Analysis of Groundwater Level Changes and Land Subsidence In
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF GOTHENBURG Department of Earth Sciences Geovetarcentrum/Earth Science Centre Analysis of groundwater level changes and land subsidence in Gothenburg, SW Sweden Johanna Ljungdahl ISSN 1400-3821 B845 Master of Science (120 credits) thesis Göteborg 2015 Mailing address Address Telephone Telefax Geovetarcentrum Geovetarcentrum Geovetarcentrum 031-786 19 56 031-786 19 86 Göteborg University S 405 30 Göteborg Guldhedsgatan 5A S-405 30 Göteborg SWEDEN Abstract Changes of groundwater heads in confined aquifers, which are confined by thick clay layers, can lead to land subsidence and subsequently severe damages to building and infrastructures. The geology in Gothenburg is dominated by deep valleys, with thick overlaying clay layers, generating substantial geotechnical challenges. In order to minimise the risks of groundwater lowering and land subsidence, the Office of City Planning (SBK) in Gothenburg monitors the groundwater level and attempts to keep the levels stable. The aim of this study was to analyse the sources of groundwater level changes and land subsidence in Gothenburg. This has been done by analysing groundwater time series longer than 20 years, provided by SBK. Groundwater levels and groundwater drawdown were also compared with stratigraphic models of clay thickness and subsidence data, retrieved from PanGEO (http://www.pangeoproject.eu/). In addition, an attempt to locate infiltration areas connected to the lower aquifer, and estimate groundwater recharge was also done in this study. In general, the groundwater levels in Gothenburg show a rising trend, following the common trend of precipitation. In the central parts of the city the levels are obviously recovering from the deep drawdown in the 1970. Underground constructions and groundwater drainage have contributed to, in general, a lower groundwater level today, than before 1970. Groundwater levels responds to changes in precipitation with only a few months delay, indicating that the mechanism of recharge is fast and that the groundwater level variations are mainly driven by weather and climate. Analyzing the relation between groundwater level lowering, clay thickness and land subsidence shows that areas with high subsidence rate correlates to areas with high clay thickness and also to areas where the groundwater level have been lowered. By using a simple conceptual model a very rough estimation of groundwater recharge can be obtained. In this study the groundwater recharge was estimated to 8.5-38 mm/year, with the assumption that groundwater recharge take place where coarse material, connected to the lower aquifer, outcrops. Groundwater recharge in urban areas is influenced by several factors such as leaking pipes, underground constructions and drainage. Key words: Gothenburg, Groundwater level lowering, Groundwater trends, Land subsidence, Aquifer, Conceptual model, Climate. Sammanfattning Grundvattensänkning i slutna magasin, som överlagras av tjocka lerlager, kan orsaka marksättningar samt skada byggnader och annan infrastruktur. Göteborgs geologi, som delvis utgörs av djupa dalar och tjock lera, innebär stora geotekniska utmaningar. Grundvattennivåmätningar har utförts i Göteborg sedan 1970 och idag har Stadsbyggnadskontoret (SBK) i uppdrag att övervaka grundvattennivåerna i Göteborg. För att undvika grundvattennivåsänkningar som kan orsaka skada försöker man hålla nivåerna stabila. Syftet med denna studie har varit att analysera orsakerna till grundvattennivåförändringar och marksättningar i Göteborg. Detta har gjorts genom att analysera långa grundvattentidsserier, hämtade från grundvattendatabasen, upprättad av SBK. Grundvattennivåer och grundvattennivåsänkningar jämfördes också med stratigrafiska modeller över lerdjup och sättningsdata, hämtad från PanGEO (http://www.pangeoproject.eu/). Samt ett försök lokalisera infiltrationsområden som är sammankopplade med det undre magasinet och uppskatta grundvattenbildningen. Grundvattennivåerna i Göteborg visar generellt en stigande trend. I det undre magasinet i centrala delarna av Göteborg syns en tydlig återhämtningstrend efter en tidigare grundvattensänkning. På grund av undermarksanläggningar och dränering ligger grundvattenytan idag lägre än vad den gjorde 1970 då grundvattennivåmätningarna startade. Resultatet av att analysera förhållandet mellan grundvattennivåvariationer och nederbördsvariationer visar att grundvattenbildningen sker relativ snabbt, och att grundvattennivåvariationer i huvudsak sker på grund av väder och klimat. En jämförelse mellan grundvattensänkning, lerdjup och sättningshastighet konstaterar höga sättningshastigheter i områden där grundvattennivån sänkts samt där lerdjupet är stort. Genom att använda en enkel analytisk modell fås en ytterst grov uppskattning om storleken på grundvattenbildningen, i detta fall 8,5-38 mm/år, med antagandet att grundvattenbildningen sker i grövre material i närheten av bergssluttningar och där friktionsmaterial framträder i markytan. Grundvattenbildningen i urban miljö påverkas av flera faktorer så som läckande ledningar, undermarksanläggningar och dränering. Nyckelord: Göteborg, Grundvattensänkning, Grundvattennivåförändring, Sättningar, Grundvattenmagasin, Grundvattendatabas, Analytisk modell, Klimat, PanGEO. Table of Contents 1 Introduction ..................................................................................................................................... 1 1.1 General background and motivation ...................................................................................... 1 1.2 Objective and aim .................................................................................................................... 1 1.3 Project outline ......................................................................................................................... 2 2 Background ...................................................................................................................................... 3 2.1 Geology and hydrology in Gothenburg ................................................................................... 3 2.2 Geotechnical challenges in Gothenburg ................................................................................. 4 2.3 Future climate ......................................................................................................................... 4 2.4 Description of the study areas ................................................................................................ 5 3 Theoretical background – hydrology and soil deformation ............................................................ 7 3.1 The hydrological cycle referred to an aquifer ......................................................................... 7 3.2 Subsurface processes .............................................................................................................. 8 3.3 Soil and aquifer properties and their effect on groundwater ............................................... 10 3.4 Confined and Unconfined aquifers ....................................................................................... 13 3.5 Natural groundwater fluctuations ......................................................................................... 14 3.6 Groundwater fluctuations cause by human activity ............................................................. 15 3.7 Groundwater level monitoring .............................................................................................. 15 3.8 Methods of quantifying groundwater recharge .................................................................... 16 3.9 Impacts of urbanisation on groundwater ............................................................................. 17 3.10 Soil deformation and compaction ......................................................................................... 18 3.11 Methods of quantifying land subsidence .............................................................................. 19 4 Methods and Data ......................................................................................................................... 20 4.1 Data sources .......................................................................................................................... 20 4.2 Methodology ......................................................................................................................... 24 5 Result and Analysis ........................................................................................................................ 29 5.1 Groundwater trends map ...................................................................................................... 29 5.2 Groundwater observations and time series analysis ............................................................ 32 5.3 Potentiometric surface map .................................................................................................. 39 5.4 Land subsidence .................................................................................................................... 40 5.1 Geological model ................................................................................................................... 42 5.2 Conceptual model and groundwater recharge ..................................................................... 50 6 Discussion ...................................................................................................................................... 53 6.1 Discussion of uncertainties and