EPRI Journal--Driving the Solution: the Plug-In Hybrid Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

EPRI Journal--Driving the Solution: the Plug-In Hybrid Vehicle DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna The Story in Brief As automakers gear up to satisfy a growing market for fuel-efficient hybrid electric vehicles, the next- generation hybrid is already cruis- ing city streets, and it can literally run on empty. The plug-in hybrid charges directly from the electricity grid, but unlike its electric vehicle brethren, it sports a liquid fuel tank for unlimited driving range. The technology is here, the electricity infrastructure is in place, and the plug-in hybrid offers a key to replacing foreign oil with domestic resources for energy indepen- dence, reduced CO2 emissions, and lower fuel costs. DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna n November 2005, the first few proto­ vide a variety of battery options tailored 2004, more than half of which came from Itype plug­in hybrid electric vehicles to specific applications—vehicles that can imports. (PHEVs) will roll onto the streets of New run 20, 30, or even more electric miles.” With growing global demand, particu­ York City, Kansas City, and Los Angeles Until recently, however, even those larly from China and India, the price of a to demonstrate plug­in hybrid technology automakers engaged in conventional barrel of oil is climbing at an unprece­ in varied environments. Like hybrid vehi­ hybrid technology have been reluctant to dented rate. The added cost and vulnera­ cles on the market today, the plug­in embrace the PHEV, despite growing rec­ bility of relying on a strategic energy hybrid uses battery power to supplement ognition of the vehicle’s potential. A chief resource from an unstable part of the the power of its internal combustion concern is the prospectively higher cost of world continues to threaten national secu­ engine. But while the conventional hybrid the larger batteries required. Indeed, rity. Add to that the environmental con­ derives all of its propulsion energy from because the advanced batteries needed for cerns surrounding global warming: petro­ gasoline, the PHEV gains much of its PHEVs are currently produced on a lim­ leum combustion accounts for about 40% energy from the electricity grid. ited scale, prototype PHEVs are costly, of all U.S. CO2 emissions. Taken together, What does this mean for the consumer? but once batteries go into mass produc­ these three significant issues—fuel cost, At current U.S. energy prices—that is, tion, costs are expected to come down. national security, and the environment— with the cost of gasoline at $3 per gallon According to Robert Graham, manager gained momentum in September 2004 and the national average cost of electricity of EPRI’s Electric Transportation Pro­ when an unusual alliance of U.S. environ­ at 8.5¢ per kilowatthour—a PHEV runs gram, “We have the basic technology for mentalists and security hawks, the Set on an equivalent of 75¢ per gallon. And the PHEV—the electric drive system and America Free coalition, called on the Bush given that half the cars on U.S. roads are advanced batteries—and we have the in­ administration to cut U.S. oil consump­ driven 25 miles a day or less, a plug­in frastructure—home recharging. Our main tion in half over the next four years. with even a 20­mile­range battery could challenge is to optimize the design of The concern is not new. Anyone over reduce petroleum fuel consumption by the batteries and the integrated battery­ the age of 35 today will remember the so­ about 60%. engine control systems that will allow us called Arab Oil Embargo of 1973, which The PHEV combines the best of both to take full advantage of the superior fuel created a worldwide oil shortage. Six years electric vehicle and hybrid technologies. savings and emissions reduction potential later, the Iranian revolution underscored Like the electric vehicle, the PHEV is of this vehicle.” global energy vulnerability. Before the fueled by electricity generated from domes­ But is there a market? In a 2001 study, decade was out, world leaders and energy tic resources: it reduces carbon dioxide EPRI found that 30–50% of consumers experts alike sought ways to reduce oil (CO2) and urban pollutants, provides surveyed would choose a PHEV even if consumption. Energy conservation became utilities with a new, sustainable market it were priced up to 25% higher than a the watchword, and efficiency played a for off­peak electricity, and offers con­ $19,000 conventionally powered vehicle. major role in reducing overall energy use. sumers a clean, low­cost transportation What’s more, 63% of respondents pre­ Auto manufacturers developed smaller, fuel option. And like the hybrid, the ferred plugging in a vehicle at home to more­efficient vehicles, appliance manu­ PHEV can run on liquid fuel for unlim­ going to the gas station. At the time of facturers developed energy­efficient prod­ ited driving range. This combination that survey, the U.S. national average ucts, and utilities reduced the use of oil makes the PHEV more efficient in fuel price of gasoline at the pump was pro­ for generating electricity; in the United and total energy use than any vehicle of jected to be $1.65. Since then, the price States alone, oil used for electricity de­ comparable size and performance on the has nearly doubled. This ongoing trend creased from nearly 17% in 1973 to less road today. makes all types of hybrids—and espe­ than 3% today. Dr. Fritz Kalhammer, who beginning cially the PHEV—increasingly attractive. In recent years, however, auto manufac­ in 1973 established and directed EPRI’s Today, in fact, the market for fuel­effi­ turers have increased the power and size of programs for energy storage, fuel cells, cient vehicles has begun to escalate along cars and sports utility vehicles, thereby and electric vehicles, has advocated a shift with the price of oil. increasing oil dependence. Today because in focus to PHEVs for more than five two­thirds of all U.S. oil consumed goes years. “The PHEV is unique,” he states. Oil at a Boiling Point into cars, trucks, and buses, the focus in “It offers the optimal mix of power from Though the United States holds only 3% energy conservation is on transportation. the battery and the engine—of energy of global petroleum, Americans consume from the grid and the gas station—to con­ 25% of the world’s oil supply. According What’s Driving the Market? sumers with varying transportation needs. to the U.S. Department of Energy, that The internal combustion engine (ICE) is Auto manufacturers can eventually pro­ was 20.5 million barrels of oil per day in designed to start quickly and provide 10 EPRI JOURNAL power as soon as the driver demands it. “in urban driving, that idling translates EV1 served as a benchmark for electric But until the engine warms up, it runs to about 10–15% of total vehicle carbon vehicle technology development, but be­ quite inefficiently. It also idles at every emissions.” cause of its limited utility and driving stop, and according to Mark Duvall, One clean solution is the electric vehi­ range, it met with limited acceptance. manager of technology development for cle. In 1996, GM boldly entered the elec­ Early adopters—mostly environmental­ EPRI’s Electric Transportation Program, tric vehicle marketplace with its EV1. The ists ready to trade urban pollutants for a clean and quiet if limited ride—were gen­ erally enthusiastic about their EV1 expe­ U.S. Oil Consumption rience, but they didn’t constitute a large 20 enough consumer base to make the vehi­ cle profitable within the few years that it was available. 16 This being said, hundreds of electric Transportation oil use vehicles such as the Toyota RAV4, manu­ 12 factured for several years under Califor­ nia’s zero­emission mandate, continue to operate in communities such as Los Ange­ 8 les; and a variety of electric vehicles of Domestic production limited range and performance are now Million Barrels Per Day of Oil 4 successfully serving such niche markets as airports, retirement communities, city governments, and golf courses. These 0 1970 1980 1990 2000 2010 2020 2030 limited applications, however, cannot solve the problems of strategic vulnerabil­ ity and trade imbalance caused by depen­ While U.S. domestic production of oil has decreased 44% since the 1970s, the use dence on imported oil. of oil for transportation has increased 83%, and the gap is widening. Given a The hybrid electric vehicle is a move in continuation of this pattern, U.S. oil consumption is expected to grow 60% over the right direction. Its battery/electric the next 25 years, with consequential increases in transportation fuel costs, carbon emissions, and security vulnerability. (Source: Energy Information Administration) motor combination provides the quick starts, so when the vehicle is standing still, the gas engine can be shut off auto­ American Driving Patterns matically to prevent idling and conserve 100 fuel. In fact, the hybrid can achieve an increase in fuel efficiency of roughly 30%. 90 The battery also boosts the performance 80 of the ICE at takeoff and for passing. 70 The hybrid’s ICE uses fuel available 60 from any gas station, and the battery charges whenever the ICE is running. 50 The battery also charges when the driver 40 brakes to stop; in a process called regen­ 30 erative braking, the electric motor be­ comes a generator and converts otherwise 20 wasted kinetic energy into electricity. 10 Cumulative Percent of Personal Automobiles Hybrids are not designed to operate on 0 electricity alone, but if they run out of 0 30 60 90 120 150 >180 gas, most can go a short distance with Average Daily Travel Distance Per Vehicle (miles) extremely limited performance.
Recommended publications
  • Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, and REPOWERS
    What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Acknowledgments This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. This work was made possible through funding provided by National Clean Cities Program Director and DOE Vehicle Technologies Office Deployment Manager Dennis Smith. This publication is part of a series. For other lessons learned from the Clean Cities American Recovery and Reinvestment (ARRA) projects, please refer to the following publications: • American Recovery and Reinvestment Act – Clean Cities Project Awards (DOE/GO-102016-4855 - August 2016) • Designing a Successful Transportation Project – Lessons Learned from the Clean Cities American Recovery and Reinvestment Projects (DOE/GO-102017-4955 - September 2017) Authors Kay Kelly and John Gonzales, National Renewable Energy Laboratory Disclaimer This document is not intended for use as a “how to” guide for individuals or organizations performing a conversion, repower, or retrofit. Instead, it is intended to be used as a guide and resource document for informational purposes only. VEHICLE TECHNOLOGIES OFFICE | cleancities.energy.gov 2 ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Table of Contents Introduction ...............................................................................................................................................................5
    [Show full text]
  • Fuel Cells on Bio-Gas
    Fuel Cells on Bio-Gas 2009 Michigan Water Environment Association's (MWEA) Biosolids and Energy Conference Robert J. Remick, PhD March 4, 2009 NREL/PR-560-45292 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wastewater Treatment Plants • WWTP operators are looking for opportunities to utilize biogas as a renewable energy source. • Majority use biogas through boilers for reheating • Interest is growing in distributed generation, especially where both electricity and fuel costs are high. • Drivers for the decision to purchase fuel cells – Reliability – Capital and O&M costs – Availability of Government Incentives National Renewable Energy Laboratory Innovation for Our Energy Future Anaerobic Digestion and Biogas • Anaerobic digestion is a process used to stabilize Range of Biogas Compositions wastewater sludge before final disposal. Methane 50% – 75% Carbon Dioxide 25% – 50% • The process uses Nitrogen 0% – 10% microorganisms in the Hydrogen 0% – 1% absence of oxygen to Sulfur Species 0% – 3% convert organic Oxygen 0% – 2% materials to biogas. National Renewable Energy Laboratory Innovation for Our Energy Future WWTP Co-Gen Market • There are over 16,800 WWTP in the U.S. • 615 facilities with flows > 3 mgd that use anaerobic digestion • 215 do not use their biogas but flare it instead. • California has the highest number of municipal facilities using anaerobic digestion, about 102, of which 25 do not use their biogas.
    [Show full text]
  • Morgan Ellis Climate Policy Analyst and Clean Cities Coordinator DNREC [email protected] 302.739.9053
    CLEAN TRANSPORTATION IN DELAWARE WILMAPCO’S OUR TOWN CONFERENCE THE PRESENTATION 1) What are alterative fuels? 2) The Fuels 3) What’s Delaware Doing? WHAT ARE ALTERNATIVE FUELED VEHICLES? • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THERE’S A FUEL FOR EVERY FLEET! DELAWARE’S ALTERNATIVE FUELS • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THE FUELS PROPANE • By-Product of Natural Gas • Compressed at high pressure to liquefy • Domestic Fuel Source • Great for: • School Busses • Step Vans • Larger Vans • Mid-Sized Vehicles COMPRESSED NATURAL GAS (CNG) • Predominately Methane • Uses existing pipeline distribution system to deliver gas • Good for: • Heavy-Duty Trucks • Passenger cars • School Buses • Waste Management Trucks • DNREC trucks PROPANE AND CNG INFRASTRUCTURE • 8 Propane Autogas Stations • 1 CNG Station • Fleet and Public Access with accounts ELECTRIC VEHICLES • Electricity is considered an alternative fuel • Uses electricity from a power source and stores it in batteries • Two types: • Battery Electric • Plug-in Hybrid • Great for: • Passenger Vehicles EV INFRASTRUCTURE • 61 charging stations in Delaware • At 26 locations • 37,000 Charging Stations in the United States • Three types: • Level 1 • Level 2 • D.C. Fast Charging TYPES OF CHARGING STATIONS Charger Current Type Voltage (V) Charging Primary Use Time Level 1 Alternating 120 V 2 to 5 miles Current (AC) per hour of Residential charge Level 2 AC 240 V 10 to 20 miles Residential per hour of and charge Commercial DC Fast Direct Current 480 V 60 to 80 miles (DC) per 20 min.
    [Show full text]
  • Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
    Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles.
    [Show full text]
  • Hydrogen Fuel Cell Vehicles in Tunnels
    SAND2020-4507 R Hydrogen Fuel Cell Vehicles in Tunnels Austin M. Glover, Austin R. Baird, Chris B. LaFleur April 2020 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2 ABSTRACT There are numerous vehicles which utilize alternative fuels, or fuels that differ from typical hydrocarbons such as gasoline and diesel, throughout the world. Alternative vehicles include those running on the combustion of natural gas and propane as well as electrical drive vehicles utilizing batteries or hydrogen as energy storage. Because the number of alternative fuels vehicles is expected to increase significantly, it is important to analyze the hazards and risks involved with these new technologies with respect to the regulations related to specific transport infrastructure, such as bridges and tunnels. This report focuses on hazards presented by hydrogen fuel cell electric vehicles that are different from traditional fuels. There are numerous scientific research and analysis publications on hydrogen hazards in tunnel scenarios; however, compiling the data to make conclusions can be a difficult process for tunnel owners and authorities having jurisdiction over tunnels. This report provides a summary of the available literature characterizing hazards presented by hydrogen fuel cell electric vehicles, including light-duty, medium and heavy-duty, as well as buses. Research characterizing both worst-case and credible scenarios, as well as risk-based analysis, is summarized. Gaps in the research are identified to guide future research efforts to provide a complete analysis of the hazards and recommendations for the safe use of hydrogen fuel cell electric vehicles in tunnels.
    [Show full text]
  • ICOM North American LLC Comments
    DOCKETED Docket 16-ALT-02 Number: Project Title: 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program TN #: 214418 Document Title: ICOM North American LLC Comments: alt-fuel near zero engines and alt- fuel hybrids Description: N/A Filer: System Organization: ICOM North American LLC Submitter Role: Public Submission 11/7/2016 4:47:41 PM Date: Docketed Date: 11/7/2016 Comment Received From: jon vanbogart Submitted On: 11/7/2016 Docket Number: 16-ALT-02 alt-fuel near zero engines and alt-fuel hybrids Additional submitted attachment is included below. November 7, 2016 California Energy Commission 1516 Ninth Street Sacramento, CA 95814 Re: Comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program Dear California Energy Commissioners and Staff, ICOM North America LLC values the opportunity to provide comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP). While we support the Energy Commission goals and investment in advanced transportation technologies to advance petroleum reduction goals and reduce emission for the State’s climate change initiatives. Near Zero – Lower NOx Engines and Alternative Fuel Hybrid Technology ICOM has provided sustainable fleets solutions for Propane-Autogas since 2004 with over 150 EPA certification covering more than 1000 vehicle platforms. As part of our 2017 strategy and beyond, ICOM will be offering CARB Certified Near Zero - Lower NOx engine technology for both Propane-AutoGas and CNG at or near the 0.02 NOx level for vehicle platforms above 14001 GVWR for both the Ford 6.8L and GM 6.0L engines.
    [Show full text]
  • Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
    Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale.
    [Show full text]
  • Understanding Long-Term Evolving Patterns of Shared Electric
    Experience: Understanding Long-Term Evolving Patterns of Shared Electric Vehicle Networks∗ Guang Wang Xiuyuan Chen Fan Zhang Rutgers University Rutgers University Shenzhen Institutes of Advanced [email protected] [email protected] Technology, CAS [email protected] Yang Wang Desheng Zhang University of Science and Rutgers University Technology of China [email protected] [email protected] ABSTRACT CCS CONCEPTS Due to the ever-growing concerns on the air pollution and • Networks → Network measurement; Mobile networks; energy security, many cities have started to update their Cyber-physical networks. taxi fleets with electric ones. Although environmentally friendly, the rapid promotion of electric taxis raises prob- KEYWORDS lems to both taxi drivers and governments, e.g., prolonged Electric vehicle; mobility pattern; charging pattern; evolving waiting/charging time, unbalanced utilization of charging experience; shared autonomous vehicle infrastructures and reduced taxi supply due to the long charg- ing time. In this paper, we make the first effort to understand ACM Reference Format: the long-term evolving patterns through a five-year study Guang Wang, Xiuyuan Chen, Fan Zhang, Yang Wang, and Desh- on one of the largest electric taxi networks in the world, i.e., eng Zhang. 2019. Experience: Understanding Long-Term Evolving the Shenzhen electric taxi network in China. In particular, Patterns of Shared Electric Vehicle Networks. In The 25th Annual we perform a comprehensive measurement investigation International Conference on Mobile Computing and Networking (Mo- called ePat to explore the evolving mobility and charging biCom ’19), October 21–25, 2019, Los Cabos, Mexico. ACM, New York, patterns of electric vehicles.
    [Show full text]
  • The Hybrid Vehicle and Alternative Fuel Report September 30, 2016
    ISSN 1946-1011 The Hybrid Vehicle and Alternative Fuel Report September 30, 2016 The fine print: This report is a summary of articles appearing in popular, business, and technical media referring to the impact of fuel costs and fuel efficiency on vehicle technology, development, and markets. At the end of the report is a list of all articles summarized, with hyperlinks to internet sources where available. Some articles may require free registration or paid subscriptions to access. The Hybrid Vehicle and Alternative Fuel Report (ISSN: 1946-1011) is compiled, written, and edited by Thomas L. R. Smith, Ph. D. (hereinafter referred to as “The Editor”), Economic Analysis Branch of the Budget and Financial Analysis Division, Washington State Department of Transportation. Contact The Hybrid Vehicle and Alternative Fuel Report’s editor at [email protected] or (360) 705-7941. Contributions of news items, original articles, cookies, and positive comments about The Report are welcome. TABLE OF CONTENTS HYBRIDS .......................................................................................................................................................................... 1 ELECTRIC VEHICLES ...................................................................................................................................................... 1 ALTERNATIVE FUELS ..................................................................................................................................................... 4 COMING TO A LOCATION NEAR YOU
    [Show full text]
  • How Practical Are Alternative Fuel Vehicles?
    How Practical Are Alternative Fuel Vehicles? Many of us have likely considered an alternative fuel vehicle at some point in our lives. Balancing the positives and negatives is a tricky process and varies greatly based on our personal situations. However, many of the negatives that previously created hesitancy have changed in recent years. Below, we have outlined a few of the most commonly mentioned negatives regarding the two leading alternative fuel vehicle types: Flex Fuel vehicles and Electric/Hybrid vehicles. Then, you can decide for yourself whether one of these vehicle types are practical for you! Cost – How much does the vehicle cost to purchase and operate? Flex Fuel: Flex Fuel vehicles typically cost about the same as a gasoline vehicle.1 For fuel cost, E85 typically costs slightly less than gasoline, however, due to decreased efficiency has a slightly higher cost per mile than gasoline.2 Overall, a Flex Fuel vehicle is likely to be slightly more expensive than a gasoline counterpart. Electric/Hybrid: This situation varies quite a bit depending on where you live. Electric vehicles and hybrid vehicles often cost considerably more than a conventional gasoline vehicle. For example, a plug-in hybrid will cost around $4000-$8000 more than a conventional model.3 However, there are federal rebates and local rebates that can refund thousands of dollars from the purchase price. Electric/Hybrid vehicles also tend to save money on fuel, with the possibility of saving thousands of dollars over the lifetime of the vehicle.4 Whether these rebates and fuel cost savings will eventually account for the higher purchase price can be estimated with comparison tools.
    [Show full text]
  • A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives
    Review A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives Manh-Kien Tran 1,* , Asad Bhatti 2, Reid Vrolyk 1, Derek Wong 1 , Satyam Panchal 2 , Michael Fowler 1 and Roydon Fraser 2 1 Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada; [email protected] (R.V.); [email protected] (D.W.); [email protected] (M.F.) 2 Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada; [email protected] (A.B.); [email protected] (S.P.); [email protected] (R.F.) * Correspondence: [email protected]; Tel.: +1-519-880-6108 Abstract: Emissions from the transportation sector are significant contributors to climate change and health problems because of the common use of gasoline vehicles. Countries in the world are attempting to transition away from gasoline vehicles and to electric vehicles (EVs), in order to reduce emissions. However, there are several practical limitations with EVs, one of which is the “range anxiety” issue, due to the lack of charging infrastructure, the high cost of long-ranged EVs, and the limited range of affordable EVs. One potential solution to the range anxiety problem is the use of range extenders, to extend the driving range of EVs while optimizing the costs and performance of the vehicles. This paper provides a comprehensive review of different types of EV range extending technologies, including internal combustion engines, free-piston linear generators, fuel cells, micro Citation: Tran, M.-K.; Bhatti, A.; gas turbines, and zinc-air batteries, outlining their definitions, working mechanisms, and some recent Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R.
    [Show full text]
  • Waste-To-Energy and Fuel Cell Technologies Overview
    Innovation for Our Energy Future Waste-to-Energy and Fuel Cell ThTechnol ogi es O vervi ew Presented to: DOD-DOE Waste-to- Energy Workshop Dr. Robert J. Remick January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH4) Issues: High levels of contamination Time varying output of gas quantity and quality Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX Innovation for Our Energy Future Opportunities for Methane Production via Anaerobic Digestion • Breweries (~73 Watts per barrel of beer) • Municipal Waste Water Treatment Plants (~4 W/person) • Industrial-scale Food Processing • Landfills • Dairy and Pig Farms (~200 W/Cow) • Pulp and Paper Mills Innovation for Our Energy Future Stationary Fuel Cell Products Currently on the Maaetrket aaere Confi gured to Oper ate on Natura l Gas UTC Power, Inc. PureCell 400 FlCllFuelCell EIEnergy Inc. DFC 300, 1500, an d 3000 Bloom Energy, Inc. ES-5000 Energy Server Waste processes that produce methane, like anaerobic digestion of organic matter, are most easily mated to these fuel cell systems. Innovation for Our Energy Future Comparison by Generator Type (based on 40-million SCF* of bioggpyas per year** ) Generator Type Megawatt‐hours/year PAFC 2,900 MCFC 3,300 Micro‐tbiturbine 1, 800 Reciprocating Engine 1,500 * ~830 Btu/SCF (HHV) ** WWTP serving a community of about 110,000 people This comparison ignores the fact that generators do not come in an infinite range of sizes.
    [Show full text]