Biodiversità Ed Evoluzione

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversità Ed Evoluzione Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE Ciclo XXIII Settore/i scientifico-disciplinare/i di afferenza: BIO - 05 A MOLECULAR PHYLOGENY OF BIVALVE MOLLUSKS: ANCIENT RADIATIONS AND DIVERGENCES AS REVEALED BY MITOCHONDRIAL GENES Presentata da: Dr Federico Plazzi Coordinatore Dottorato Relatore Prof. Barbara Mantovani Dr Marco Passamonti Esame finale anno 2011 of all marine animals, the bivalve molluscs are the most perfectly adapted for life within soft substrata of sand and mud. Sir Charles Maurice Yonge INDEX p. 1..... FOREWORD p. 2..... Plan of the Thesis p. 3..... CHAPTER 1 – INTRODUCTION p. 3..... 1.1. BIVALVE MOLLUSKS: ZOOLOGY, PHYLOGENY, AND BEYOND p. 3..... The phylum Mollusca p. 4..... A survey of class Bivalvia p. 7..... The Opponobranchia: true ctenidia for a truly vexed issue p. 9..... The Autobranchia: between tenets and question marks p. 13..... Doubly Uniparental Inheritance p. 13..... The choice of the “right” molecular marker in bivalve phylogenetics p. 17..... 1.2. MOLECULAR EVOLUTION MODELS, MULTIGENE BAYESIAN ANALYSIS, AND PARTITION CHOICE p. 23..... CHAPTER 2 – TOWARDS A MOLECULAR PHYLOGENY OF MOLLUSKS: BIVALVES’ EARLY EVOLUTION AS REVEALED BY MITOCHONDRIAL GENES. p. 23..... 2.1. INTRODUCTION p. 28..... 2.2. MATERIALS AND METHODS p. 28..... Specimens’ collection and DNA extraction p. 30..... PCR amplification, cloning, and sequencing p. 30..... Sequence alignment p. 32..... Phylogenetic analyses p. 37..... Taxon sampling p. 39..... Dating p. 43..... 2.3. RESULTS p. 43..... Obtained sequences i p. 44..... Sequence analyses p. 45..... Taxon sampling p. 45..... Maximum Likelihood p. 47..... Bayesian Analyses p. 50..... Dating the tree p. 52..... 2.4. DISCUSSION p. 52..... The methodological pipeline p. 53..... The phylogeny of Bivalvia p. 59..... CHAPTER 3 – PHYLOGENETIC REPRESENTATIVENESS: A NEW METHOD FOR EVALUATING TAXON SAMPLING IN EVOLUTIONARY STUDIES p. 59..... 3.1. BACKGROUND p. 62..... 3.2. RESULTS p. 62..... Algorithm p. 64..... Testing p. 69..... Implementation p. 72..... 3.3. DISCUSSION p. 78..... 3.4. CONCLUSIONS p. 80..... 3.5. METHODS p. 80..... Average Taxonomic Distinctness (AvTD) p. 82..... Test of significance p. 82..... Variation in Taxonomic Distinctness (VarTD) p. 83..... Von Euler’s index of imbalance p. 85..... Shuffling analysis p. 86..... Shuffling phase p. 87..... Analysis phase ii p. 88..... CHAPTER 4 – A MOLECULAR PHYLOGENY OF BIVALVE MOLLUSKS: ANCIENT RADIATIONS AND DIVERGENCES AS REVEALED BY MITOCHONDRIAL GENES p. 88..... 4.1. INTRODUCTION p. 91..... 4.2. MATERIALS AND METHODS p. 91..... Taxon sampling, PCR amplification, and sequencing p. 93..... Assembling the dataset p. 94..... Evaluating phylogenetic signal p. 96..... Model decision tests and tree inference p. 100..... 4.3. RESULTS p. 100..... Sequence data p. 101..... Evaluating phylogenetic signal p. 108..... Phylogenetic reconstructions p. 118..... 4.4. DISCUSSION p. 118..... Phylogenetic signal p. 119..... Bivalve phylogeny p. 124..... Tracing and optimizing major morphological characters on the evolutionary tree p. 127..... 4.5. CONCLUSIONS AND FINAL REMARKS p. 129..... CHAPTER 5 – A TWO-STEPS BAYESIAN PHYLOGENETIC APPROACH TO THE MONOPHYLY OF CLASS BIVALVIA (MOLLUSCA) p. 129..... 5.1. INTRODUCTION p. 133..... 5.2. MATERIALS AND METHODS p. 133..... Assembling the dataset p. 133..... Alignments p. 134..... Preliminary analyses p. 135..... Model decision tests and tree inference iii p. 138..... 5.3. RESULTS p. 138..... Preliminary analyses and phylogenetic signal p. 143..... Phylogenetic trees p. 147..... 5.4. DISCUSSION p. 151..... CHAPTER 6 – CITED REFERENCES p. 188..... CHAPTER 7 – APPENDICES p. 188..... Appendix 2.1 p. 190..... Appendix 2.2 p. 191..... Appendix 2.3 p. 192..... Appendix 2.4 p. 193..... Appendix 2.5 p. 194..... Appendix 2.6 p. 196..... Appendix 2.7 p. 197..... Appendix 2.8 p. 197..... Appendix 2.9 p. 198..... Appendix 2.10 p. 199..... Appendix 2.11 p. 200..... Appendix 3.1 p. 202..... Appendix 4.1 p. 205..... Appendix 4.2 p. 206..... Appendix 5.1 p. 208..... Appendix 5.2 p. 209..... CHAPTER 8 – PUBLISHED PAPERS p. 267..... ACKNOWLEDGEMENTS iv FOREWORD The main scope of my PhD is the reconstruction of the large-scale bivalve phylogeny on the basis of four mitochondrial genes, with samples taken from all major groups of the class. To my knowledge, it is the first attempt of such a breadth in Bivalvia. I decided to focus on both ribosomal and protein coding DNA sequences (two ribosomal encoding genes, 12s and 16s, and two protein coding ones, cytochrome c oxidase I and cytochrome b), since either bibliography and my preliminary results confirmed the importance of combined gene signals in improving evolutionary pathways of the group. Moreover, I wanted to propose a methodological pipeline that proved to be useful to obtain robust results in bivalves phylogenesis. Actually, best-performing taxon sampling and alignment strategies were tested, and several data partitioning and molecular evolution models were analyzed, thus demonstrating the importance of molding and implementing non-trivial evolutionary models. In the line of a more rigorous approach to data analysis, I also proposed a new method to assess taxon sampling, by developing Clarke and Warwick statistics: taxon sampling is a major concern in phylogenetic studies, and incomplete, biased, or improper taxon assemblies can lead to misleading results in reconstructing evolutionary trees. Theoretical methods are already available to optimize taxon choice in phylogenetic analyses, but most involve some knowledge about genetic relationships of the group of interest, or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. The method I proposed measures the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre- existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, it also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses. 1 Plan of the Thesis This Thesis, after a general introduction (Chapter 1), is divided into four parts, each representing the main arguments of my research during PhD. Chapter 2 is the first attempt, with a partial dataset, to draw a phylogeny of Bivalvia, especially of deeper nodes, and to establish a methodological pipeline for further studies. This part has been already published in Molecular Phylogenetics and Evolution (Plazzi and Passamonti, 2010). Chapter 3 is dedicated to the abovementioned "phylogenetic representativeness" and the software PhyRe. This part has also already been published in BMC Bioinformatics (Plazzi et al., 2010). Chapter 4 re-analyzes Bivalvia phylogeny through a larger dataset, and better specifies phylogenetic relationships among the lower level groups of Bivalvia, whenever the dataset was suitable. Chapter 5 will address the ongoing question of the monophyly or polyphyly of Bivavia. Papers from chapters 4 and 5 will be submitted shortly for publication. Finally, Chapter 6 lists cited references in the whole Thesis, Chapter 7 is composed by Appendices, and Chapter 8 includes copies of the papers I published during my PhD, also the ones that are not directly related to the main topic of the present Thesis. 2 CHAPTER 1 INTRODUCTION 1.1. BIVALVE MOLLUSKS: ZOOLOGY, PHYLOGENY, AND BEYOND The phylum Mollusca The outstanding scientific interest for the second richest phylum in the animal kingdom – slightly less than 100,000 species known (Brusca and Brusca, 2003) – and the over time passionate work of collectors and amateur malacologists, led to a stunning abundant literature in the field of mollusk taxonomy and systematics. Georges Cuvier (1769-1832) was the first to establish the group “Mollusca” (in 1795) as something similar to the assemblage we refer to with this name. Since then, barnacles, tunicates, and brachiopods were purged from the phylum: mollusks are now bilaterally symmetrical animals, unsegmented lophotrochozoan protostomes, typically featuring a dorsal visceral mass, a mantle secreting calcareous epidermal spicules, shell plates, or a true shell, a bold muscular foot, and a radula. Despite the lack of a complete agreement in the general classification of mollusks, the phylum can be arranged in seven or eight classes. Some of them are very poorly known, such as the unconventional grouping of Aplacophora, including Chaetodermomorpha (=Caudofoveata) and Neomeniomorpha (=Solenogastres), and the class of Monoplacophora, thought to be extinct until Lemche‟s (1957) discovery of a living species, Neopilina galatheae. Also Chitons (class Polyplacophora) and tusk shells (class Scaphopoda) are better known to museum visitors and zoology students, rather than to non specialists. On the contrary, humans were always very familiar with the remaining three classes of mollusks, which were commonly used as popular tools, musical devices, 3 money, decorations, and – hence the huge economical worth – food: cowries, limpets, snails, slugs (class Gastropoda); cuttlefishes, squids, octopuses, nautiluses (class Cephalopoda); clams, cockles, oysters, quahogs, scallops, mussels (class Bivalvia). Notwithstanding the importance they have for mankind, our knowledge of mollusks‟ evolutionary history is still limited. The sister group of mollusks was variably found in Sipunculida (peanut worms; Scheltema, 1993) or Ectoprocta
Recommended publications
  • Chec List Bivalves of the São Sebastião Channel, North Coast Of
    Check List 10(1): 97–105, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Bivalves of the São Sebastião Channel, north coast of the PECIES S São Paulo State, Brazil OF Lenita de Freitas Tallarico 1*, Flávio Dias Passos 2, Fabrizio Marcondes Machado 3, Ariane Campos 1, ISTS 1 1,4 L Shirlei Maria Recco-Pimentel and Gisele Orlandi Introíni 1 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Estrutural e Funcional. R. Charles Darwin, s/n - Bloco N, Caixa Postal 6109. CEP 13083-863. Campinas, SP, Brazil. 2 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal. Rua Monteiro Lobato, 255, Caixa Postal 6109. CEP 13083-970. Campinas, SP, Brazil. 3 Programas de Pós-Graduação em Ecologia e Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas. R. Bertrand Russell, s/n, Caixa Postal 6109, CEP 13083-970. Campinas, SP, Brazil. 4 Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde. R. Sarmento Leite, 245. CEP 90050-170. Porto Alegre, RS, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The north coast of the São Paulo State, Brazil, presents great bivalve diversity, but knowledge about these organisms, especially species living subtidally, remains scarce. Based on collections made between 2010 and 2012, the present work provides a species list of bivalves inhabiting the intertidal and subtidal zones of the São Sebastião Channel. Altogether, 388 living specimens were collected, belonging to 52 species of 34 genera, grouped in 18 families.
    [Show full text]
  • Response to Oxygen Deficiency (Depletion): Bivalve Assemblages As an Indicator of Ecosystem Instability in the Northern Adriatic Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea Vedrana NERLOVIĆ1, Alper DOĞAN2 & Mirjana HRS-BRENKO1 1Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, HR-52210 Rovinj, Croatia e-mail: [email protected] 2 Department of Hydrobiology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey e-mail: [email protected] Abstract: Benthic communities represent a powerful tool for the detection of natural and anthropogenic disturbances, as well as for the assessment of marine ecosystem stability. This paper shows that Bivalve assemblages could serve as excellent indicators of disturbance and ecosystem instability. The goal of this study was to compare two sets of data in order to determine the differences between two different periods belonging to Bivalve assemblage in the muddy detritic bottom of the northern Adriatic Sea in the post-anoxic period during December 1989, 1990, 1991 and quite a while later, during 2003, 2004 and 2005. Abundances of some indicator species such as Corbula gibba, Modiolarca subpicta, and Timoclea ovata were detected during the post-anoxic period. Recruitment in the quality of Bivalve assemblages was proved by the ecologic and biotic indexes during 2003, 2004 and 2005, during a period of relatively stable ecological conditions. Fluctuation in Bivalve diversity due to the ecological quality of the marine ecosystem in the eastern part of the northern Adriatic Sea is also discussed. Key words: hypoxia; Bivalve assemblages; indicator species; soft bottoms; northern Adriatic Sea Introduction Recent reviews and summaries have provided good introductions on how hypoxia and anoxia came to be such a large and serious problem in the aquatic ecosystem (Gray et al.
    [Show full text]
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Jacksonville, Florida 1998 Odmds Benthic Community Assessment
    JACKSONVILLE, FLORIDA 1998 ODMDS BENTHIC COMMUNITY ASSESSMENT Submitted to U.S. Environmental Protection Agency, Region 4 61 Forsyth St. Atlanta, Georgia 30303 Prepared by Barry A. Vittor & Associates, Inc. 8060 Cottage Hill Rd. Mobile, Alabama 36695 (334) 633-6100 November 1999 TABLE OF CONTENTS LIST OF TABLES ………………………………………….……………………………3 LIST OF FIGURES ……………………..………………………………………………..4 1.0 INTRODUCTION ………..…………………………………………………………..5 2.0 METHODS ………..…………………………………………………………………..5 2.1 Sample Collection And Handling ………………………………………………5 2.2 Macroinfaunal Sample Analysis ……………………………………………….6 3.0 DATA ANALYSIS METHODS ……..………………………………………………6 3.1 Assemblage Analyses ..…………………………………………………………6 3.2 Faunal Similarities ……………………………………………………….…….8 4.0 HABITAT CHARACTERISTICS ……………………………………………….…8 5.0 BENTHIC COMMUNITY CHARACTERIZATION ……………………………..9 5.1 Faunal Composition, Abundance, And Community Structure …………………9 5.2 Numerical Classification Analysis …………………………………………….10 5.3 Taxa Assemblages …………………………………………………………….11 6.0 1995 vs 1998 COMPARISONS ……………………………………………………..11 7.0 SUMMARY ………………………………………………………………………….13 8.0 LITERATURE CITED ……………………………………………………………..16 2 LIST OF TABLES Table 1. Station locations for the Jacksonville, Florida ODMDS, June 1998. Table 2. Sediment data for the Jacksonville, Florida ODMDS, June 1998. Table 3. Summary of abundance of major taxonomic groups for the Jacksonville, Florida ODMDS, June 1998. Table 4. Abundance and distribution of major taxonomic groups at each station for the Jacksonville, Florida ODMDS, June 1998. Table 5. Abundance and distribution of taxa for the Jacksonville, Florida ODMDS, June 1998. Table 6. Percent abundance of dominant taxa (> 5% of the total assemblage) for the Jacksonville, Florida ODMDS, June 1998. Table 7. Summary of assemblage parameters for the Jacksonville, Florida ODMDS stations, June 1998. Table 8. Analysis of variance table for density differences between stations for the Jacksonville, Florida ODMDS stations, June 1998.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Taxonomy of Tropical West African Bivalves V. Noetiidae
    Bull. Mus. nati. Hist, nat., Paris, 4' sér., 14, 1992, section A, nos 3-4 : 655-691. Taxonomy of Tropical West African Bivalves V. Noetiidae by P. Graham OLIVER and Rudo VON COSEL Abstract. — Five species of Noetiidae are described from tropical West Africa, defined here as between 23° N and 17°S. The Noetiidae are represented by five genera, and four new taxa are introduced : Stenocista n. gen., erected for Area gambiensis Reeve; Sheldonella minutalis n. sp., Striarca lactea scoliosa n. subsp. and Striarca lactea epetrima n. subsp. Striarca lactea shows considerable variation within species. Ecological factors and geographical clines are invoked to explain some of this variation but local genetic isolation could not be excluded. The relationships of the shallow water West African noetiid species are analysed and compared to the faunas of the Mediterranean, Caribbean, Panamic and Indo- Pacific regions. Stenocista is the only genus endemic to West Africa. A general discussion on the relationships of all the shallow water West African Arcoidea is presented. The level of generic endemism is low and there is clear evidence of circumtropical patterns of similarity between species. The greatest affinity is with the Indo-Pacific but this pattern is not consistent between subfamilies. Notably the Anadarinae have greatest similarity to the Panamic faunal province. Résumé. — Description de cinq espèces de Noetiidae d'Afrique occidentale tropicale, ici définie entre 23° N et 17° S. Les Noetiidae sont représentés par cinq genres. Quatre taxa nouveaux sont décrits : Stenocista n. gen. (espèce-type Area gambiensis Reeve) ; Sheldonella minutalis n. sp., Striarca lactea scoliosa n.
    [Show full text]
  • Erminlo Caprotti F) L Avole Propriamente Nei Vasti Ammassi Di
    \ \ Erminlo Caprotti MOLLUSCHI DEL TABIANIANO (PLIOCENE INFERIORE) DELLA VAL D'ARDA. LORO CONNESSIONI TEMPORALI E SPAZIALI. Gebun und GÈb, Èir cwias Mc.r. - F'n we.-hselnd W€hén Èin slUhcnd t2ben: So schatf ich .m sausendeù WcE sruhl de. z.n Und{i.ke dér Gonhéir lebendig.s (W. C@thé, Faust, I, Nacht) A) Introduzione B) Composizione della fauna e comparazioni - Le associazioni , dominanti C) Origine e divenire D) Descrizioni paleontologiche E) Nota bibliografica F) l avole A) INTRODUZIONE Questo lavoro studia i molluschi reperiti dall'Autore con sue per- sonali ricerche nel Tabianiano (Pliocene inferiore) della Val d'Arda, in provincia di Piacenza. La ricerca e la raccolta del materiale è stata ef- fettuata sulla riva destra dell'Arda nei pressi di Lugagnano, e Piir propriamente nei vasti ammassi di argille azzure che si stendono dall'Arda verso il paese di Vernasca (Foglio I.G.M. n. 72 II N.E.). In particolare le due zone di raccolta, oggetto di questo studio, sono topograficamente racchiuse tm quota 208 (Case Micelli presso la riva destra dell'Arda) e quota 300 circa. Si tratta di un grande ammasso di argille azzurre, situato ad Est ed a Sud-Est della fornace per late- rizi di Lugagnano. Topograficamente sovrapposte a queste argille si trovano sabbie basali del Pliocene inferiore variate con intercalazioni marmose, sab- bie medie e grossolane, marne grigio chiare, sabbie argillo§e, argille marmoso-sabbiose. Da esse non sono stati prelevati che scarsi fram_ menti di molluschi e pertanto queste non fanno oggetto di questo Iavoro. Queste sabbie sooo stratigraficamente sottoposte alle argille prese qui in esame, mentre dal punto di vista topografico esse si e' stcndono fin quasi al paese di Veanasca.
    [Show full text]
  • Mollusca) Del Tortoniense Superior De Arroyo Trujillo, Cantillana (Sevilla
    SPANISH JOURNAL OF PALAEONTOLOGY Estudio paleontológico de los bivalvos (Mollusca) del Tortoniense superior de Arroyo Trujillo, Cantillana (Sevilla) Joaquín CÁRDENAS1*, Ildefonso BAJO2 & M. Vicente MAESTRE2 1 Plaza de España, 10, 1º D, 41702 Dos Hermanas, Sevilla; [email protected] 2 Museo de Alcalá de Guadaíra, Sección de Paleontología, c/ Juan Pérez Díaz s/n, 41500, Alcalá de Guadaíra, Sevilla * Corresponding author Cárdenas, J., Bajo, I. & Maestre, M.V. 2017. Estudio paleontológico de los bivalvos (Mollusca) del Tortoniense superior de Arroyo Trujillo, Cantillana (Sevilla). [Palaeontological study of the bivalves (Mollusca) of the late Tortonian of Arroyo Trujillo, Cantillana (Sevilla)]. Spanish Journal of Palaeontology, 32 (2), 367-386. Manuscript received 19 April 2017 © Sociedad Española de Paleontología ISSN 2255-0550 Manuscript accepted 21 August 2017 RESUMEN ABSTRACT En este trabajo se actualiza la estratigrafía y se estudia la In this work, the stratigraphy of Arroyo Trujillo (Cantillana, comunidad de bivalvos fósil del yacimiento Arroyo Trujillo Sevilla) site, in the Guadalquivir Basin, is updated and the (Cantillana, Sevilla) en la zona central de la Cuenca del fossil bivalve community is studied. A new stratigraphic Guadalquivir. Se ha realizado una nueva columna estratigráfi ca, section has been made, differentiating four sections y en ella se diferencian cuatro tramos correspondientes al encompassed in the Transgressive Basal Complex of the upper Complejo Basal Transgresivo del Tortoniense superior. Han Tortonian. One hundred and thirty two bivalves have been sido identifi cados 132 taxones de bivalvos, diez de los cuales identifi ed, 10 out of them are mentioned for the fi rst time in se citan por primera vez en la península Ibérica.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • The Effects of Environment on Arctica Islandica Shell Formation and Architecture
    Biogeosciences, 14, 1577–1591, 2017 www.biogeosciences.net/14/1577/2017/ doi:10.5194/bg-14-1577-2017 © Author(s) 2017. CC Attribution 3.0 License. The effects of environment on Arctica islandica shell formation and architecture Stefania Milano1, Gernot Nehrke2, Alan D. Wanamaker Jr.3, Irene Ballesta-Artero4,5, Thomas Brey2, and Bernd R. Schöne1 1Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany 2Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 3Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA 4Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 5Department of Animal Ecology, VU University Amsterdam, Amsterdam, the Netherlands Correspondence to: Stefania Milano ([email protected]) Received: 27 October 2016 – Discussion started: 7 December 2016 Revised: 1 March 2017 – Accepted: 4 March 2017 – Published: 27 March 2017 Abstract. Mollusks record valuable information in their hard tribution, and (2) scanning electron microscopy (SEM) was parts that reflect ambient environmental conditions. For this used to detect changes in microstructural organization. Our reason, shells can serve as excellent archives to reconstruct results indicate that A. islandica microstructure is not sen- past climate and environmental variability. However, animal sitive to changes in the food source and, likely, shell pig- physiology and biomineralization, which are often poorly un- ment are not altered by diet. However, seawater temperature derstood, can make the decoding of environmental signals had a statistically significant effect on the orientation of the a challenging task.
    [Show full text]