Gaia Data Release 2: Observational Hertzsprung-Russell Diagrams ?

Total Page:16

File Type:pdf, Size:1020Kb

Gaia Data Release 2: Observational Hertzsprung-Russell Diagrams ? Astronomy & Astrophysics manuscript no. DR2HRD c ESO 2018 August 14, 2018 Gaia Data Release 2: Observational Hertzsprung-Russell diagrams ? Gaia Collaboration, C. Babusiaux1; 2, F. van Leeuwen3, M.A. Barstow4, C. Jordi5, A. Vallenari6, D. Bossini6, A. Bressan7, T. Cantat-Gaudin6; 5, M. van Leeuwen3, A.G.A. Brown8, T. Prusti9, J.H.J. de Bruijne9, C.A.L. Bailer-Jones10, M. Biermann11, D.W. Evans3, L. Eyer12, F. Jansen13, S.A. Klioner14, U. Lammers15, L. Lindegren16, X. Luri5, F. Mignard17, C. Panem18, D. Pourbaix19; 20, S. Randich21, P. Sartoretti2, H.I. Siddiqui22, C. Soubiran23, N.A. Walton3, F. Arenou2, U. Bastian11, M. Cropper24, R. Drimmel25, D. Katz2, M.G. Lattanzi25, J. Bakker15, C. Cacciari26, J. Castañeda5, L. Chaoul18, N. Cheek27, F. De Angeli3, C. Fabricius5, R. Guerra15, B. Holl12, E. Masana5, R. Messineo28, N. Mowlavi12, K. Nienartowicz29, P. Panuzzo2, J. Portell5, M. Riello3, G.M. Seabroke24, P. Tanga17, F. Thévenin17, G. Gracia-Abril30; 11, G. Comoretto22, M. Garcia-Reinaldos15, D. Teyssier22, M. Altmann11; 31, R. Andrae10, M. Audard12, I. Bellas-Velidis32, K. Benson24, J. Berthier33, R. Blomme34, P. Burgess3, G. Busso3, B. Carry17; 33, A. Cellino25, G. Clementini26, M. Clotet5, O. Creevey17, M. Davidson35, J. De Ridder36, L. Delchambre37, A. Dell’Oro21, C. Ducourant23, J. Fernández-Hernández38, M. Fouesneau10, Y. Frémat34, L. Galluccio17, M. García-Torres39, J. González-Núñez27; 40, J.J. González-Vidal5, E. Gosset37; 20, L.P. Guy29; 41, J.-L. Halbwachs42, N.C. Hambly35, D.L. Harrison3; 43, J. Hernández15, D. Hestroffer33, S.T. Hodgkin3, A. Hutton44, G. Jasniewicz45, A. Jean-Antoine-Piccolo18, S. Jordan11, A.J. Korn46, A. Krone-Martins47, A.C. Lanzafame48; 49, T. Lebzelter50, W. Löffler11, M. Manteiga51; 52, P.M. Marrese53; 54, J.M. Martín-Fleitas44, A. Moitinho47, A. Mora44, K. Muinonen55; 56, J. Osinde57, E. Pancino21; 54, T. Pauwels34, J.-M. Petit58, A. Recio-Blanco17, P.J. Richards59, L. Rimoldini29, A.C. Robin58, L.M. Sarro60, C. Siopis19, M. Smith24, A. Sozzetti25, M. Süveges10, J. Torra5, W. van Reeven44, U. Abbas25, A. Abreu Aramburu61, S. Accart62, C. Aerts36; 63, G. Altavilla53; 54; 26, M.A. Álvarez51, R. Alvarez15, J. Alves50, R.I. Anderson64; 12, A.H. Andrei65; 66; 31, E. Anglada Varela38, E. Antiche5, T. Antoja9; 5, B. Arcay51, T.L. Astraatmadja10; 67, N. Bach44, S.G. Baker24, L. Balaguer-Núñez5, P. Balm22, C. Barache31, C. Barata47, D. Barbato68; 25, F. Barblan12, P.S. Barklem46, D. Barrado69, M. Barros47, S. Bartholomé Muñoz5, J.-L. Bassilana62, U. Becciani49, M. Bellazzini26, A. Berihuete70, S. Bertone25; 31; 71, L. Bianchi72, O. Bienaymé42, S. Blanco-Cuaresma12; 23; 73, T. Boch42, C. Boeche6, A. Bombrun74, R. Borrachero5, S. Bouquillon31, G. Bourda23, A. Bragaglia26, L. Bramante28, M.A. Breddels75, N. Brouillet23, T. Brüsemeister11, E. Brugaletta49, B. Bucciarelli25, A. Burlacu18, D. Busonero25, A.G. Butkevich14, R. Buzzi25, E. Caffau2, R. Cancelliere76, G. Cannizzaro77; 63, R. Carballo78, T. Carlucci31, J.M. Carrasco5, L. Casamiquela5, M. Castellani53, A. Castro-Ginard5, P. Charlot23, L. Chemin79, A. Chiavassa17, G. Cocozza26, G. Costigan8, S. Cowell3, F. Crifo2, M. Crosta25, C. Crowley74, J. Cuypersy34, C. Dafonte51, Y. Damerdji37; 80, A. Dapergolas32, P. David33, M. David81, P. de Laverny17, F. De Luise82, R. De March28, D. de Martino83, R. de Souza84, A. de Torres74, J. Debosscher36, E. del Pozo44, M. Delbo17, A. Delgado3, H.E. Delgado60, S. Diakite58, C. Diener3, E. Distefano49, C. Dolding24, P. Drazinos85, J. Durán57, B. Edvardsson46, H. Enke86, K. Eriksson46, P. Esquej87, G. Eynard Bontemps18, C. Fabre88, M. Fabrizio53; 54, S. Faigler89, A.J. Falcão90, M. Farràs Casas5, L. Federici26, G. Fedorets55, P. Fernique42, F. Figueras5, F. Filippi28, K. Findeisen2, A. Fonti28, E. Fraile87, M. Fraser3; 91, B. Frézouls18, M. Gai25, S. Galleti26, D. Garabato51, F. García-Sedano60, A. Garofalo92; 26, N. Garralda5, A. Gavel46, P. Gavras2; 32; 85, J. Gerssen86, R. Geyer14, P. Giacobbe25, G. Gilmore3, S. Girona93, G. Giuffrida54; 53, F. Glass12, M. Gomes47, M. Granvik55; 94, A. Gueguen2; 95, A. Guerrier62, J. Guiraud18, R. 22 2 85; 32 11; 10 2 46 75 arXiv:1804.09378v2 [astro-ph.SR] 13 Aug 2018 Gutiérrez-Sánchez , R. Haigron , D. Hatzidimitriou , M. Hauser , M. Haywood , U. Heiter , A. Helmi , J. Heu2, T. Hilger14, D. Hobbs16, W. Hofmann11, G. Holland3, H.E. Huckle24, A. Hypki8; 96, V. Icardi28, K. Janßen86, G. Jevardat de Fombelle29, P.G. Jonker77; 63, Á.L. Juhász97; 98, F. Julbe5, A. Karampelas85; 99, A. Kewley3, J. Klar86, A. Kochoska100; 101, R. Kohley15, K. Kolenberg102; 36; 73, M. Kontizas85, E. Kontizas32, S.E. Koposov3; 103, G. Kordopatis17, Z. Kostrzewa-Rutkowska77; 63, P. Koubsky104, S. Lambert31, A.F. Lanza49, Y. Lasne62, J.-B. Lavigne62, Y. Le Fustec105, C. Le Poncin-Lafitte31, Y. Lebreton2; 106, S. Leccia83, N. Leclerc2, I. Lecoeur-Taibi29, H. Lenhardt11, F. Leroux62, S. Liao25; 107; 108, E. Licata72, H.E.P. Lindstrøm109; 110, T.A. Lister111, E. Livanou85, A. Lobel34, M. López69, S. Managau62, R.G. Mann35, G. Mantelet11, O. Marchal2, J.M. Marchant112, M. Marconi83, S. Marinoni53; 54, G. Marschalkó97; 113, D.J. Marshall114, M. Martino28, G. Marton97, N. Mary62, D. Massari75, G. Matijevicˇ86, T. Mazeh89, P.J. McMillan16, S. Messina49, D. Michalik16, N.R. Millar3, D. Molina5, R. Molinaro83, Article number, page 1 of 28 A&A proofs: manuscript no. DR2HRD L. Molnár97, P. Montegriffo26, R. Mor5, R. Morbidelli25, T. Morel37, D. Morris35, A.F. Mulone28, T. Muraveva26, I. Musella83, G. Nelemans63; 36, L. Nicastro26, L. Noval62, W. O’Mullane15; 41, C. Ordénovic17, D. Ordóñez-Blanco29, P. Osborne3, C. Pagani4, I. Pagano49, F. Pailler18, H. Palacin62, L. Palaversa3; 12, A. Panahi89, M. Pawlak115; 116, A.M. Piersimoni82, F.-X. Pineau42, E. Plachy97, G. Plum2, E. Poggio68; 25, E. Poujoulet117, A. Prša101, L. Pulone53, E. Racero27, S. Ragaini26, N. Rambaux33, M. Ramos-Lerate118, S. Regibo36, C. Reylé58, F. Riclet18, V. Ripepi83, A. Riva25, A. Rivard62, G. Rixon3, T. Roegiers119, M. Roelens12, M. Romero-Gómez5, N. Rowell35, F. Royer2, L. Ruiz-Dern2, G. Sadowski19, T. Sagristà Sellés11, J. Sahlmann15; 120, J. Salgado121, E. Salguero38, N. Sanna21, T. Santana-Ros96, M. Sarasso25, H. Savietto122, M. Schultheis17, E. Sciacca49, M. Segol123, J.C. Segovia27, D. Ségransan12, I-C. Shih2, L. Siltala55; 124, A.F. Silva47, R.L. Smart25, K.W. Smith10, E. Solano69; 125, F. Solitro28, R. Sordo6, S. Soria Nieto5, J. Souchay31, A. Spagna25, F. Spoto17; 33, U. Stampa11, I.A. Steele112, H. Steidelmüller14, C.A. Stephenson22, H. Stoev126, F.F. Suess3, J. Surdej37, L. Szabados97, E. Szegedi-Elek97, D. Tapiador127; 128, F. Taris31, G. Tauran62, M.B. Taylor129, R. Teixeira84, D. Terrett59, P. Teyssandier31, W. Thuillot33, A. Titarenko17, F. Torra Clotet130, C. Turon2, A. Ulla131, E. Utrilla44, S. Uzzi28, M. Vaillant62, G. Valentini82, V. Valette18, A. van Elteren8, E. Van Hemelryck34, M. Vaschetto28, A. Vecchiato25, J. Veljanoski75, Y. Viala2, D. Vicente93, S. Vogt119, C. von Essen132, H. Voss5, V. Votruba104, S. Voutsinas35, G. Walmsley18, M. Weiler5, O. Wertz133, T. Wevers3; 63, Ł. Wyrzykowski3; 115, A. Yoldas3, M. Žerjal100; 134, H. Ziaeepour58, J. Zorec135, S. Zschocke14, S. Zucker136, C. Zurbach45, and T. Zwitter100 (Affiliations can be found after the references) Received ; accepted ABSTRACT Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies. Key words. parallaxes – Hertzsprung-Russell and C-M diagrams – solar neighbourhood – Stars: evolution 1. Introduction geneous samples that cover the full HRD. Moreover, a precise HRD provides a great framework for exploring stellar popula- The Hertzsprung-Russell diagram (HRD) is one of the most im- tions and stellar systems. portant tools in stellar studies. It illustrates empirically the rela- tionship between stellar spectral type (or temperature or colour Up to now, the most complete solar neighbourhood empir- index) and luminosity (or absolute magnitude). The position of ical HRD could be obtained by combining the Hipparcos data a star in the HRD is mainly given by its initial mass, chemical (Perryman et al. 1995) with nearby stellar catalogues to provide composition, and age, but effects such as rotation, stellar wind, the faint end (e.g.
Recommended publications
  • Arxiv:1601.00329V3 [Astro-Ph.CO] 19 Aug 2016 Early Data
    DES 2015-0085 FERMILAB-PUB-16-003-AE Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 22 August 2016 (MN LATEX style file v2.2) The Dark Energy Survey: more than dark energy - an overview Dark Energy Survey Collaboration: T. Abbott1, F. B. Abdalla2, J. Aleksic´47, S. Allam3, A. Amara4, D. Bacon6, E. Balbinot46, M. Banerji7;8, K. Bechtol56;57, A. Benoit-Levy´ 13;2;12, G. M. Bernstein10, E. Bertin12;13, J. Blazek14, C. Bonnett15, S. Bridle16, D. Brooks2, R. J. Brunner41;20, E. Buckley- Geer3, D. L. Burke11;17, G. B. Caminha51;52, D. Capozzi6, J. Carlsen6, A. Carnero-Rosell18;19, M. Carollo54, M. Carrasco-Kind20;21, J. Carretero9;47, F. J. Castander9, L. Clerkin2, T. Collett6, C. Conselice55, M. Crocce9, C. E. Cunha11, C. B. D’Andrea6, L. N. da Costa19;18, T. M. Davis49, S. Desai25;24, H. T. Diehl3, J. P. Dietrich25;24, S. Dodelson3;27;58, P. Doel2, A. Drlica-Wagner3, J. Estrada3, J. Etherington6, A. E. Evrard22;29, J. Fabbri2, D. A. Finley3, B. Flaugher3, R. J. Foley21;41, P. Fosalba9, J. Frieman27;3, J. Garc´ıa-Bellido43, E. Gaztanaga9, D. W. Gerdes22, T. Giannantonio8;7, D. A. Goldstein44;37, D. Gruen17;11, R. A. Gruendl20;21, P. Guarnieri6, G. Gutierrez3, W. Hartley4, K. Honscheid14;32, B. Jain10, D. J. James1, T. Jeltema53, S. Jouvel2, R. Kessler27;58, A. King49, D. Kirk2, R. Kron27, K. Kuehn33, N. Kuropatkin3, O. Lahav2;?, T. S. Li23, M. Lima19;35, H. Lin3, M. A. G. Maia19;18, M. Makler51, M. Manera2, C. Maraston6, J. L.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • A Gaia DR2 View of the Open Cluster Population in the Milky Way T
    Astronomy & Astrophysics manuscript no. manuscript˙arXiv2 © ESO 2018 July 13, 2018 A Gaia DR2 view of the Open Cluster population in the Milky Way T. Cantat-Gaudin1, C. Jordi1, A. Vallenari2, A. Bragaglia3, L. Balaguer-Nu´nez˜ 1, C. Soubiran4, D. Bossini2, A. Moitinho5, A. Castro-Ginard1, A. Krone-Martins5, L. Casamiquela4, R. Sordo2, and R. Carrera2 1 Institut de Ciencies` del Cosmos, Universitat de Barcelona (IEEC-UB), Mart´ı i Franques` 1, E-08028 Barcelona, Spain 2 INAF-Osservatorio Astronomico di Padova, vicolo Osservatorio 5, 35122 Padova, Italy 3 INAF-Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, 40129 Bologna, Italy 4 Laboratoire dAstrophysique de Bordeaux, Univ. Bordeaux, CNRS, UMR 5804, 33615 Pessac, France 5 CENTRA, Faculdade de Ciencias,ˆ Universidade de Lisboa, Ed. C8, Campo Grande, P-1749-016 Lisboa, Portugal Received date / Accepted date ABSTRACT Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the sub-milliarcsecond level and homogeneous pho- tometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compile a list of thousands of known or putative clusters from the literature. We then apply an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters.
    [Show full text]
  • Spectroscopic Study of the Open Cluster Blanco 1
    A&A 507, 541–547 (2009) Astronomy DOI: 10.1051/0004-6361/200912772 & c ESO 2009 Astrophysics Spectroscopic study of the open cluster Blanco 1 J. F. González and H. Levato Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, Casilla 467, 5400 San Juan, Argentina e-mail: [email protected] Received 26 June 2009 / Accepted 17 August 2009 ABSTRACT Aims. As a part of our program on binaries in open clusters, we present a spectroscopic study of the bright stars of Blanco 1 aimed at detecting and characterizing spectroscopic binaries. Methods. Forty five stars previously mentioned as cluster candidates, plus another 24 stars in a wider region around the cluster were observed repeatedly during 6 years, with a spectral resolving power 13 300. Radial velocities were measured by cross-correlations. Results. We obtained a mean cluster velocity of 6.2 ± 0.3 km s−1 and determined kinematic membership. Eleven spectroscopic binaries were detected, and orbital solutions are presented for eight of them. Six binaries are confirmed to be members of the cluster. All of them are single-lined spectroscopic systems with periods in the range 1.9−1380 days. Considering all suspected binaries, the cluster binary frequency amounts to about 50%. Key words. open clusters and associations: individual: Blanco 1 – binaries: spectroscopic – techniques: radial velocities 1. Introduction [Fe/H] =+0.24 for the cluster, with an unusual chemical abun- dance pattern. More recently, Ford et al. (2005) found a metallic- While counting stars of spectral type A0 in Kapteyn’s selected ity close to solar: [Fe/H] =+0.04 ± 0.04.
    [Show full text]
  • CURRICULUM VITAE NAME: Robert David Mathieu ADDRESS
    CURRICULUM VITAE NAME: Robert David Mathieu ADDRESS: Department of Astronomy University of Wisconsin - Madison Madison, WI 53706 (608) 890-3767 [email protected] RESEARCH INTERESTS: Stellar evolution and dynamics; STEM learning in higher education Special interests: Alternative stellar evolution pathways Binary star populations Structure, kinematics and dynamics of star clusters and star-forming regions Future faculty development in STEM EDUCATION: University of California, Berkeley Degree: Ph.D. in Astronomy, 1983 Thesis Title: The Structure, Internal Kinematics and Dynamics of Open Star Clusters Thesis Advisor: Prof. Ivan R. King Princeton University Degree: A.B. summa cum laude in Astronomy, 1978 Thesis Title: The Effects of Binaries on the Evolution of Isolated Spherical Star Systems Thesis Advisor: Prof. Lyman Spitzer, Jr. PROFESSIONAL POSITIONS: 2018- Albert E. Whitford Professor of Astronomy 2015- Affiliate Professor, Education Leadership and Policy Analysis 2013-2019 Associate Dean for Research, School of Education 2013-2019 Director, Wisconsin Center for Education Research 2013- Vilas Distinguished Achievement Professor of Astronomy 2008-12 Chair, Department of Astronomy 2002- Director, Center for the Integration of Research, Teaching, and Learning 1999-04 President, WIYN Observatory Board of Directors 1998-01 Associate Director, National Institute for Science Education 1998-01 Director, College Level - 1 Institute 1996- Professor, University of Wisconsin - Madison 1992-93 Visiting Associate Astronomer, Lick Observatory,
    [Show full text]
  • Chromospheric Activity As Age Indicator an L-Shaped Chromospheric-Activity Versus Age Diagram G
    A&A 551, L8 (2013) Astronomy DOI: 10.1051/0004-6361/201220364 & c ESO 2013 Astrophysics Letter to the Editor Chromospheric activity as age indicator An L-shaped chromospheric-activity versus age diagram G. Pace Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] Received 11 September 2012 / Accepted 24 January 2013 ABSTRACT Context. Chromospheric activity has been calibrated and widely used as an age indicator. However, it has been suggested that the viability of this age indicator is, in the best case, limited to stars younger than about 1.5 Gyr. Aims. I aim to define the age range for which chromospheric activity is a robust astrophysical clock. Methods. I collected literature measurements of the S-index in field stars, which is a measure of the strength of the H and K lines of the Ca II and a proxy for chromospheric activity, and exploited the homogeneous database of temperature and age determinations for field stars provided by the Geneva-Copenhagen survey of the solar neighbourhood. Results. Field data, inclusive data previously used to calibrate chromospheric ages, confirm the result found using open cluster data, i.e. there is no decay of chromospheric activity after about 2 Gyr. Conclusions. The only existing indication supporting the viability of chromospheric ages older than 2 Gyr is the similarity of chro- mospheric activity levels in the components of 35 dwarf binaries. However, even in the most optimistic scenario, uncertainty in age determination for field stars and lack of sufficient data in open clusters make any attempt of calibrating an age activity relationship for old stars premature.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • SAA 100 Club
    S.A.A. 100 Observing Club Raleigh Astronomy Club Version 1.2 07-AUG-2005 Introduction Welcome to the S.A.A. 100 Observing Club! This list started on the USENET newsgroup sci.astro.amateur when someone asked about everyone’s favorite, non-Messier objects for medium sized telescopes (8-12”). The members of the group nominated objects and voted for their favorites. The top 100 objects, by number of votes, were collected and ranked into a list that was published. This list is a good next step for someone who has observed all the objects on the Messier list. Since it includes objects in both the Northern and Southern Hemispheres (DEC +72 to -72), the award has two different levels to accommodate those observers who aren't able to travel. The first level, the Silver SAA 100 award requires 88 objects (all visible from North Carolina). The Gold SAA 100 Award requires all 100 objects to be observed. One further note, many of these objects are on other observing lists, especially Patrick Moore's Caldwell list. For convenience, there is a table mapping various SAA100 objects with their Caldwell counterparts. This will facilitate observers who are working or have worked on these lists of objects. We hope you enjoy looking at all the great objects recommended by other avid astronomers! Rules In order to earn the Silver certificate for the program, the applicant must meet the following qualifications: 1. Be a member in good standing of the Raleigh Astronomy Club. 2. Observe 80 Silver observations. 3. Record the time and date of each observation.
    [Show full text]
  • Arxiv:1402.6333V1 [Astro-Ph.SR] 25 Feb 2014
    Draft version August 2, 2021 Preprint typeset using LATEX style emulateapj v. 08/13/06 A TALE OF TWO ANOMALIES: DEPLETION, DISPERSION, AND THE CONNECTION BETWEEN THE STELLAR LITHIUM SPREAD AND INFLATED RADII ON THE PRE-MAIN SEQUENCE Garrett Somers and Marc H. Pinsonneault Draft version August 2, 2021 ABSTRACT We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed Teff is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters.
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]
  • AHSP Telescope Observing Award
    AHSP Telescope Observing Award Compiled by Dan L. Ward • To qualify for the TOA pin, you must see 15 of the following 20 telescope targets. Check off each as you spot them. Seen # Object Const. Type* RA Dec Mag Size Nickname 1. M13 Her GC 16 41.7 +36 28 5.9 16' Great Hercules Globular 2. M57 Lyr PN 18 53.6 +33 02 9.7 86"x62" Ring Nebula 3. NGC 6819 Cyg OC 19 41.3 +40 11 7.3 5’ Fox Head Cluster 4. M27 Vul PN 19 59.6 +22 43 8.1 8’x6’ Dumbbell Nebula 5. NGC 7000 Cyg BN 20 58.8 +44 20 - 120'x100' North America Nebula 6. NGC 7009 Aqr PN 21 04.2 -11 22 8.3 28”x23” Saturn Nebula 7. M15 Peg GC 21 30.0 +12 10 7.5 12’ Great Pegasus Cluster 8. M2 Aqr GC 21 33.5 -00 49 6.3 16’ NGC 7089 9. M39 Cyg OC 21 32.2 +48 26 4.6 32' NGC 7092 10. M30 Cap GC 21 40.4 -23 11 8.4 11’x11’ NGC 7099 11. NGC 7331 Peg Gx 22 37.1 +34 25 10.4 11’x4’ Caldwell 30 12. M31 And Gx 00 42.8 +41 16 4.5 178’ Andromeda Galaxy 13. NGC 253 Scl Gx 00 47.5 -25 18 7.1 25’x7’ Sculptor Galaxy 14. NGC 457 Cas OC 01 19.1 +58 20 6.4 13’ Owl Cluster/ET Cluster 15. M74 Psc Gx 01 36.7 +15 47 10.5 10’x9.5’ The Phantom 16.
    [Show full text]