Advanced Technology and Alternative Fuel Vehicles. Energy

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Technology and Alternative Fuel Vehicles. Energy DOE/GO-102001-1142 FS143 August 2001 Advanced Technology and Alternative Fuel Vehicles Surveys show that Americans are con- 67 percent of the oil we consume in the cerned about the environment, global United States—more than we produce. warming, and related issues. Yet many Today, our country imports more than don’t realize that the cars and trucks they 54 percent of its oil supply, and it's drive are a major source of these prob- estimated that this could increase to lems, and that there are alternative 75 percent by 2010. choices they can make today. According to the U.S. Federal Highway Most of us drive or ride in vehicles that Administration, the average vehicle (car are powered by petroleum-based fossil or light truck) on the road today emits fuels — gasoline or diesel. Some people, more than 600 pounds of air pollution however, are choosing to drive vehicles each year. These pollutants (such as car- that run on smaller amounts of fuel, bon monoxide, sulfur dioxide, nitrogen and/or partially or completely on fuels dioxide, and particulate matter) contribute other than diesel or gasoline. These to smog and to many health problems. For advanced and alternative fuel vehicles example, smog can cause eye and respira- (AFVs) help reduce our dependence on tory tract irritation, and carbon monoxide foreign oil imports, save us money on fuel can inhibit the ability of a person's blood costs, and improve our air quality. to carry oxygen to vital organs. Why Drive an Advanced or The average vehicle, through its combus- Alternative Fuel Vehicle? tion of fossil fuels, also emits greenhouse Transportation accounts for more than gases. Greenhouse gases—such as carbon Warren Gretz, NREL/PIX07070 Gretz, Warren Advanced and alternative fuel vehicles help reduce emissions that cause air pollution, smog, and global warming. This document was produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory. The document was produced by the Information and Outreach Program at NREL for the DOE Office of Energy Efficiency and Renewable Energy. The Energy Efficiency and Renewable Energy Clearinghouse (EREC) is operated by NCI Information Systems, Inc., for NREL / DOE. The statements contained herein are based on information known to EREC and NREL at the time of printing. No recommendation or endorsement of any product or service is implied if mentioned by EREC. Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 20% postconsumer waste Today’s Alternative Fuel Choices Alternative fuels not only burn cleaner— producing lower emissions—but some are even renewable, unlike fossil fuels, which means we could develop a continu- ous supply of them. The alternative fuels in use today include ethanol, biodiesel, methanol, natural gas, propane, electricity, and hydrogen. Biofuels Biofuels are renewable since they are produced from biomass—organic matter, such as plants. They generate about the same amount of carbon dioxide (a greenhouse gas) from the tailpipe as fossil fuels, but the plants that are grown to produce the biofuels actually remove Warren Gretz, NREL/PIX00246 Gretz, Warren carbon dioxide from the atmosphere. This snowplow in Minnesota runs on ethanol. Therefore, the net emission of carbon dioxide will be close to zero. dioxide, methane, nitrous oxide, hydrocar- bons, and chlorofluorocarbons—surround Ethanol the Earth's atmosphere like a clear thermal blanket, allowing the sun's warming rays The most widely used alternative trans- in and trapping the heat close to the portation fuel is ethanol. Ethanol is an Earth's surface. This natural greenhouse alcohol typically made from corn or corn effect keeps the average surface tempera- byproducts, using a process similar to ture at around 60˚F (33˚C). brewing beer. Vehicles that run on ethanol have lower carbon monoxide and carbon However, the increased use of fossil fuels dioxide emissions than traditional vehi- during the last century has created an cles. enhanced greenhouse effect, known as In the United States, we blend more than global warming. And transportation has 1.5 billion gallons of ethanol with gasoline played a large role in this increase. each year to produce E10 (10 percent ethanol and 90 percent gasoline.) E10 can During the 1990s, the annual growth rate be used in most of the vehicles we’re of U.S. greenhouse gas emissions from driving on the roads today. As a result, transportation averaged 1.6 percent. In we’re already using E10 across the country 1999, some 82 percent of U.S. greenhouse to improve vehicle performance and gas emissions consisted of carbon dioxide reduce air pollution. Alternative fuels released by the combustion of energy fuels. The U.S. Environmental Protection Today we also have some vehicles that not only burn cleaner, Agency (EPA) estimates that each year the can use a higher blend of ethanol – up to average light vehicle in the United States 85 percent – called E85. These vehicles, but some are even releases 10,000 pounds of carbon dioxide known as flexible-fuel vehicles, can use into the air. Motor gasoline contributed E85, gasoline, or any mixture of the two. renewable. close to 300 million metric tons of carbon E85 is available in many parts of the coun- dioxide, making it the largest single try but primarily in the Midwest. source of U.S. carbon dioxide emissions. By reducing vehicle emissions, AFVs and advanced vehicle technologies help combat both air pollution and global climate change. 2 Biodiesel Biodiesel is an ester (similar to vinegar) that can be made from several types of oils, such as vegetable oils and animal fats. There are about Each year about 30 million gallons of biodiesel are produced in the United 100,000 natural gas States from recycled cooking oils and soybean oil. vehicles in the Biodiesel is currently not available to the United States. general public. Some federal, state, and transit fleets, as well as tourist boats and launches, use biodiesel either alone or blended with another fuel. Biodiesel is typically used as a blend— 20 percent biodiesel and 80 percent petroleum diesel—called B20. B20 can be used in a conventional diesel engine with essentially no engine modifications. There is also a growing interest in using NREL/PIX03830 Gretz, Warren biodiesel where workers are exposed to There are approximately 600 public, CNG diesel exhaust, in aircraft to control local refueling stations across the country. pollution near airports, and in locomotives that face restricted use unless vehicles. Some buses and fleet vehicles emissions can be reduced. currently run on M85, which contains 85 percent methanol and 15 percent gasoline. Methanol Natural Gas Methanol, another alcohol-based fuel, is usually produced from natural gas, but Natural gas is a mixture of hydrocarbons, it can also be produced from biomass. mainly methane. It can be produced either Therefore, it has the potential to help from gas wells or in conjunction with reduce petroleum imports. crude oil production. Natural gas is a clean burning, domestically Methanol-powered vehicles emit smaller produced fuel that generates significantly amounts of air pollutants, such as hydro- less carbon monoxide, carbon dioxide, carbons, particulate matter, and nitrogen particulate matter, and nitrous oxide oxides, than do similar gasoline-fueled compared to similar fossil fuel vehicles. It is used in vehicles as compressed natural gas (CNG) or liquefied natural gas (LNG). There are about 100,000 natural gas vehicles in the United States. Nearly one of every five new transit buses in the United States runs on natural gas. Propane Liquefied petroleum gas (LPG), com- monly called propane, is a mixture of at least 90 percent propane, 2.5 percent butane and higher hydrocarbons, and ethane and propylene make up the remaining balance. It is a byproduct of natural gas processing and/or petroleum refining. Nebraska Soybean Board/PIX04231 Soybean oil can be used to make biodiesel, which powers this bus. 3 In 2000, close to 7,600 on-road EVs in the United States consumed electricity at an amount equivalent to about 1.7 million gallons of gasoline. Hydrogen Hydrogen is a simple, abundant element found in organic matter, notably in the hydrocarbons that make up many of our fuels, such as gasoline, natural gas, methanol, and propane. As an energy car- rier like electricity (not an energy source), it must be manufactured. Hydrogen can be made by using heat to separate it from the hydrocarbons. Currently, most hydro- gen is made this way from natural gas. Hydrogen can be combined with gasoline, ethanol, methanol, or natural gas to reduce nitrogen oxide emissions. Because the only byproduct of hydrogen is water, only the engine lubricants from a hydro- gen-fueled vehicle emit small amounts of Warren Gretz, NREL/PIX06167 Gretz, Warren air pollutants. The sun’s energy, via a photovoltaic module, is used to recharge this electric vehicle. Hydrogen is already the fuel of choice for propelling space shuttles. It is also being A propane-powered vehicle can't run as explored for use in internal combustion far on a tank of gas as a comparable gaso- engines. Although hydrogen can be line-powered vehicle, but propane gener- burned in an internal combustion engine, ates lower vehicle emissions. Propane Propane is a or serve as a fuel additive, there's more emits 64 percent less reactive organic interest in using hydrogen to supply fuel compounds, 20 percent less nitrogen publicly accessible cells that power EVs (see “Fuel Cell Vehi- oxide, and 20 percent less carbon monox- cle” on page 6). ide than a similar gasoline vehicle. alternative fuel. P-Series Propane is a publicly accessible alternative P-Series is a relatively new alternative fuel.
Recommended publications
  • Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, and REPOWERS
    What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Acknowledgments This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. This work was made possible through funding provided by National Clean Cities Program Director and DOE Vehicle Technologies Office Deployment Manager Dennis Smith. This publication is part of a series. For other lessons learned from the Clean Cities American Recovery and Reinvestment (ARRA) projects, please refer to the following publications: • American Recovery and Reinvestment Act – Clean Cities Project Awards (DOE/GO-102016-4855 - August 2016) • Designing a Successful Transportation Project – Lessons Learned from the Clean Cities American Recovery and Reinvestment Projects (DOE/GO-102017-4955 - September 2017) Authors Kay Kelly and John Gonzales, National Renewable Energy Laboratory Disclaimer This document is not intended for use as a “how to” guide for individuals or organizations performing a conversion, repower, or retrofit. Instead, it is intended to be used as a guide and resource document for informational purposes only. VEHICLE TECHNOLOGIES OFFICE | cleancities.energy.gov 2 ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Table of Contents Introduction ...............................................................................................................................................................5
    [Show full text]
  • Alternative Fuels, Vehicles & Technologies Feasibility
    ALTERNATIVE FUELS, VEHICLES & TECHNOLOGIES FEASIBILITY REPORT Prepared by Eastern Pennsylvania Alliance for Clean Transportation (EP-ACT)With Technical Support provided by: Clean Fuels Ohio (CFO); & Pittsburgh Region Clean Cities (PRCC) Table of Contents Analysis Background: .................................................................................................................................... 3 1.0: Introduction – Fleet Feasibility Analysis: ............................................................................................... 3 2.0: Fleet Management Goals – Scope of Work & Criteria for Analysis: ...................................................... 4 Priority Review Criteria for Analysis: ........................................................................................................ 4 3.0: Key Performance Indicators – Existing Fleet Analysis ............................................................................ 5 4.0: Alternative Fuel Options – Summary Comparisons & Conclusions: ...................................................... 6 4.1: Detailed Propane Autogas Options Analysis: ......................................................................................... 7 Propane Station Estimate ......................................................................................................................... 8 (Station Capacity: 20,000 GGE/Year) ........................................................................................................ 8 5.0: Key Recommended Actions – Conclusion
    [Show full text]
  • Fuel Cells on Bio-Gas
    Fuel Cells on Bio-Gas 2009 Michigan Water Environment Association's (MWEA) Biosolids and Energy Conference Robert J. Remick, PhD March 4, 2009 NREL/PR-560-45292 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wastewater Treatment Plants • WWTP operators are looking for opportunities to utilize biogas as a renewable energy source. • Majority use biogas through boilers for reheating • Interest is growing in distributed generation, especially where both electricity and fuel costs are high. • Drivers for the decision to purchase fuel cells – Reliability – Capital and O&M costs – Availability of Government Incentives National Renewable Energy Laboratory Innovation for Our Energy Future Anaerobic Digestion and Biogas • Anaerobic digestion is a process used to stabilize Range of Biogas Compositions wastewater sludge before final disposal. Methane 50% – 75% Carbon Dioxide 25% – 50% • The process uses Nitrogen 0% – 10% microorganisms in the Hydrogen 0% – 1% absence of oxygen to Sulfur Species 0% – 3% convert organic Oxygen 0% – 2% materials to biogas. National Renewable Energy Laboratory Innovation for Our Energy Future WWTP Co-Gen Market • There are over 16,800 WWTP in the U.S. • 615 facilities with flows > 3 mgd that use anaerobic digestion • 215 do not use their biogas but flare it instead. • California has the highest number of municipal facilities using anaerobic digestion, about 102, of which 25 do not use their biogas.
    [Show full text]
  • 2020 ETHANOL INDUSTRY OUTLOOK 1 Focusing Forward, from Challenge to Opportunity
    RENEWABLE FUELS ASSOCIATION RFA Board of Directors Neil Koehler RFA Chairman Pacific Ethanol Inc. www.pacificethanol.com Jeanne McCaherty Charles Wilson Geoff Cooper Rick Schwarck RFA Vice Chair RFA Treasurer RFA President RFA Secretary Guardian Energy LLC Trenton Agri Products LLC Renewable Fuels Association Absolute Energy LLC www.guardiannrg.com www.trentonagriproducts.com www.EthanolRFA.org www.absenergy.org Neal Kemmet Mick Henderson Brian Kletscher Bob Pasma Ace Ethanol LLC Commonwealth Agri-Energy LLC Highwater Ethanol LLC Parallel Products www.aceethanol.com www.commonwealthagrienergy.com www.highwaterethanol.com www.parallelproducts.com Ray Baker Scott Mundt Pat Boyle Delayne Johnson Adkins Energy LLC Dakota Ethanol LLC Homeland Energy Solutions LLC Quad County Corn Processors Coop. www.adkinsenergy.com www.dakotaethanol.com www.homelandenergysolutions.com www.quad-county.com Eric McAfee John Didion Seth Harder Dana Lewis Aemetis Inc. Didion Ethanol LLC Husker Ag LLC Redfield Energy LLC www.aemetis.com www.didionmilling.com www.huskerag.com www.redfieldenergy.com Randall Doyal Carl Sitzmann Kevin Keiser Walter Wendland Al-Corn Clean Fuel LLC E Energy Adams LLC Ingredion Inc. Ringneck Energy LLC www.al-corn.com www.eenergyadams.com www.ingredion.com www.ringneckenergy.com Erik Huschitt Bill Pracht Chuck Woodside Brian Pasbrig Badger State Ethanol LLC East Kansas Agri-Energy LLC KAAPA Ethanol Holdings LLC Show Me Ethanol LLC www.badgerstateethanol.com www.ekaellc.com www.kaapaethanol.com www.smefuel.com Jim Leiting Jason Friedberg
    [Show full text]
  • Well-To-Wheels Analysis of Biofuels and Plug-In Hybrids
    Well-to-Wheels Analysis of Biofuels and Plug-In Hybrids Michael Wang Center for Transportation Research Argonne National Laboratory Presentation at the Joint Meeting of Chicago Section of American society of Agricultural and Biological Engineers And Chicago Section of Society of Automotive Engineers Argonne National Laboratory, June 3, 2009 The Transportation Sector: Dual Challenges, Dual Approaches Challenges Greenhouse gas emissions – climate change Oil use – energy security Approaches Vehicle efficiency (and transportation system efficiency) New transportation fuels 2 US Greenhouse Gas Emission Shares by Source Pipelines 2% Rail Other 3% 0% Water Commercial 8% 18% Transportation Air 33% 8% Light Duty Residential 59% 21% Heavy Trucks & Buses 20% Industrial 28% 2006 GHG Emissions (CO2 Eqv) 2006 GHG Emissions (CO2 Eqv) Annual US total GHG emissions are 5.6 GT of CO2e 3 U.S. Petroleum Production and Consumption, 1970-2030 20 18 16 Air U.S. Production Rail 14 Marine Off-Road 12 Heavy Trucks 10 8 Light Trucks 6 Million barrelsday per Million 4 2 Cars 0 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 Sources: Transportation Energy Data Book: Edition 27 and projections from the Early Release Annual Energy Outlook 2009. Coal-Based Fuels Pose a Trade-Off Between Energy Security and GHG Emissions 2 Petroleum Use Petroleum 1 Gasoline ICE Diesel ICE Gasoline HEV Diesel HEV Coal-based fuels Coal-based fuels, CCS No CCS Biomass-based fuels LPG Sugarcane-EtOH DME Corn-EtOH NG-DME H2 BD NG-H2 CNG FTD DME FTD MeOH 0 MeOH EV: CA
    [Show full text]
  • Biomass Basics: the Facts About Bioenergy 1 We Rely on Energy Every Day
    Biomass Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 We are running out of fossil fuels Fossil fuels take millions of years to form within the Earth. Once we use up our reserves of fossil fuels, we will be out in the cold - literally - unless we find other fuel sources. Bioenergy, or energy derived from biomass, is a sustainable alternative to fossil fuels because it can be produced from renewable sources, such as plants and waste, that can be continuously replenished. Fossil fuels, such as petroleum, need to be imported from other countries Some fossil fuels are found in the United States but not enough to meet all of our energy needs. In 2014, 27% of the petroleum consumed in the United States was imported from other countries, leaving the nation’s supply of oil vulnerable to global trends. When it is hard to buy enough oil, the price can increase significantly and reduce our supply of gasoline – affecting our national security. Because energy is extremely important to our economy, it is better to produce energy in the United States so that it will always be available when we need it. Use of fossil fuels can be harmful to humans and the environment When fossil fuels are burned, they release carbon dioxide and other gases into the atmosphere.
    [Show full text]
  • Morgan Ellis Climate Policy Analyst and Clean Cities Coordinator DNREC [email protected] 302.739.9053
    CLEAN TRANSPORTATION IN DELAWARE WILMAPCO’S OUR TOWN CONFERENCE THE PRESENTATION 1) What are alterative fuels? 2) The Fuels 3) What’s Delaware Doing? WHAT ARE ALTERNATIVE FUELED VEHICLES? • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THERE’S A FUEL FOR EVERY FLEET! DELAWARE’S ALTERNATIVE FUELS • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THE FUELS PROPANE • By-Product of Natural Gas • Compressed at high pressure to liquefy • Domestic Fuel Source • Great for: • School Busses • Step Vans • Larger Vans • Mid-Sized Vehicles COMPRESSED NATURAL GAS (CNG) • Predominately Methane • Uses existing pipeline distribution system to deliver gas • Good for: • Heavy-Duty Trucks • Passenger cars • School Buses • Waste Management Trucks • DNREC trucks PROPANE AND CNG INFRASTRUCTURE • 8 Propane Autogas Stations • 1 CNG Station • Fleet and Public Access with accounts ELECTRIC VEHICLES • Electricity is considered an alternative fuel • Uses electricity from a power source and stores it in batteries • Two types: • Battery Electric • Plug-in Hybrid • Great for: • Passenger Vehicles EV INFRASTRUCTURE • 61 charging stations in Delaware • At 26 locations • 37,000 Charging Stations in the United States • Three types: • Level 1 • Level 2 • D.C. Fast Charging TYPES OF CHARGING STATIONS Charger Current Type Voltage (V) Charging Primary Use Time Level 1 Alternating 120 V 2 to 5 miles Current (AC) per hour of Residential charge Level 2 AC 240 V 10 to 20 miles Residential per hour of and charge Commercial DC Fast Direct Current 480 V 60 to 80 miles (DC) per 20 min.
    [Show full text]
  • Elementary Energy Infobook, Biomass
    Biomass Biomass is anything that is alive. It is also anything that was alive a short time ago. Trees, crops, garbage, and animal waste are all biomass. Most of the biomass we use for energy today is wood. We burn wood to make heat. Biomass gets its energy from the sun. Plants store the sun’s energy in their leaves and roots. When we eat biomass, we use the energy to move and grow. When we burn biomass, we use the energy to make heat. We can also change the energy in biomass into gas and liquid fuels. Crops are biomass. Biomass is Renewable Biomass energy is renewable, which means more biomass can be made in a short time. We can always grow more plants. We should plant new trees when we cut down old ones for wood. We also need to take care of the soil in which our crops grow. We Use Biomass Every Day People and animals get their energy from biomass. The energy in everything we eat comes from plants. Bread is made from wheat, a plant. Hamburgers are made from beef, which came from cows that ate grass and grain. Until about 150 years ago, biomass gave people most of the energy they used. The cave dwellers and settlers burned wood for heat. They burned wood to cook food. In many poor countries, wood is still used for most energy needs. People also burn corn cobs and straw. In places without trees, people burn the waste from cows and pigs. ©2020 The NEED Project Elementary Energy Infobook www.NEED.org 1 ©2020 The NEED Project Elementary Energy Infobook www.NEED.org 1 Electricity Biomass can be used to make electricity.
    [Show full text]
  • Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
    Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • ICOM North American LLC Comments
    DOCKETED Docket 16-ALT-02 Number: Project Title: 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program TN #: 214418 Document Title: ICOM North American LLC Comments: alt-fuel near zero engines and alt- fuel hybrids Description: N/A Filer: System Organization: ICOM North American LLC Submitter Role: Public Submission 11/7/2016 4:47:41 PM Date: Docketed Date: 11/7/2016 Comment Received From: jon vanbogart Submitted On: 11/7/2016 Docket Number: 16-ALT-02 alt-fuel near zero engines and alt-fuel hybrids Additional submitted attachment is included below. November 7, 2016 California Energy Commission 1516 Ninth Street Sacramento, CA 95814 Re: Comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program Dear California Energy Commissioners and Staff, ICOM North America LLC values the opportunity to provide comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP). While we support the Energy Commission goals and investment in advanced transportation technologies to advance petroleum reduction goals and reduce emission for the State’s climate change initiatives. Near Zero – Lower NOx Engines and Alternative Fuel Hybrid Technology ICOM has provided sustainable fleets solutions for Propane-Autogas since 2004 with over 150 EPA certification covering more than 1000 vehicle platforms. As part of our 2017 strategy and beyond, ICOM will be offering CARB Certified Near Zero - Lower NOx engine technology for both Propane-AutoGas and CNG at or near the 0.02 NOx level for vehicle platforms above 14001 GVWR for both the Ford 6.8L and GM 6.0L engines.
    [Show full text]