, G. M. Bernstein10, E. Bertin12;13, J. Blazek14, C. Bonnett15, S. Bridle16, D. Brooks2, R. J. Brunner41;20, E. Buckley- Geer3, D. L. Burke11;17, G. B. Caminha51;52, D. Capozzi6, J. Carlsen6, A. Carnero-Rosell18;19, M. Carollo54, M. Carrasco-Kind20;21, J. Carretero9;47, F. J. Castander9, L. Clerkin2, T. Collett6, C. Conselice55, M. Crocce9, C. E. Cunha11, C. B. D’Andrea6, L. N. da Costa19;18, T. M. Davis49, S. Desai25;24, H. T. Diehl3, J. P. Dietrich25;24, S. Dodelson3;27;58, P. Doel2, A. Drlica-Wagner3, J. Estrada3, J. Etherington6, A. E. Evrard22;29, J. Fabbri2, D. A. Finley3, B. Flaugher3, R. J. Foley21;41, P. Fosalba9, J. Frieman27;3, J. Garc´ıa-Bellido43, E. Gaztanaga9, D. W. Gerdes22, T. Giannantonio8;7, D. A. Goldstein44;37, D. Gruen17;11, R. A. Gruendl20;21, P. Guarnieri6, G. Gutierrez3, W. Hartley4, K. Honscheid14;32, B. Jain10, D. J. James1, T. Jeltema53, S. Jouvel2, R. Kessler27;58, A. King49, D. Kirk2, R. Kron27, K. Kuehn33, N. Kuropatkin3, O. Lahav2;?, T. S. Li23, M. Lima19;35, H. Lin3, M. A. G. Maia19;18, M. Makler51, M. Manera2, C. Maraston6, J. L. -
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Arxiv:1706.05055V1 [Astro-Ph.GA] 15 Jun 2017 Mation to a Full Hierarchical Model of the True Parallax and Photometry of Every Star—To Construct This Prior
Draft version June 19, 2017 Typeset using LATEX modern style in AASTeX61 IMPROVING GAIA PARALLAX PRECISION WITH A DATA-DRIVEN MODEL OF STARS Lauren Anderson,1 David W. Hogg,1, 2, 3, 4 Boris Leistedt,2, 5 Adrian M. Price-Whelan,6 and Jo Bovy1, 7, 8 1Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave, New York, NY 10010, USA 2Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA 3Center for Data Science, New York University, 60 Fifth Ave, New York, NY 10011, USA 4Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl17, D-69117 Heidelberg 5NASA Einstein Fellow 6Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA 7Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 8Alfred P. Sloan Fellow ABSTRACT Converting a noisy parallax measurement into a posterior belief over distance requires inference with a prior. Usually this prior represents beliefs about the stellar density distribution of the Milky Way. However, multi-band photometry exists for a large frac- tion of the Gaia TGAS Catalog and is incredibly informative about stellar distances. Here we use 2MASS colors for 1:4 million TGAS stars to build a noise-deconvolved empirical prior distribution for stars in color{magnitude space. This model contains no knowledge of stellar astrophysics or the Milky Way, but is precise because it accu- rately generates a large number of noisy parallax measurements under an assumption of stationarity; that is, it is capable of combining the information from many stars. -
Spectroscopic Study of the Open Cluster Blanco 1
A&A 507, 541–547 (2009) Astronomy DOI: 10.1051/0004-6361/200912772 & c ESO 2009 Astrophysics Spectroscopic study of the open cluster Blanco 1 J. F. González and H. Levato Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, Casilla 467, 5400 San Juan, Argentina e-mail: [email protected] Received 26 June 2009 / Accepted 17 August 2009 ABSTRACT Aims. As a part of our program on binaries in open clusters, we present a spectroscopic study of the bright stars of Blanco 1 aimed at detecting and characterizing spectroscopic binaries. Methods. Forty five stars previously mentioned as cluster candidates, plus another 24 stars in a wider region around the cluster were observed repeatedly during 6 years, with a spectral resolving power 13 300. Radial velocities were measured by cross-correlations. Results. We obtained a mean cluster velocity of 6.2 ± 0.3 km s−1 and determined kinematic membership. Eleven spectroscopic binaries were detected, and orbital solutions are presented for eight of them. Six binaries are confirmed to be members of the cluster. All of them are single-lined spectroscopic systems with periods in the range 1.9−1380 days. Considering all suspected binaries, the cluster binary frequency amounts to about 50%. Key words. open clusters and associations: individual: Blanco 1 – binaries: spectroscopic – techniques: radial velocities 1. Introduction [Fe/H] =+0.24 for the cluster, with an unusual chemical abun- dance pattern. More recently, Ford et al. (2005) found a metallic- While counting stars of spectral type A0 in Kapteyn’s selected ity close to solar: [Fe/H] =+0.04 ± 0.04. -
The Milky Way Tomography with SDSS I. Stellar Number Density
The Astrophysical Journal, 673:864Y914, 2008 February 1 A # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE MILKY WAY TOMOGRAPHY WITH SDSS. I. STELLAR NUMBER DENSITY DISTRIBUTION Mario Juric´,1,2 Zˇ eljko Ivezic´,3 Alyson Brooks,3 Robert H. Lupton,1 David Schlegel,1,4 Douglas Finkbeiner,1,5 Nikhil Padmanabhan,4,6 Nicholas Bond,1 Branimir Sesar,3 Constance M. Rockosi,3,7 Gillian R. Knapp,1 James E. Gunn,1 Takahiro Sumi,1,8 Donald P. Schneider,9 J. C. Barentine,10 Howard J. Brewington,10 J. Brinkmann,10 Masataka Fukugita,11 Michael Harvanek,10 S. J. Kleinman,10 Jurek Krzesinski,10,12 Dan Long,10 Eric H. Neilsen, Jr.,13 Atsuko Nitta,10 Stephanie A. Snedden,10 and Donald G. York14 Received 2005 October 21; accepted 2007 September 6 ABSTRACT Using the photometric parallax method we estimate the distances to 48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently avail- able data sample the distance range from 100 pc to 20 kpc and cover 6500 deg2 of sky, mostly at high Galactic lati- tudes (jbj > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the solar neighborhood (D < 2 kpc) is well fit by two exponential disks (the thin and thick disk) with scale heights and lengths, bias corrected for an assumed 35% binary fraction, of H1 ¼ 300 pc and L1 ¼ 2600 pc, and H2 ¼ 900 pc and L2 ¼ 3600 pc, and local thick-to-thin disk density normalization thick(R )/thin(R ) ¼ 12%. -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Arxiv:2012.08534V2 [Astro-Ph.CO] 2 Jan 2021
Draft version January 5, 2021 Typeset using LATEX preprint style in AASTeX61 COSMIC DISTANCES CALIBRATED TO 1% PRECISION WITH GAIA EDR3 PARALLAXES AND HUBBLE SPACE TELESCOPE PHOTOMETRY OF 75 MILKY WAY CEPHEIDS CONFIRM TENSION WITH ΛCDM Adam G. Riess,1,2 Stefano Casertano,1 Wenlong Yuan,2 J. Bradley Bowers,2 Lucas Macri,3 Joel C. Zinn,4, ∗ and Dan Scolnic5 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA 3Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA 4Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA 5Department of Physics, Duke University, Durham, NC 27708, USA (Received; Accepted) ABSTRACT We present an expanded sample of 75 Milky Way Cepheids with Hubble Space Telescope (HST) photometry and Gaia EDR3 parallaxes which we use to recalibrate the extragalactic distance ladder and refine the determination of the Hubble constant. All HST observations were obtained with the same instrument (WFC3) and filters (F555W, F814W, F160W) used for imaging of extragalactic Cepheids in Type Ia supernova (SN Ia) hosts. The HST observations used the WFC3 spatial scanning mode to mitigate saturation and reduce pixel-to-pixel calibration errors, reaching a mean photometric error of 5 millimags per observation. We use new Gaia EDR3 parallaxes, vastly improved since DR2, and the Period-Luminosity (P –L) relation of these Cepheids to simultaneously calibrate the extragalactic distance ladder and to refine the determination of the Gaia EDR3 parallax offset. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
Noao Fiscal Year Annual Report Fy 2011
C NOAO SCIENTIFIC STAFF PUBLICATIONS NOAO Scientific Staff were authors and/or editors on a total of 211 publications in FY11.1 Abia, C., Cunha, K., … Smith, V.V., et al. 2011, ApJ, 737, L8, “The First Fluorine Abundance Determinations in Extragalactic Asymptotic Giant Branch Carbon Stars” Abt, H.A. 2011, AJ, 141, 165, “The Age of the Local Interstellar Bubble” Abt, H.A. 2011, RMxAC, 39, 117, “Symposium Summary” Abt, H.A. 2011, RMxAC, 39, 65, “The Tonantzintla Search for High Luminosity Stars” Abt, H.A. 2011, International Workshop on Double and Multiple Stars: Dynamics, Physics, and Instrumentation, eds. J. Docobo, V. Tamazian, Y. Balega (AIP), 14, “The Nature of Exoplanets” Abt, H.A. 2011, Future Professional Communication in Astronomy II, ed. A. Accomazzi (Springer), 77, “Astronomical Publication Rates in the US, UK, and Europe” Agudo, I., … Jannuzi, B.T., et al. 2011, ApJ, 735, L10, “On the Location of the γ-Ray Outburst Emission in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum” Assef, R.J., … Jannuzi, B.T., et al. 2011, ApJ, 728, 56, “The Mid-IR- and X-ray-Selected QSO Luminosity Function” Baines, E.K., … Ridgway, S.T., et al. 2011, ApJ, 731, 132, “The Angular Diameter and Effective Temperature of the Lithium-Rich K Giant HD 148293 from the CHARA Array” Barringer, D., Walker, C.E., Pompea, S.M., et al. 2011, ASP Conf. 443, eds. J. Jensen, J. Manning, M. Gibbs (ASP), 373, “Astronomy Meets the Environmental Sciences: Using GLOBE at Night Data” Batalha, N.M., … Howell, S.B., et al. -
108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947 -
The Sculptor's Feast In
deepsky delights 4.5 primary and The Sculptor’s magnitude 11.5 feast in art companion. This white pair have a by Magda Streicher separation of 3.9″ [email protected] and position angle (PA) 243. There is a third companion The constellation Sculptor is situated of magnitude between Cetus to the north and Phoe- 9.3, also known nix to the south. It dates back to 1754 as h3216, with when the astronomer Nicolas Louis de a separation of Image source: www.stellarium.org Lacaille named 14 new constellations, 74.3″ and PA 297, the last of the 88 constellations recog- last measured in nized today. Originally called “L’Atelier 1956. du Sculpteur” (the sculptor’s workshop) in French. However, I like the German A mere three degrees SE of Delta Sculp- version; “Bildhauerwerkstatte”, it just toris is Blanco 1, discovered in 1949 by says it all. Victor Blanco – a very large, sparse, open cluster centred on magnitude 5 As is the case with most of the constel- Zeta Sculptoris. This area boasts a lations, it is difficult to see a sculptor in wealth of bright stars that can yield ex- this constellation’s star pattern. With a cellent observational results with binoc- bit of imagination it is just about possible ulars. Approximately 6° further south- to see the bowed head of a sculptor, pos- east is the magnitude 4.8 Eta Sculptoris, sibly busy creating a masterpiece. What very conveniently located in the central certainly is true though is that Sculptor, area of the Sculptor constellation. Open ranking thirty-sixth in size, contains star clusters in the constellation are some masterpiece objects. -
Exótico Cielo Profundo 9
9 El escultor de galaxias Sculptor (Scl) Sculptoris. Escultor. · Exótico Cielo Profundo 9 de Rodolfo Ferraiuolo y Enzo De Bernardini Constelación Sculptor (Scl) Época Comienzos de la Primavera Austral Blanco 1 NGC 55 NGC 131 NGC 134 NGC 150 HD 4113 HD 4208 Objetos NGC 253 NGC 289 NGC 288 NGC 300 SDEG NGC 7793 El comienzo de la primavera austral es una gran ocasión para explorar algunos magníficos objetos de Sculptor, constelación creada en el año 1752 por el astrónomo rumano-francés Nicolai-Ludovici De La Caille, más conocido como Nicolás-Louis de Lacaille. Dentro de sus límites encontramos a, la mayoría de una veintena de galaxias, del tipo tardío, de un cercano (el más próximo al Grupo Local) y pequeño grupo, bautizado en 1959 por el astrónomo francés G. de Vaucouleurs como Grupo de Sculptor y, en 1960 por el astrónomo argentino J. L. Sérsic, Grupo del Polo Sur Galáctico, debido a que sus miembros se localizan agrupados en dirección al Polo Sur Galáctico. De este sugestivo grupo elegimos algunas hermosas galaxias que, estudiaremos junto a otros interesantes objetos más, como el cúmulo globular NGC 288, el cúmulo abierto Blanco 1, otras galaxias lejanas y, como curiosidad ya que no es habitual en la sección, veremos un par de brillantes estrellas con exoplanetas. Nuestro punto de partida será al Sur de la constelación, donde estudiaremos a NGC 300. Esta bonita galaxia espiral, clase SA(s)d, es miembro del Grupo del Polo Galáctico Sur y, fue descubierta por J. Dunlop en el año 1826, unos 8 años antes que J.