2020 ANNUAL REPORT Table of CONTENTS EDITOR’S COMMENTS

Total Page:16

File Type:pdf, Size:1020Kb

2020 ANNUAL REPORT Table of CONTENTS EDITOR’S COMMENTS 2020 ANNUAL REPORT table of CONTENTS EDITOR’S COMMENTS ...................................................................................................... 3 ENERGY SITES OF NORTH DAKOTA ................................................................................... 4 A VIEW FROM ABOVE ....................................................................................................... 4 NORTH DAKOTA GENERATION .......................................................................................... 5 GENERATION ................................................................................................................... 6 Mining ..................................................................................................................... 6 Reclamation ............................................................................................................. 7 Coal-Based ................................................................................................................. 8 Peaking Plants ............................................................................................................. 9 Wind .........................................................................................................................10 Hydroelectric ..............................................................................................................14 Geothermal ................................................................................................................15 Solar .........................................................................................................................16 Recovered Energy ........................................................................................................18 Transmission and Distribution .......................................................................................19 Modes of High Voltage Electric Transmission ................................................................21 PETROLEUM ....................................................................................................................22 Oil and Gas Production ...............................................................................................22 Shale Energy Technology ..............................................................................................24 Refining .....................................................................................................................25 Pipelines ....................................................................................................................26 Synthetic Natural Gas ..................................................................................................28 Natural Gas Processing ................................................................................................29 Petroleum Marketing / Propane .....................................................................................31 BIOFUELS .......................................................................................................................32 Ethanol ......................................................................................................................32 Biomass / Biodiesel .....................................................................................................33 ENERGY RESEARCH .........................................................................................................34 ELECTRIC VEHICLES IN NORTH DAKOTA ...........................................................................36 NORTH DAKOTA TAXES ....................................................................................................37 NORTH DAKOTA JOBS .....................................................................................................37 EDUCATION/WORKFORCE TRAINING ...............................................................................38 The Great Plains Energy Corridor, housed at Bismarck State College’s National Energy Center of Excellence, works with partners in government, education, and the private sector to promote and enhance North Dakota’s energy development. Together we provide information, education, outreach programs and special events on a wide range of energy topics. www.energyND.com 2 Spotlight on North Dakota Energy editor’s COMMENTS Thank you for picking up the } In May of 2020, Great River } It’s anticipated that North 2020 edition of the Great Plains Energy, based in Maple Grove, Dakota’s natural gas production Energy Corridor’s Spotlight on Minn., announced it will shut down will exceed 4 billion cubic feet North Dakota Energy! This report is or sell the Coal Creek Station near per day. The development and a statistical overview of all forms of Underwood, N.D., in 2022, and expansion of natural gas processing energy in North Dakota for the year replace it with wind energy and plants will continue, which allows 2020. It’s updated annually and other resources. Coal Creek is the North Dakota to catch up on usually distributed at the end of the largest lignite-based power plant in processing capacity through 2021, first quarter of the following year. the state. but additional plants or expansions will be needed in the future. There’s no doubt that the } During that same year 2020 will be remembered announcement, Great River Energy } While storage of electricity as having a profound effect on said it would convert the coal and isn’t a proven technology thus far, North Dakota’s energy industry natural gas-fired Spiritwood Station it is increasingly being considered, and economy. The COVID-19 near Spiritwood, N.D., to operate especially paired with solar and pandemic not only affected the primarily on natural gas. sometimes wind, reducing the state’s infrastructure, it altered our negative impact of the variability of livelihood and our lifestyle. By the } In December of 2020, Dakota those resources. end of 2020, there seemed to be Gasification Company, owner a “light at the end of the tunnel” and operator of the Great Plains We would like to thank our as we returned to a “new” normal, Synfuels Plant near Beulah, N.D., industry partners for providing the or as some have stated, the “next” began supplying liquid carbon up-to-date information for this normal. dioxide to American Welding year’s report. and Gas in an effort to produce Here’s a quick look at some of “dry ice”, which is needed to Thank you for your continued the highlights from 2020: store COVID-19 vaccines at readership! recommended temperatures of } In January 2020, Basin minus 110 degrees F. Electric authorized the installation Alicia Uhde of another generating unit at its } The development of wind Director Lonesome Creek Station west of projects in North Dakota continues. Great Plains Energy Corridor Watford City, N.D.. It will be the Three new wind projects were same as the other five units at placed in service in 2020. The Daryl Hill the site – a natural gas-fueled state has some of the best wind Retired Manager of Communications generator with a capacity of 45 resources in the nation. Over the Basin Electric Power Cooperative megawatts. past 17 years, more than 4,000 megawatts of wind generation have } In mid-2020 the price of crude been installed. Federal tax credits oil was negative – in other words, continue to be an additional factor suppliers paid customers to take the for wind energy development in product. North Dakota. North Dakota is one of the only states with a multi-resource energy policy, guided by the EmPower North Dakota Commission. Through the EmPower North Dakota Commission, leaders from all major energy industries in North Dakota meet with one common goal: to be critical thinkers for the development of the state’s energy resources. www.EmPowerND.com www.energynd.com 3 energy sites of NORTH DAKOTA Minot Williston Grand Forks Dickinson Bismarck Fargo Natural Gas Processing Coal-Based Generation Lignite Mine Hydro Power Wind Farm Synfuels Plant Ethanol Plant Petroleum Refinery Recovered Energy Solar Farm Biodiesel Plant Peaking Station Generation Renewable Diesel Refinery Bakken Formation Oil Fields + Map courtesy of Bismarck State College National Energy Center of Excellence. .5% 3.2% A View From Above6.9% According to the North Dakota Commerce Department, North Dakota ranks second in the nation for total energy production from all sources including coal, natural gas, oil, hydro, and renewables. 27.5% 61.9% North Dakota Electricity Production North Dakota Total Energy Production .5% 3.2% 5%5% 6.9% Coal-Fired CrudeCrude Oil Oil Wind 9%9% NaturalNatural Gas Gas Hydro CoalCoal 27.5% Renewables Natural Gas-Fired 23%23% Renewables 61.9% Other 62% 62% Sources:Coal-Fired U.S. Energy Information Administration, North Dakota State Energy Profile Wind 4 SpotlightHydro on North Dakota Energy Natural Gas-Fired Other north dakota GENERATION North Dakota produces Electricity is very unique. It with natural gas. There aren’t electricity from a wide variety of is an “instant-use product,” any intermediate plants in North sources, including coal baseload which means that the moment Dakota. Intermittent plants are power plants, the hydroelectric it is produced (generated), it’s typically comprised of renewable turbines at Garrison Dam, a being used. It is not stored (on energy sources such as wind growing statewide network of a regional or commercial basis) or solar, and operate when the wind turbines, natural gas and or warehoused for use at a later resource is available
Recommended publications
  • WASHINGTON – the Energy Department Released Two New
    Wind Scalability and Performance in the real World: A performance analysis of recently deployed US Wind Farms G. Bothun and B. Bekker, Dept. of Physics, University of Oregon. Abstract We are engaged in researching the real world performance, costs, and supply chain issues regarding the construction of wind turbines in the United States for the purpose of quantitatively determining various aspects of scalability in the wind industry as they relate to the continued build out of wind energy in the US. Our analysis sample consists of ~600 individual wind farms that have come into operation as of January 2011. Individual unit turbine capacity in these farms ranges from 1-5 to 3 MW, although the bulk of the installations are ≤ 2.0 MW. Starting in late 2012, however, and continuing with current projects, turbines of size 2.5 – 3.0 MW are being installed. As of July 1, 2014 the Horse Hollow development in Texas has the largest individual wind farm nameplate capacity of 736 MW and 10 other locations have aggregate capacity that exceeds 500 MW. Hence, large scale wind farm operations are now here. Based on our analysis our overall findings are the following: 1) at the end of 2014, cumulative wind nameplate capacity in the US will be at ~ 70 GW or ~ 5% of total US electrical infrastructure 2) over the period of 2006—2012, cumulative wind capacity growth was sustained at a rate of 23.7% per annum, 3) production in 2013 was dramatically lower than in 2012 and was just starting to pick up in 2014 due to lingering uncertainty about the future of the
    [Show full text]
  • Boulder Solar Power JUN 3 2016 MBR App.Pdf
    20160603-5296 FERC PDF (Unofficial) 6/3/2016 12:51:20 PM UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION Boulder Solar Power, LLC ) Docket No. ER16-_____-000 APPLICATION FOR MARKET-BASED RATE AUTHORIZATION, REQUEST FOR DETERMINATION OF CATEGORY 1 SELLER STATUS, REQUEST FOR WAIVERS AND BLANKET AUTHORIZATIONS, AND REQUEST FOR WAIVER OF PRIOR NOTICE REQUIREMENT Pursuant to Section 205 of the Federal Power Act (“FPA”),1 Section 35.12 of the regulations of the Federal Energy Regulatory Commission (“FERC” or the “Commission”),2 Rules 204 and 205 of the Commission’s Rules of Practice and Procedure,3 and FERC Order Nos. 697, et al.4 and Order No. 816,5 Boulder Solar Power, LLC (“Applicant”) hereby requests that the Commission: (1) accept Applicant’s proposed baseline market-based rate tariff (“MBR Tariff”) for filing; (2) authorize Applicant to sell electric energy, capacity, and certain ancillary services at market-based rates; (3) designate Applicant as a Category 1 Seller in all regions; and (4) grant Applicant such waivers and blanket authorizations as the Commission has granted to other sellers with market-based rate authorization. Applicant requests that the Commission waive its 60-day prior notice requirement6 to allow Applicant’s MBR Tariff to become effective as of July 1, 2016. In support of this Application, Applicant states as follows: 1 16 U.S.C. § 824d (2012). 2 18 C.F.R. § 35.12 (2016). 3 Id. §§ 385.204 and 385.205. 4 Mkt.-Based Rates for Wholesale Sales of Elec. Energy, Capacity & Ancillary Servs. by Pub. Utils., Order No.
    [Show full text]
  • 2020 ETHANOL INDUSTRY OUTLOOK 1 Focusing Forward, from Challenge to Opportunity
    RENEWABLE FUELS ASSOCIATION RFA Board of Directors Neil Koehler RFA Chairman Pacific Ethanol Inc. www.pacificethanol.com Jeanne McCaherty Charles Wilson Geoff Cooper Rick Schwarck RFA Vice Chair RFA Treasurer RFA President RFA Secretary Guardian Energy LLC Trenton Agri Products LLC Renewable Fuels Association Absolute Energy LLC www.guardiannrg.com www.trentonagriproducts.com www.EthanolRFA.org www.absenergy.org Neal Kemmet Mick Henderson Brian Kletscher Bob Pasma Ace Ethanol LLC Commonwealth Agri-Energy LLC Highwater Ethanol LLC Parallel Products www.aceethanol.com www.commonwealthagrienergy.com www.highwaterethanol.com www.parallelproducts.com Ray Baker Scott Mundt Pat Boyle Delayne Johnson Adkins Energy LLC Dakota Ethanol LLC Homeland Energy Solutions LLC Quad County Corn Processors Coop. www.adkinsenergy.com www.dakotaethanol.com www.homelandenergysolutions.com www.quad-county.com Eric McAfee John Didion Seth Harder Dana Lewis Aemetis Inc. Didion Ethanol LLC Husker Ag LLC Redfield Energy LLC www.aemetis.com www.didionmilling.com www.huskerag.com www.redfieldenergy.com Randall Doyal Carl Sitzmann Kevin Keiser Walter Wendland Al-Corn Clean Fuel LLC E Energy Adams LLC Ingredion Inc. Ringneck Energy LLC www.al-corn.com www.eenergyadams.com www.ingredion.com www.ringneckenergy.com Erik Huschitt Bill Pracht Chuck Woodside Brian Pasbrig Badger State Ethanol LLC East Kansas Agri-Energy LLC KAAPA Ethanol Holdings LLC Show Me Ethanol LLC www.badgerstateethanol.com www.ekaellc.com www.kaapaethanol.com www.smefuel.com Jim Leiting Jason Friedberg
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • "Implementing EPA's Clean Power Plan: a Menu of Options," NACAA
    Implementing EPA’s Clean Power Plan: A Menu of Options May 2015 Implementing EPA’s Clean Power Plan: A Menu of Options May 2015 Implementing EPA’s Clean Power Plan: A Menu of Options Acknowledgements On behalf of the National Association of Clean Air Agencies (NACAA), we are pleased to provide Implementing EPA’s Clean Power Plan: A Menu of Options. Our association developed this document to help state and local air pollution control agencies identify technologies and policies to reduce greenhouse gases from the power sector. We hope that states and localities, as well as other stakeholders, find this document useful as states prepare their compliance strategies to achieve the carbon dioxide emissions targets set by the EPA’s Clean Power Plan. NACAA would like to thank The Regulatory Assistance Project (RAP) for its invaluable assistance in developing this document. We particularly thank Rich Sedano, Ken Colburn, John Shenot, Brenda Hausauer, and Camille Kadoch. In addition, we recognize the contribution of many others, including Riley Allen (RAP), Xavier Baldwin (Burbank Water and Power [retired]), Dave Farnsworth (RAP), Bruce Hedman (Institute for Industrial Productivity), Chris James (RAP), Jim Lazar (RAP), Carl Linvill (RAP), Alice Napoleon (Synapse), Rebecca Schultz (independent contractor), Anna Sommer (Sommer Energy), Jim Staudt (Andover Technology Partners), and Kenji Takahashi (Synapse). We would also like to thank those involved in the production of this document, including Patti Casey, Cathy Donohue, and Tim Newcomb (Newcomb Studios). We are grateful to Stu Clark (Washington) and Larry Greene (Sacramento, California), co-chairs of NACAA’s Global Warming Committee, under whose guidance this document was prepared.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • The Ethanol Industry in Illinois
    The Ethanol Industry in Illinois Commission on Government Forecasting and Accountability 703 Stratton Office Building Springfield, IL 62706 February 2008 53054_A_CGFA_Cover.indd 1 2/4/2008 10:48:13 AM Commission on Government Forecasting and Accountability COMMISSION CO-CHAIRMEN Senator Jeffrey M. Schoenberg Representative Richard P. Myers SENATE HOUSE Bill Brady Patricia Bellock Don Harmon Frank Mautino Christine Radogno Robert Molaro David Syverson Elaine Nekritz Donne Trotter Raymond Poe EXECUTIVE DIRECTOR Dan R. Long DEPUTY DIRECTOR Trevor J. Clatfelter REVENUE MANAGER Jim Muschinske AUTHOR OF REPORT Benjamin L. Varner EXECUTIVE SECRETARY Donna K. Belknap TABLE OF CONTENTS A Report on the Ethanol Industry in Illinois – February 2008 PAGE Executive Summary i I. The History of Ethanol 1 II. Ethanol Manufacturing Process 11 III. State Government Support of Ethanol 14 IV. Ethanol Controversies 20 V. The Economic Effects of Ethanol 23 VI. Conclusion 27 TABLES: Illinois Ethanol Industry 7 E-85 Production in Illinois 15 Renewable Fuels Development Program Grants 16 Dry Mill Ethanol Profitability 23 Break Even Analysis of Ethanol 24 RFA Study Results 25 ISU Study Results 25 U of I Study Results 26 CHARTS: 2006 World Ethanol Production 4 U.S. Ethanol Production and Plants 5 U.S. Ethanol Biorefinery Locations 5 Ethanol Production Capacity by State 6 Petroleum Prices 10 Corn Prices 10 The Dry Milling Process 11 The Wet Milling Process 13 APPENDICES: Appendix A. U.S. Ethanol Plants 28 Appendix B. Illinois Ethanol Plant Permits 33 Appendix C. E-85 Fueling Stations in Illinois 35 EXECUTIVE SUMMARY This report presents an overview of the ethanol industry in Illinois.
    [Show full text]
  • Construction
    WIND SYSTEMS MAGAZINE GIVING WIND DIRECTION O&M: O&M: OPERATIONS O&M: Operations The Shift Toward Optimization • Predictive maintenance methodology streamlines operations • Safety considerations for the offshore wind site » Siemens adds two » Report: Global policy vessels to offshore woes dampen wind service fleet supply chain page 08 page 43 FEBRUARY 2015 FEBRUARY 2015 Moog has developed direct replacement pitch control slip rings for today’s wind turbines. The slip ring provides Fiber Brush Advantages: reliable transmission of power and data signals from the nacelle to the control system for the rotary blades. • High reliability The Moog slip ring operates maintenance free for over 100 million revolutions. The slip ring uses fiber brush • Maintenance free Moog hasMoog developed has developed direct direct replacement replacement pitch pitch controlcontrol slipslip rings rings for for today’s today’s wind wind turbines. turbines. The slip The ring slip provides ring provides Fiber Brush Advantages: technology to achieve long life without lubrication over a wide range of temperatures, humidity and rotational • Fiber Minimal Brush wear Advantages: debris reliablereliable transmission transmission of power of power and and data data signals signals from from thethe nacelle nacelle to to the the control control system system for the for rotary the rotaryblades. blades. • High reliability speeds. In addition, the fiber brush has the capability to handle high power while at the same time transferring data • generated High reliability signals.The Moog slip ring operates maintenance free for over 100 million revolutions. The slip ring uses fiber brush • Maintenance free The Moog slip ring operates maintenance free for over 100 million revolutions.
    [Show full text]
  • Solar Ready II FINAL REPORT May 2016
    Solar Ready II FINAL REPORT May 2016 Solar Ready II MID-AMERICA REGIONAL COUNCIL Solar Ready II | Final Report Solar Ready II participants Northwestern Indiana Regional Planning Commission (NIRPC) Population of engaged jurisdictions: 515,384 Central New York Regional Ohio-Kentucky-Indiana Regional Planning and Development Metropolitan Washington Council of Governments Council of Governments (OKI) Board (CNYRPDB) (MWCOG) Population of engaged Population of engaged Population of engaged jurisdictions: 4.2 million jurisdictions: 411,760 jurisdictions: 1.9 million Delaware Valley Regional Southwest Florida Regional Mid-American Regional Council Planning Council (SWFRPC) Planning Commission (DVRPC) (MARC) Population of engaged Population of engaged jurisdictions: 1.44 million Population of engaged jurisdictions: 2.2 million jurisdictions: 1.6 million Maricopa Association North Central Texas Council of Tampa Bay Regional Planning of Governments (MAG) Governments (NCTCOG) Council (TBRPC) Population of engaged Population of engaged Population of engaged jurisdictions: 3.56 million jurisdictions: 4.64 million jurisdictions: 2.4 million Contents Executive Summary....................3 Detailed Narrative .......................8 Major Findings ............................13 SRII Partner Reports ..................15 Conclusion ..................................28 Appendix.....................................30 page 2 | Solar Ready II | Final Report Executive Summary Solar Ready II by the numbers... 2.5 Years 277 Jurisdictions 408 Events, 34 Webinars 13,444 Participants 626 Solar Contracts 4.91 MW Solar The major objective of the Solar Ready II (SRII) project was to expand the proven collaborative approach of the Solar Ready KC initiative — a DOE Rooftop Solar Challenge project launched in the Kansas City metropolitan region in 2011 — to a national scale, using established relationships among regional planning councils and their member local governments.
    [Show full text]
  • US Solar Industry Year in Review 2009
    US Solar Industry Year in Review 2009 Thursday, April 15, 2010 575 7th Street NW Suite 400 Washington DC 20004 | www.seia.org Executive Summary U.S. Cumulative Solar Capacity Growth Despite the Great Recession of 2009, the U.S. solar energy 2,500 25,000 23,835 industry grew— both in new installations and 2,000 20,000 employment. Total U.S. solar electric capacity from 15,870 2,108 photovoltaic (PV) and concentrating solar power (CSP) 1,500 15,000 technologies climbed past 2,000 MW, enough to serve -th MW more than 350,000 homes. Total U.S. solar thermal 1,000 10,000 MW 1 capacity approached 24,000 MWth. Solar industry 494 revenues also surged despite the economy, climbing 500 5,000 36 percent in 2009. - - A doubling in size of the residential PV market and three new CSP plants helped lift the U.S. solar electric market 37 percent in annual installations over 2008 from 351 MW in 2008 to 481 MW in 2009. Solar water heating (SWH) Electricity Capacity (MW) Thermal Capacity (MW-Th) installations managed 10 percent year-over-year growth, while the solar pool heating (SPH) market suffered along Annual U.S. Solar Energy Capacity Growth with the broader construction industry, dropping 10 1,200 1,099 percent. 1,036 1,000 918 894 928 Another sign of continued optimism in solar energy: 865 -th 725 758 742 venture capitalists invested more in solar technologies than 800 542 any other clean technology in 2009. In total, $1.4 billion in 600 481 2 351 venture capital flowed to solar companies in 2009.
    [Show full text]
  • Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota
    Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota DOE/EA-2068 April 2021 Table of Contents Introduction and Background ................................................................................... 1 Purpose and Need for WAPA’s Federal Action ...................................................................... 1 Wild Springs Solar’s Purpose and Need .................................................................................. 1 Proposed Action and Alternatives ............................................................................ 2 No Action Alternative .............................................................................................................. 2 Alternatives Considered but Eliminated from Further Study .................................................. 2 Proposed Action ....................................................................................................................... 2 Solar Panels and Racking ................................................................................................3 Electrical Collection System ...........................................................................................4 Inverter/Transformer Skids .............................................................................................4 Access Roads ..................................................................................................................5 Fencing & Cameras .........................................................................................................5
    [Show full text]
  • Bogle Wind Turbine Project Draft
    Draft Environmental Impact Report Bogle Wind Turbine Project State Clearinghouse No.: 2015102072 Yolo County Department of Community Services Technical Assistance Provided by: Aspen Environmental Group March 2017 DRAFT Environmental Impact Report Bogle Wind Turbine Project State Clearinghouse No. 2015102072 Prepared for: Yolo County Department of Community Services Technical Assistance Provided by: March 2017 Bogle Wind Turbine Project CONTENTS Contents Executive Summary .................................................................................................................................................................................................. ES-1 ES.1 Introduction ................................................................................................................................................................................................. ES-1 ES.2 Project Overview ..................................................................................................................................................................................... ES-1 ES.3 Summary of Public Involvement ................................................................................................................................................. ES-2 ES.4 Areas of Controversy ............................................................................................................................................................................ ES-2 ES.5 Issues to Be Resolved ..........................................................................................................................................................................
    [Show full text]