Proceedings of The

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of The Proceedings of the Volume One 17th INTERNATIONAL CONGRESS OF SPELEOLOGY Sydney, NSW, Australia July 22–28, 2017 Proceedings VOLUME 1 Edited by Kevin Moore Susan White 2017 Proceedings of the 17th International Congress of Speleology i 17th INTERNATIONAL CONGRESS OF SPELEOLOGY Sydney, NSW, Australia July 22–28, 2013 Proceedings VOLUME 1 Produced by the Organizing Committee of the 167th International Congress of Speleology. Published by the Australian Speleological Federation Inc and Speleo2017 in the co-operation with the International Union of Speleology. Design by Kevin Moore Layout by Kevin Moore Printed in Victoria Australia Te contributions were assisted with language and edited. Contributions express author(s) opinion. Recommended form of citation for this volume: Moore K., White S. (Eds), 2017. Proceedings of the 17th International Congress of Speleology, July 22–28, Sydney, NSW Australia Volume 1, Australian Speleological Federation Inc. Sydney. ISBN 978-0-9808060-5-2-07-6 © 2017 Australian Speleological Federation Inc, Tis work is licensed under Creative Commons Attribution ShareAlike International License (CC-BY-SA). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Individual Authors retain copyright over their work, while allowing the conference to place this unpub- lished work under a Creative Commons Attribution ShareAlike which allows others to freely access, use, and share the work, with an acknowledgement of the work’s authorship and its initial presentation at the 17th International Congress of Speleology, Sydney NSW Australia. Cover photo : Keir Vaughan-Taylor on Lake 2, Koonalda Cave, Nullarbor Plain. (Photo by Kevin Moore) Back Cover : Te Khan and Beagum in Kubla Khan Cave Tasmania (Photo by Garry K. Smith) ii Proceedings of the 17th International Congress of Speleology Secondary Minerals From Italian Sulfuric Acid Caves Ilenia Maria D’Angeli1, Jo De Waele1, Cristina Carbone2, Mario Parise3, Giuliana Madonia4, Marco Vattano4 Afliation: 1Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, [email protected]; [email protected] 2DISTAV, Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, Italy. E-mail: [email protected] 3Department of Earth and Environmental Sciences, University “Aldo Moro” of Bari, Italy (ex CNR-IRPI Bari, Italy) E-mail: [email protected] 4Dipartimento di Scienze della Terra e del Mare, University of Palermo, Italy. E-mail: [email protected]; [email protected] Abstract Italy is a country hosting a large number of hypogenic sulfuric acid (SAS) speleogenesis caves, mostly located along the Apennine chain, but also in Campania (along the coastline of Capo Palinuro), Apulia (along the coastline of Santa Cesarea Terme) and Sicily. Besides the typical morphologies related to their special geochemical origin (cupolas, replacement pockets, bubble trails, etc), these caves ofen host abundant secondary mineral deposits, mainly gypsum, being the result of the interaction between the sulfuric acid and the carbonate host rock. Native sulfur deposits are also well visible on the ceiling and roof, and peculiar sulfuric acid minerals such as jarosite, alunite, and other sulfates like copiapite, pickeringite, tschermigite, tamarugite (probably related to the weathering of native clay minerals) have been found in those caves. Te presence of typical SAS minerals, together with the morphologies, testifes the infuence of rising acidic waters, that likely interact with the deep-seated Triassic evaporite deposits (along the Apennine chain), with volcanic sources or hydrothermal springs in the Tyrrhenian sea (in Campania) and with marine waters that infltrate on the sea bottom and rise through deep faults (in Apulia). Tis paper describes the secondary minerals discovered in several caves, and discusses their origin and possible use in reconstructing the evolution of these cave systems. Keywords: sulfates; speleogenesis; hypogenic caves; cave mineralogy 1. Introduction and Pieri 1964; Ciarapica et al. 1987) cropping out in several regions of Italy including Emilia-Romagna, Tuscany, Latium, Hypogene caves are widespread around the world and Umbria, Marche, Apulia (Gargano), and also in Greece and together with epigenic caves represent the most important Albania (Martinis and Pieri 1964). types of karst systems (Klimchouk 2007). Despite the fact they can evolve in diferent lithologies (carbonates, evaporites We collected and analyzed samples coming from several and clastic rocks with soluble cement) and geological settings, sulfuric acid environments reported in Figure 1, in particu- they present similar cave patterns and the morphological lar from Porretta Terme thermal spa underground tunnels features of rising fow (Klimchouk 2009). Because of the fact (Emilia-Romagna), Monte Cucco and Faggeto Tondo caves they are climate-independent and do not rely on infltrating (Umbria), Montecchio cave (Tuscany), Cavallone and Bove surface waters, the most famous and largest hypogene cave caves (Abruzzo), Cerchiara di Calabria and Cassano allo systems have been found in dry regions (e.g. Carlsbad cav- Ionio Caves (Calabria), Santa Cesarea Terme caves (Apulia), erns and Lechuguilla in the Guadalupe Mountains in New and Acqua Fitusa cave (Sicily). Mexico, Toca da Boa Vista and Toca da Barriguda in Bahia in Brazil, etc). In these areas hypogene cave systems can be preserved afer their exhumation thanks to the dry weather 2. Geological setting conditions, with subduing secondary processes (e.g. epigenic Most SAS caves are located along the Apennine chain, where infltration, deposition of speleothems), which can cover the deep-rooted faults allow groundwaters to rise from depth. In original hypogenic features (Klimchouk et al. 2016). Several many cases these rising fuids are rich in H2S, and more or types of hypogene caves are well known, such as sulfuric acid less thermal. Porretta Terme (Emilia Romagna), Cassano allo (SAS) caves, thermal limestone caves and intrastratal caves in Ionio-Cerchiara di Calabria (Calabria), and Santa Cesarea gypsum (Klimchouk 2009). In Italy all these types of hypo- Terme (Apulia) represent commercially exploited spas and gene caves (Galdenzi and Menichetti 1995; De Waele et al. thermal baths. Montecchio hosts a thermal lake at -100 m, 2014) are documented, but here we focus in particular on sul- Acqua Fitusa is related to a nearby thermal sulfuric spring, furic acid caves that are abundant especially along the Apen- Monte Cucco, Faggeto Tondo, Cavallone and Bove caves are nine Chain, in the Southeast Apulian foreland and in Sicily. high up in the mountains and no longer directly related to Diferently from sulfuric acid caves in the Guadalupe Moun- thermal rising waters. tains (Hose and Macalady 2006), along the Appennine chain Porretta Terme spa is located in the Tuscan-Emilian Apen- the H2S source is mostly related to deep-seated upper Triassic evaporites called “Anidriti di Burano Formation.” (Martinis nines and develops in the “Porretta Terme Formation.”, in particular in the arenitic member called “Arenarie di Suvi- Proceedings of the 17th International Congress of Speleology 237 Figure 1. Location of the caves object of this study. From the N to the S are reported: Porretta Terme caves in Emilia Romagna, Monte Cucco and Faggeto Tondo caves in Umbria, Montecchio cave in Tuscany, Cavallone and Bove caves in Abruzzo, Cerchiara di Calabria and Cassano allo Ionio caves in Calabria, Santa Cesarea Terme caves in Apulia, Acqua Fitusa cave in Sicily. ana” characterized by Oligocene lithic arenites with a vertical stratifcation due to Apenninic tectonic movements (ISPRA). Figure 2. SAS minerals in several caves in Italy; A) Gypsum depos- Several sulfuric thermal springs have been encountered in an its in Faggeto Tondo cave (credits: J.De Waele); B) Alunite deposits in artifcial tunnel network realised in the XIX century. Tese Cavallone cave (credits: M. Nagostinis); C) Gypsum in Sant’Angelo old underground environments are similar to caves, and host Cave in Cassano allo Ionio (credits: O. Lacarbonara); D) Te yellow a wide variety of secondary mineral deposits. deposits are characterized by copiapite, tamarugite and pickeringite and are located in “Sorgente N°3” in Cassano allo Ionio (credits: O. Monte Cucco and Faggeto Tondo caves are located in the Lacarbonara); E and F) Te yellow deposits are characterized by Umbro-Marche Apennines in a fold-and-thrust belt domi- copiapite and tschermigite and are located in Ninfee cave in Cerchiara di Calabria (credits: O. Lacarbonara); G) Sulfur deposits covering nated by Jurassic carbonate rocks of the “Calcare Massiccio walls and ceiling in Gattulla cave at Santa Cesarea Terme (credits: M. Formation.” (Pialli et al. 1998). Both caves are part of a huge Vattano); H) Gypsum deposits in Acqua Fitusa (credits: M. Vattano). sulfuric acid cave system, uplifed high above the present base level and now abandoned by the sulfuric waters. Te cave is intersected by epigenic vadose shafs and hosts several active Cerchiara di Calabria and Cassano allo Ionio caves are located passages, unrelated to its hypogenic origin. Several fossil con- in the southern Apennines and develop in biogenic calcar- duits still host a variety of secondary minerals related to SAS enites of the “Cerchiara Formation.” of Lower Miocene age speleogenesis. (Selli 1957) and in Triassic dark-grey dolostone (Selli 1962), respectively. Te underground karst network
Recommended publications
  • Zaalteksten En.Indd
    ground in the city Under g aller EnPlease drop me in the box as you leave y texts Down the rabbit hole 1 We experience what is happening above ground on a daily basis, but what lies underneath the earth’s surface is usually hidden from view. And because that world is largely terra incognita for us, what happens there is shrouded in mystery. Stories about tunnels used to access and rob banks or as secret escape routes capture our imagination. By their very nature, illegal resistance movements operate ‘underground’, shunning the spotlight. The underground scene of artistic subcultures also prefers to avoid the glare of public attention. Besides arousing our curiosity, the unknown frightens us. The devil and other monstrous creatures are said to be lurking deep under the ground. Sewage workers would be well advised to offer up a quick prayer before removing a manhole cover. On the other hand, it is to the earth that we entrust our most cherished treasures. Venture down below and a wondrous world will open up to you! 1.1 Hepworth Manufacturing Company, The deep and Alice in Wonderland, 1903 mysterious underground It is very difficult to fathom what 1.2 Walt Disney Productions, is actually happening inside the earth Alice in Wonderland, 1951 and for a long time this was a matter of guesswork. Even now the deepest 1.3 In 1877 Thomas Wallace Knox, an Ameri- drilling operations into the earth’s can journalist and author of adventure crust are mere pinpricks. stories, wrote a weighty tome entitled The German priest and scholar Athana- The Underground World: a mirror of life sius Kircher tried to explain a number below the surface, with vivid descrip- of phenomena in the influential book tions of the hidden works of nature and he wrote in 1664: Mundus subterraneus, art, comprising incidents and adven- quo universae denique naturae tures beyond the light of day… divitiae.
    [Show full text]
  • Geomorphology of Thermo-Erosion Gullies – Case Study from Bylot Island, Nunavut, Canada
    Geomorphology of thermo-erosion gullies – case study from Bylot Island, Nunavut, Canada Godin Etienne & Fortier Daniel Département de Géographie – Université de Montréal, Montréal, Québec, Canada Center for Northern Studies, (CEN) – Laval University, Quebec, Quebec, Canada ABSTRACT In the valley of glacier C-79 on Bylot Island, snowmelt water runoff is creating thermo-erosion of permafrost wetlands. This process contributes to the rapid formation of gullies in ice-wedge polygons. One gully had been observed since 1999 and had a growth of 748 m since then. The geomorphology of this gully is characterized by an active thermo- erosion zone near the gully head, a poorly-active zone near the outlet and a moderately active zone in-between. Feedback mechanisms contribute to the erosion processes governing the development of the gully, accelerating erosion at its head and stabilizing it at its outlet. Erosion features such as sinkholes, collapses and baydjarakhs were consequently observed in the gully. Thermo-erosion processes have remained active and have had an impact on the ecosystem for more than a decade. RÉSUMÉ La thermo-érosion induite par la fonte du couvert nival cause la dégradation du pergélisol dans la vallée glaciaire C-79 sur l’Ile Bylot. Ce processus contribue à la formation rapide de réseaux de ravinement dans les polygones à coin de glace. L'observation d'un ravin depuis sa formation en 1999 et de son évolution jusqu’à 748 m en 2009, révèle trois types de zones d’érosion caractérisant sa géomorphologie : une zone de thermo-érosion très active en amont, une zone intermédiaire, et une zone faiblement active à proximité de l’exutoire.
    [Show full text]
  • Egypt and Israel: Tunnel Neutralization Efforts in Gaza
    WL KNO EDGE NCE ISM SA ER IS E A TE N K N O K C E N N T N I S E S J E N A 3 V H A A N H Z И O E P W O I T E D N E Z I A M I C O N O C C I O T N S H O E L C A I N M Z E N O T Egypt and Israel: Tunnel Neutralization Efforts in Gaza LUCAS WINTER Open Source, Foreign Perspective, Underconsidered/Understudied Topics The Foreign Military Studies Office (FMSO) at Fort Leavenworth, Kansas, is an open source research organization of the U.S. Army. It was founded in 1986 as an innovative program that brought together military specialists and civilian academics to focus on military and security topics derived from unclassified, foreign media. Today FMSO maintains this research tradition of special insight and highly collaborative work by conducting unclassified research on foreign perspectives of defense and security issues that are understudied or unconsidered. Author Background Mr. Winter is a Middle East analyst for the Foreign Military Studies Office. He holds a master’s degree in international relations from Johns Hopkins School of Advanced International Studies and was an Arabic Language Flagship Fellow in Damascus, Syria, in 2006–2007. Previous Publication This paper was originally published in the September-December 2017 issue of Engineer: the Professional Bulletin for Army Engineers. It is being posted on the Foreign Military Studies Office website with permission from the publisher. FMSO has provided some editing, format, and graphics to this paper to conform to organizational standards.
    [Show full text]
  • Congestion Relief Toll Tunnels
    Policy Study No. 164 July 1993 CONGESTION RELIEF TOLL TUNNELS by Robert W. Poole, Jr. and Yuzo Sugimoto EXECUTIVE SUMMARY Changing urban land-use patterns have reduced the importance of traditional downtowns as the origin and destination of numerous vehicular trips. Much traffic on downtown-area freeways seeks merely to get past downtown, thereby worsening the level of congestion for those seeking access to downtown. A number of European cities have begun to develop a new type of transportation facility: congestion-relief toll tunnels in downtown areas. These projects appear to be economically feasible largely or entirely from premium-price tolls paid by users. Hence, they are being developed by private consortia, operating under long-term franchises from government. Other keys to the feasibility of such projects are peak/off-peak pricing structures (congestion pricing), nonstop electronic toll collection, and restriction of use to auto-size vehicles only (to reduce tunnel dimensions and therefore capital investment). Preliminary analysis indicates that congestion-relief bypass tunnels for downtown Los Angeles and San Francisco would be economically feasible as private business ventures, if developed along European lines. Similar approaches might be applied to other controversial freeway projects in both cities, and to restructuring Boston's huge and controversial Central Artery/Tunnel project. Congress has already authorized public-private partnerships of this type, permitting private capital and private owner/operation to be used, both for new projects and to rebuild existing highway, bridge, and tunnel facilities. Six states and Puerto Rico have enacted private-tollway legislation under which such projects could be developed and operated.
    [Show full text]
  • The Influence of Geology on Battlefield Terrain and It's Affects on Military Operations in Mountains and Karst Regions: Examp
    Rudarsko-geološko-naftni zbornik Vol. 19 str. 57 - 66 Zagreb, 2007. UDC 341.31:550.9 Original scientific paper UDK 341.31:550.9 Originalni znanstveni rad Language/Jezik:English/Engleski THE INFLUENCE OF GEOLOGY ON BATTLEFIELD TERRAIN AND IT’S AFFECTS ON MILITARY OPERATIONS IN MOUNTAINS AND KARST REGIONS: EXAMPLES FROM WW1 AND AFGHANISTAN UTJECAJ GEOLOGIJE BOJNOG POLJA NA VOJNE OPERACIJE U PLANINSKOM I KRŠKOM PODRUČJU: PRIMJERI IZ PRVOG SVJETSKOG RATA I IZ AFGANISTANA MARKO ZEČEVIĆ1, ENIO JUNGWIRTH2 1 Ministry of Defence, Material Resources Directorate, Bauerova 31, 10000 Zagreb, Croatia e-mail:[email protected] 2 Ministry of Defence, Institute for Researches and Development of Defense Systems, Ilica 256 b, 10000 Zagreb, Croatia e-mail:[email protected] Key words: Military geology, “geological intelligence”, mountain Ključne riječi: Vojna geologija, “geološko izvješćivanje”, ratovanje u warfare, karst regions, terrain analysis planinama, krška područja, analiza terena Abstract Sažetak During the World War I conflict between the Austrian and Italian Tijekom 1. svjetskog rata u sukobu između talijanske i austro-ugar- army, Austrian engineer units constructed hallways in the karst region of ske vojske na rijeci Soči, austrijske su inženjerijske postrojbe izgradile Soča river. Those hallways, karst phenomena (caverns, caves) and other tunele u kršu. Takvi umjetni objekti (tuneli) i prirodni krški fenomeni fortifications, gave the Austrian army a tactical advantage. The construc- (kaverne, prirodne spilje), kao i druge fortifikacije omogućile su austro- tion principle of caverns is the consequence of the geological structure ugarskoj vojsci prednost u taktičkom smislu. Princip izgradnje tunela of the terrain. We are watching another military conflict in Afghanistan.
    [Show full text]
  • Abstract (Pdf)
    2 Congresso GeoSed 25-26 Settembre 2008 Aula Magna Palazzo di Scienze della Terra Campus Universitario Via E. Orabona 4 BARI Atti del Congresso a cura di: Massimo Moretti ORGANIZZAZIONE Coordinamento Luisa Sabato Segreteria Luigi Spalluto Comitato organizzatore Salvatore Gallicchio Massimo Moretti Luisa Sabato Luigi Spalluto Marcello Tropeano Collaboratori Alessia Barchetta Elisa Costantini Antonietta Cilumbriello Antonio Grippa Michele Labriola Rosanna Laragione Stefania Lisco Vincenzo Onofrio Mariangela Pepe Patrocinio e Contributo Università degli Studi di Bari Dipartimento di Geologia e Geofisica Dottorato di Scienze della Terra Regione Puglia Regione Basilicata Provincia di Bari Comune di Bari Commissione Italiana “Anno Internazionale del Pianeta Terra” 4 INDICE DEL VOLUME G. Aiello, A. Conforti, B. D’Argenio Regional marine geologic cartography of the Naples Bay (scale 1:10.000): the geological map n. 465 “Procida” pag. 1 G. Aiello, E. Marsella, S. Passaro The continental slopes off the Ischia island (Naples Bay): submarine gravity instability processes investigated by means of marine geological and geophysical data pag. 4 M. Aldinucci, I. Martini, F. Sandrelli The Pliocene deposits of the northern Siena Basin (Tuscany, Italy) revised through unconformity-bounded stratigraphic units pag. 6 A. Alfarano, M. Delle Rose, L. Orlanducci, F. Resta Rapporti stratigrafici tra pietra leccese, piromafo e Calcareniti di Andrano (area urbana e periferia est di Lecce) pag. 8 S. Andreucci, V. Pascucci, M. D. Bateman Record of three peaks during the Marine Isotopic Stage MIS5 along the Alghero coast, NW Sardinia, Italy: Sea level implication pag. 10 A. Barchetta, L. Spalluto Stratigrafia e caratteri di facies delle successioni carbonatiche affioranti nell’area compresa tra Binetto e Grumo Appula (Murge baresi, Puglia) pag.
    [Show full text]
  • Exploring the War Underground Aims
    World War One Centenary : Continuations and Beginnings (University of Oxford / JISC) Exploring the War Underground by Chris Stephens 2012-10-29 15:44:57 Life on the Western Front front was lived underground, either in trenches or dugouts, or even deeper beneath the surface in caves, souterraines ' medieval underground quarries - or complex tunnel systems, designed to defend the frontlines from subterranean attack and then take the fight to the enemy in a deadly, troglodyte game of cat and mouse. The battlefields of Europe and beyond were underpinned by this subterranean world, for it was an essential part of the bloody business of trench warfare and the attritional nature of a conflict, where technology and industrial might had far outpaced long-outdated notions of strategy and tactics. (Matt Leonard) It is difficult to comprehend what the underground world of the Western Front would have been like, and very difficult to reconstruct today. For the 2012 television adaption of Sebastian Falks novel Birdsong, producers attempted to build an accurate replica of part of the vast network of tunnels, believed to be the first undertaking of this kind. However for those studying Birdsong or conflict archaeology this simulation provides an alternative immersive experience to explore the conflict landscapes and material culture of the First World War. The simulation takes you on a journey through an underground tunnel network, as you descend underground though a mine shaft and explore the tunnels you can listen to Matt Leonard, conflict archeologist, explain how men survived in this environment. Within the simulation are contemporary photographs and film footage from the Durand Group, a world-authority on subterranean warfare during the First World War.
    [Show full text]
  • The Paleozoic Record of Thaumatoporella PIA, 1927?
    Geologia Croatica 66/3 155–182 12 Figs. 3 Tabs. 8 Pls. Zagreb 2013 Palaeozoic record of Thaumatoporella PIA, 1927 (incertae sedis)? Felix Schlagintweit1, Jindrich Hladil2, Martin Nose3 and Carlo Salerno4 1 Lerchenauerstr. 167, 80935 München, Germany; ([email protected]) 2 Institute of Geology ASCR, v. v. i., Rozvojová 269, 16500 Praha, Czech Republic; ([email protected]) 3 SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, GeoBioCenterLMU, Richard-Wagner-Str. 10, 80333 München, Germany; ([email protected]) 4 Lenzhalde 70, 70192 Stuttgart, Germany; ([email protected]) doi: 10.4154/gc.2013.14 GeologiaGeologia CroaticaCroatica AB STRA CT From Palaeozoic (mainly Devonian) shallow-water carbonates, spherical to irregular shaped microfossils with thin, apparently homogeneous or perforate micritic walls are widely reported. They are classically referred either to uniloc- ular parathuramminid foraminifera, algae incertae sedis or calcispheres (e.g., Bisphaera, Cribrosphaeroides, Uslo­ nia, Vermiporella myna, Irregularina). Due to their morphology and microstructural features, they are interpreted here as possibly belonging to Thaumatoporella PIA, a widespread Mesozoic-Early Cenozoic taxon of incertae sedis showing a remarkably high morphological variability. In analogy to Mesozoic thaumatoporellaceans, Bisphaera ma­ levkensis BIRINA is interpreted as the cyst (i.e.= resting) stage of forms ascribed to different genera, i.e., Cribro­ sphaeroides, Uslonia and Vermiporella (here: Vermiporella myna WRAY). Note that in the Mesozoic many taxa were also synonymized with Thaumatoporella: Polygonella ELLIOTT, Lithoporella elliotti (EMBERGER), Messopota­ mella DRAGASTAN et al., Vermiporella crisiae DRAGASTAN et al., Micritosphaera SCOTT. This new interpretation, based on material from the Devonian of W-Germany and the Czech Republic, leads to taxonomic reassessment as Thaumatoporella? malevkensis (BIRINA) nov.
    [Show full text]
  • General Report of Hydrogeological Risk Management
    Project FLAT 2019/2020 “Flood and Landslide Assistance and Training” General report of Hydrogeological risk management ITALIAN SECTION MONTENEGRIN SECTION ALBANIAN SECTION GENERAL INDEX ITALIAN SECTION 1. Introduction to hydrogeological risks pag. 4 2. The territory of Brindisi: geology and hydrogeomorphology pag. 6 2.1 Geographic location pag. 6 2.2 Geological setting pag. 7 2.3 Morphological features pag. 8 2.4 Hydrological features pag. 8 3. Elements of geological and hydrogeological risk in the territory of Brindisi pag. 10 3.1 Hazard due to the activation of landslides pag. 10 3.2 Hazard due to coastal erosion phenomena pag. 10 3.3 Hazard due to flood phenomena pag. 11 4. Representative risk areas pag. 12 4.1 Geomorphological risk pag. 12 4.2 Hydrological risk pag. 19 5. Defense and hydrogeological risk management in the Brindisi area pag. 24 5.1 The Regional Flood Management Plan (Piano di Gestione Regionale della Alluvioni-PGRA) pag. 24 5.2 Hydrogeological risk plan of Apulia Region (Piano Stralcio per l’Assetto Idrogeologico della Puglia - PAI) pag. 27 5.2.1 Methods for hydrogeological risk analysis pag. 27 5.2.2 Evaluation of Hazard from Landslide - Methodology and Perimetration pag. 30 5.2.3 PAI methodology pag. 32 5.2.4 Evaluation of Hydraulic Hazard - Methodology and Perimetration pag. 39 5.2.5 Interventions for Hydraulic Risk Mitigation pag. 41 5.3 Regional Coastal Plan of the Apulia region (Piano Regionale delle Coste della Puglia-PRC) pag. 46 6. Recommendations for hydrogeological risk protection in the Brindisi area pag. 48 References pag.
    [Show full text]
  • State Highway 5 Tumunui Tomo - a Case of Road Resilience to Piping in the Rotorua-Taupo Area Proc
    Martins, P. & Van Toan, D. (2017) State Highway 5 Tumunui tomo - a case of road resilience to piping in the Rotorua-Taupo area Proc. 20th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier State Highway 5 Tumunui tomo - a case of road resilience to piping in the Rotorua-Taupo area P Martins Beca Ltd, Tauranga, NZ [email protected] (Corresponding author) D Van Toan Beca Ltd, Auckland, NZ [email protected] Keywords: piping erosion, tomo, road resilience, Rotorua-Taupo ABSTRACT On 23 June 2016, following a heavy rain event, a section of SH5 at the locality of Tumunui, about 18km south of Rotorua, was closed due to flooding. When the water recessed a little, significant damage to the road and adjacent properties was revealed. The New Zealand Transport Agency - Bay of Plenty East Network Outcomes Contract (BoPE NOC) is the road asset management contract covering the damaged section of SH5. Due to the immediate risk to road users arising from the event, the geotechnical incident response procedure of the BoPE NOC was triggered. Based on the geotechnical investigation undertaken it was concluded that the damage sustained by SH5 at Tumunui was due to reactivation of a naturally occurring internal erosion process that had been developing across the area since at least the 1970’s. The process is intrinsically associated with the geomorphic context of the site and the underlying geology. Following the event, a risk assessment was undertaken and concluded that with management controls in place it was possible to keep the road partially open to traffic.
    [Show full text]
  • Terrestrial Ecosystems on the Mesozoic Peri-Adriatic Carbonate Platforms: the Vertebrate Evidence
    Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 77-83. Buenos Aires, 30-6-2001 Terrestrial ecosystems on the Mesozoic peri-Adriatic carbonate platforms: the vertebrate evidence Fabio M. DALLAVECCHIN Abstract. The remains of Mesozoic carbonate platforms outcrop along the margins of the Adriatic Sea and the mountain chains surrounding them in Italy, Slovenia and Croatia. Despite the fact that the platforms were far from continents, abundant evidence of terrestrial vertebrates was recently found, mainly in the Norian, Lower Jurassic and Cretaceous, and is here reviewed. The presence of populations of large ter- restrial vertebrates (mainly dinosaurs) on these carbonate platforms, and in particular the discovery of late Hauterivian-early Barremian sauropods and late Santonian hadrosaurids, has important paleoecological and paleogeographical implications. Key words. Peri-Adriatic carbonate platforms. MesozoicTethysianpaleogeography.Mesozoicterrestrial vertebrates. Paleoichnology.Reptilia. Dinosauria. Theropoda. Sauropoda. Ornithopoda. Hadrosauridae. Introduction by them to the African (Early Cretaceous) or Laurasian (Triassic-Early Jurassic) continent, but Mesozoic carbonate platforms outcrop as thick were at best very far (hundreds of kilometres) from sequences of carbonates, more or less disrupted and "land", considering it in the "orthodox" way, i.e. a piled up by the Alpine orogeny, along the margins of wide area of silicoclastic fluvialjlacustrine sedimen- the Adriatic Sea in Italy, Slovenia and Croatia. tation or non-deposition. The vertebrate faunas During the Norian these platforms were not clearly found on them (mainly the Cretaceous ones) are thus differentiated and the whole region was part of a the very singular case of faunas living on carbonate wide pericontinental carbonate platform along the platforms separated from a continental area.
    [Show full text]
  • New Insights on Secondary Minerals from Italian Sulfuric Acid Caves Ilenia M
    International Journal of Speleology 47 (3) 271-291 Tampa, FL (USA) September 2018 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie New insights on secondary minerals from Italian sulfuric acid caves Ilenia M. D’Angeli1*, Cristina Carbone2, Maria Nagostinis1, Mario Parise3, Marco Vattano4, Giuliana Madonia4, and Jo De Waele1 1Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy 2DISTAV, Department of Geological, Environmental and Biological Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy 3Department of Geological and Environmental Sciences, University of Bari Aldo Moro, Piazza Umberto I 1, 70121 Bari, Italy 4Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy Abstract: Sulfuric acid minerals are important clues to identify the speleogenetic phases of hypogene caves. Italy hosts ~25% of the known worldwide sulfuric acid speleogenetic (SAS) systems, including the famous well-studied Frasassi, Monte Cucco, and Acquasanta Terme caves. Nevertheless, other underground environments have been analyzed, and interesting mineralogical assemblages were found associated with peculiar geomorphological features such as cupolas, replacement pockets, feeders, sulfuric notches, and sub-horizontal levels. In this paper, we focused on 15 cave systems located along the Apennine Chain, in Apulia, in Sicily, and in Sardinia, where copious SAS minerals were observed. Some of the studied systems (e.g., Porretta Terme, Capo Palinuro, Cassano allo Ionio, Cerchiara di Calabria, Santa Cesarea Terme) are still active, and mainly used as spas for human treatments. The most interesting and diversified mineralogical associations have been documented in Monte Cucco (Umbria) and Cavallone-Bove (Abruzzo) caves, in which the common gypsum is associated with alunite-jarosite minerals, but also with baryte, celestine, fluorite, and authigenic rutile-ilmenite-titanite.
    [Show full text]