2020 ETHANOL INDUSTRY OUTLOOK 1 Focusing Forward, from Challenge to Opportunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fuel Properties Comparison
Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb. -
"Implementing EPA's Clean Power Plan: a Menu of Options," NACAA
Implementing EPA’s Clean Power Plan: A Menu of Options May 2015 Implementing EPA’s Clean Power Plan: A Menu of Options May 2015 Implementing EPA’s Clean Power Plan: A Menu of Options Acknowledgements On behalf of the National Association of Clean Air Agencies (NACAA), we are pleased to provide Implementing EPA’s Clean Power Plan: A Menu of Options. Our association developed this document to help state and local air pollution control agencies identify technologies and policies to reduce greenhouse gases from the power sector. We hope that states and localities, as well as other stakeholders, find this document useful as states prepare their compliance strategies to achieve the carbon dioxide emissions targets set by the EPA’s Clean Power Plan. NACAA would like to thank The Regulatory Assistance Project (RAP) for its invaluable assistance in developing this document. We particularly thank Rich Sedano, Ken Colburn, John Shenot, Brenda Hausauer, and Camille Kadoch. In addition, we recognize the contribution of many others, including Riley Allen (RAP), Xavier Baldwin (Burbank Water and Power [retired]), Dave Farnsworth (RAP), Bruce Hedman (Institute for Industrial Productivity), Chris James (RAP), Jim Lazar (RAP), Carl Linvill (RAP), Alice Napoleon (Synapse), Rebecca Schultz (independent contractor), Anna Sommer (Sommer Energy), Jim Staudt (Andover Technology Partners), and Kenji Takahashi (Synapse). We would also like to thank those involved in the production of this document, including Patti Casey, Cathy Donohue, and Tim Newcomb (Newcomb Studios). We are grateful to Stu Clark (Washington) and Larry Greene (Sacramento, California), co-chairs of NACAA’s Global Warming Committee, under whose guidance this document was prepared. -
1 the Renewable Fuel Standard Program: Measuring the Impact on Crude Oil and Gasoline Prices Philip K. Verleger, Jr.1 This Paper
The Renewable Fuel Standard Program: Measuring the Impact on Crude Oil and Gasoline Prices Philip K. Verleger, Jr.1 This paper examines the impact of the Renewable Fuel Standard program (RFS) on crude oil and gasoline prices. The RFS program was enacted fourteen years ago in 2005, but the particular focus of this paper is on the period from 2015 to 2018. The conclusions offered from this research are that the RFS program has provided economic benefits to consumers in the United States and worldwide. Retail gasoline prices are lower thanks to the program. The findings from an econometric model show that the savings to consumers resulting from the RFS averaged $0.22 per gallon from 2015 through 2018. Quantifying the Benefits of Renewable Fuels The first and most obvious benefit from renewables lies in the price of crude oil. The blending of approximately one million barrels per day of ethanol into U.S. motor fuels over the 2015 through 2018 period has lowered the average price of crude by $6 per barrel. This reduction has cut the retail gasoline price by $0.22 per gallon from the level that would have obtained absent the presence of ethanol in the motor gasoline supply. The lowering of gasoline prices confers a second benefit on consumers. Because gasoline demand is price inelastic, consumers have been able to allocate a smaller percentage of their total consumption budget to fuel purchases. This has allowed them to expend more on other goods. Over four years, US consumers have been able to spend almost $90 billion per year more on other goods because of gasoline prices being pulled down by renewable fuel use. -
Biogas As a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context
sustainability Article Biogas as a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context Muhammad Arfan *, Zhao Wang, Shveta Soam and Ola Eriksson Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, SE-801 76 Gävle, Sweden; [email protected] (Z.W.); [email protected] (S.S.); [email protected] (O.E.) * Correspondence: [email protected]; Tel.: +46-704-400-593 Abstract: Biofuels policy instruments are important in the development and diffusion of biogas as a transport fuel in Sweden. Their effectiveness with links to geodemographic conditions has not been analysed systematically in studying biogas development in a less urbanised regions, with high po- tential and primitive gas infrastructure. One such region identified is Gävleborg in Sweden. By using value chain statistics, interviews with related actors, and studying biofuels policy instruments and implications for biogas development, it is found that the policy measures have not been as effective in the region as in the rest of Sweden due to different geodemographic characteristics of the region, which has resulted in impeded biogas development. In addition to factors found in previous studies, the less-developed biogas value chain in this region can be attributed particularly to undefined rules of the game, which is lack of consensus on trade-off of resources and services, unnecessary competition among several fuel alternatives, as well as the ambiguity of municipalities’ prioritization, and regional cultural differences. To strengthen the regional biogas sector, system actors need a strategy to eliminate blocking effects of identified local factors, and national policy instruments should provide mechanisms to process geographical conditions in regulatory, economic support, Citation: Arfan, M.; Wang, Z.; Soam, and market formation. -
The Impact of the U.S. Renewable Fuel Standard on Food and Feed Prices
BRIEFING © 2021 INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION JANUARY 2021 The impact of the U.S. Renewable Fuel Standard on food and feed prices Jane O’Malley, Stephanie Searle Stakeholders have engaged in significant debate around the U.S. Renewable Fuel Standard (RFS) and its impact on food and feed prices since its implementation in 2005. Various stakeholders have expressed concerns that the RFS has adverse economic impacts on consumers, livestock farmers, food manufacturers, and restaurants. This briefing paper reviews evidence of the impacts of the RFS on food prices, with a focus on corn and soy, and presents new analysis on the impact of the RFS on U.S. livestock farmers. We summarize the history of debate surrounding the RFS from the perspective of farmers, industry, and policymakers, and analyze its economic impacts relative to a counterfactual, no-RFS scenario. BACKGROUND ON THE RENEWABLE FUEL STANDARD AND NATIONAL DEBATE Farmers in the United States consider the RFS to be a boon for their industry, particularly for the crops that are biofuel feedstocks, most notably corn and soybean. Today, nearly 40% of the U.S. national corn crop, or 6.2 billion bushels, is used for ethanol production while approximately 30% of soy oil produced in the United States is used in biodiesel.1 The RFS is generally believed by stakeholders to increase corn prices. www.theicct.org 1 David W. Olson and Thomas Capehart, “Dried Distillers Grains (DDGs) Have Emerged as a Key Ethanol Coproduct,” United States Department of Agriculture Economic Research Service, October 1, 2019, https:// [email protected] www.ers.usda.gov/amber-waves/2019/october/dried-distillers-grains-ddgs-have-emerged-as-a-key-ethanol- coproduct/; U.S. -
2020 ANNUAL REPORT Table of CONTENTS EDITOR’S COMMENTS
2020 ANNUAL REPORT table of CONTENTS EDITOR’S COMMENTS ...................................................................................................... 3 ENERGY SITES OF NORTH DAKOTA ................................................................................... 4 A VIEW FROM ABOVE ....................................................................................................... 4 NORTH DAKOTA GENERATION .......................................................................................... 5 GENERATION ................................................................................................................... 6 Mining ..................................................................................................................... 6 Reclamation ............................................................................................................. 7 Coal-Based ................................................................................................................. 8 Peaking Plants ............................................................................................................. 9 Wind .........................................................................................................................10 Hydroelectric ..............................................................................................................14 Geothermal ................................................................................................................15 Solar .........................................................................................................................16 -
Renewable Fuels Standard
EmergingEmerging AlternativeAlternative FuelFuel IssuesIssues May, 2007 Agricultural Air Quality Task Force Meeting Paul Argyropoulos, Senior Policy Advisor EPA’s Office of Transportation and Air Quality FutureFuture forfor FuelsFuels MeetingMeeting inin thethe Middle?Middle? - Currently, More Questions than Answers - Environment Energy Economics The Sweet Spot ? 2 ExistingExisting andand EmergingEmerging IssuesIssues ThatThat WillWill ImpactImpact thethe FuelsFuels MixMix Production Technologies Infrastructure Sustainable Feedstocks Economics Metrics: Lifecycle, Energy, Hybrid Federal / State Incentives Energy Security, Diversity Vehicles/Engines and Sustainability Fleet Efficiency Environmental Protection: Fuel Types and Multi-Media Issues Usage Scenarios The Sweet Spot? Meeting Energy Needs, Environmental Protection Economically Sustainable 3 WhereWhere AreAre WeWe Now?Now? Federal Fuels – Systems / Integrated Approach Final National RFS – April 10, 2007 Reformulated Fuels Impact of Removal of Oxy Requirement Conventional Fuels The Re-emergence of “Alternative Fuels”? New/Future Fuels State Fuels State Air Quality Fuels (SIP Fuels) State Renewable and Alternative Fuels Other EPAct Section 1509 – Fuels Harmonization vs. Trend Toward Diversification National Biofuels Action Plan Biomass Research and Development Board National Advisory Council for Energy Policy and Technology 4 OverviewOverview ofof 20062006 U.S.U.S. FuelFuel RequirementsRequirements Source: ExxonMobil 2007 5 BoutiqueBoutique FuelsFuels fromfrom StateState -
The Ethanol Industry in Illinois
The Ethanol Industry in Illinois Commission on Government Forecasting and Accountability 703 Stratton Office Building Springfield, IL 62706 February 2008 53054_A_CGFA_Cover.indd 1 2/4/2008 10:48:13 AM Commission on Government Forecasting and Accountability COMMISSION CO-CHAIRMEN Senator Jeffrey M. Schoenberg Representative Richard P. Myers SENATE HOUSE Bill Brady Patricia Bellock Don Harmon Frank Mautino Christine Radogno Robert Molaro David Syverson Elaine Nekritz Donne Trotter Raymond Poe EXECUTIVE DIRECTOR Dan R. Long DEPUTY DIRECTOR Trevor J. Clatfelter REVENUE MANAGER Jim Muschinske AUTHOR OF REPORT Benjamin L. Varner EXECUTIVE SECRETARY Donna K. Belknap TABLE OF CONTENTS A Report on the Ethanol Industry in Illinois – February 2008 PAGE Executive Summary i I. The History of Ethanol 1 II. Ethanol Manufacturing Process 11 III. State Government Support of Ethanol 14 IV. Ethanol Controversies 20 V. The Economic Effects of Ethanol 23 VI. Conclusion 27 TABLES: Illinois Ethanol Industry 7 E-85 Production in Illinois 15 Renewable Fuels Development Program Grants 16 Dry Mill Ethanol Profitability 23 Break Even Analysis of Ethanol 24 RFA Study Results 25 ISU Study Results 25 U of I Study Results 26 CHARTS: 2006 World Ethanol Production 4 U.S. Ethanol Production and Plants 5 U.S. Ethanol Biorefinery Locations 5 Ethanol Production Capacity by State 6 Petroleum Prices 10 Corn Prices 10 The Dry Milling Process 11 The Wet Milling Process 13 APPENDICES: Appendix A. U.S. Ethanol Plants 28 Appendix B. Illinois Ethanol Plant Permits 33 Appendix C. E-85 Fueling Stations in Illinois 35 EXECUTIVE SUMMARY This report presents an overview of the ethanol industry in Illinois. -
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
energies Review Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State Stephanie Taboada 1,2, Lori Clark 2,3, Jake Lindberg 1,2, David J. Tonjes 2,3,4 and Devinder Mahajan 1,2,* 1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; [email protected] (S.T.); [email protected] (J.L.) 2 Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA; [email protected] (L.C.); [email protected] (D.J.T.) 3 Department of Technology and Society, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA 4 Waste Data and Analysis Center, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA * Correspondence: [email protected] Abstract: Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., Citation: Taboada, S.; Clark, L.; the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). -
An Overview of Biodiesel and Petroleum Diesel Life Cycles
An Overview of Biodiesel and Petroleum Diesel Life Cycles A Joint Study Sponsored by: U.S. Department of Agriculture and U.S. Department of Energy May 1998 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste NREL/TP-580-24772 An Overview of Biodiesel and Petroleum Diesel Life Cycles John Sheehan Vince Camobreco James Duffield Michael Graboski Housein Shapouri National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. -
Lantmännen Agroetanol, Sweden Bioenergy
Lantmännen Agroetanol, Sweden Bioenergy Stringent CO reduction criteria lead to business Success Stories 2 success IEA Bioenergy: 02 2018 Year of implementation: 2005, updated 2015 Location: Norrköping, Sweden Technology: Ethanol biorefinery Location of the ethanol plant close to biomass-based CHP ensures deliveries of renewable electricity and process heat. Principle feedstocks: Wheat and other grains, as well as starch-rich residues from the food industry Products/markets: Fuel ethanol and co-products in the form of protein-rich feed. A further co-product here is the (biobased) carbon dioxide that is captured and sold as industrial raw material to customers in the food processing and packaging industry. Technology Readiness TRL 9 – actual system proven in operational environment Level (TRL): DESCRIPTION Lantmännen is a Swedish agricultural cooperative owned by 25,000 Swedish farmers, providing food, feed and fuel nationally and internationally. Since 2001, Lantmännen has produced fuel ethanol at a facility in Norrköping in South-Eastern Sweden based on wheat and other grains as well as residues from the food industry. The plant was initiated to develop new markets for agricultural products. Thanks to efficient processes, the use of renewable process energy from adjacent biomass-fueled CHP and important co-products in the form of protein-rich feed and biogas, the fuel ethanol produced reduces GHG emissions by more than 90 % compared to fossil fuels. From 2015, Lantmännen is also marketing a renewable ethanol fuel for diesel engines called Agro Cleanpower 95, which reduces GHG emissions by up to 90% compared to fossil diesel. A noteworthy co-product here is the (biobased) CO2 sold as industrial raw material to customers in the food processing and packaging industry, i.e. -
2018 Renewable Energy Data Book
2018 Renewable Energy Data Book Acknowledgments This data book was produced by Sam Koebrich, Thomas Bowen, and Austen Sharpe; edited by Mike Meshek and Gian Porro; and designed by Al Hicks and Besiki Kazaishvili of the National Renewable Energy Laboratory (NREL). We greatly appreciate the input, review, and support of Jenny Heeter (NREL); Yan (Joann) Zhou (Argonne National Laboratory); and Paul Spitsen (U.S. Department of Energy). Notes Capacity data are reported in watts (typically megawatts and gigawatts) of alternating current (AC) unless indicated otherwise. The primary data represented and synthesized in the 2018 Renewable Energy Data Book come from the publicly available data sources identified on page 142. Solar photovoltaic generation data include all grid-connected utility-scale and distributed photovoltaics. Total U.S. power generation numbers in this data book may difer from those reported by the U.S. Energy Information Administration (EIA) in the Electric Power Monthly and Monthly Energy Review. Reported U.S. wind capacity and generation data do not include smaller, customer-sited wind turbines (i.e., distributed wind). Front page photo: iStock 880915412; inset photos (left to right): iStock 754519; iStock 4393369; iStock 354309; iStock 2101722; iStock 2574180; iStock 5080552; iStock 964450922, Leslie Eudy, NREL 17854; iStock 627013054 Page 2: iStock 721000; page 8: iStock 5751076; page 19: photo from Invenergy LLC, NREL 14369; page 43: iStock 750178; page 54: iStock 754519; page 63: iStock 4393369; page 71: iStock 354309; page 76: iStock 2101722; page 81: iStock 2574180; page 85: iStock 5080552; page 88: iStock 964450922; page 98: photo by Leslie Eudy, NREL 17854; page 103: iStock 955015444; page 108: iStock 11265066; page 118: iStock 330791; page 128: iStock 183287196; and page 136, iStock 501095406.