0 Natura Nascosta Numero 39 Anno 2009 pp. 1-18 Figure 15

TELMATOSAURUS AND THE OTHER HADROSAUROIDS OF THE EUROPEAN ARCHIPELAGO. AN UPDATE.

Fabio M. Dalla Vecchia Institut Català de Paleontologia (ICP), E-08193 Cerdanyola del Vallès, SPAIN and Museo della Rocca di Monfalcone – Sezione Paleontologica, I-34074 Monfalcone, ITALY

Abstract – The paper “ and the other hadrosaurids of the Cretaceous European Archipelago. An overview” published in Natura Nascosta on 2006 is updated. Obsolete information and wrong data are corrected to avoid future confusion. I opt now for a different, less inclusive definition of “hadrosaurid” (Hadrosauridae). The attribution of the whole hadrosauroid material found in the of Transylvania (Romania) to a single species is considered doubtful and should be proved. Some problems regarding the hypodigm of Telmatosaurus transsylvanicus are evident after a study of the Nopcsa Collection in the Natural History Museum in London. The stratigraphy of the uppermost Cretaceous of northern Spain became clear after visiting the sites. Pararhabdodon has been recently reviewed and the new lambeosaurine ardevoli was added to the short list of the European hadrosauroid species.

Key words – Telmatosaurus transsylvanicus , European hadrosauroids, Ferenc Nopcsa, Maastrichtian.

Introduction

When three years ago I published the paper “ Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An overview”, I had not studied yet the Nopcsa Collection at the Natural History Museum in London. I had the chance to do it later, in the January 2007, thanks to a SYNTHESYS grant of the European Union for the project “ Study of the iguanodontian from the site of the Villaggio del Pescatore (Trieste, Italy) and comparison with the hadrosaurid material of the Nopcsa collection at the Natural History Museum ”. In the library of the Natural History Museum, I found the article that Ferenc Nopcsa wrote for the first volume of the journal Palaeontologia Hungarica (1921-1923) that was published only in 1928 and is difficult to find. I realized then that my 2006 paper contains some mistakes due basically to the acritical report of information taken from other publications. Also, now I know better the sites that have yielded hadrosauroid remains in Spain and the stratigraphy of the uppermost Cretaceous of northern Spain, after visiting the sites in Aragòn and Catalunya during 2008 and 2009 and thanks to the exhaustive explanations given by local scientists. All this and the progress of the study in the field of the stratigraphy of the continental uppermost Cretaceous and of the dinosaurs, allowed me to recognize that some information reported in my 2006 paper is unclear, wrong or outdated. As my 2006 paper was cited in papers by other authors and it could be cited again in the future without reference to the more recent and updated contributions (i.e., DALLA VECCHIA , 2009), I think that it is useful to correct here all the parts that are

1 obsolete and wrong, in order to avoid their future citation. Therefore, the present contribution should be read jointly with the 2006 one and viceversa.

Terminological remark : The proximal caudal vertebrae are considered those with a distinct fused rib (not considered here a transverse process as usually done in literature), the middle caudal vertebrae are those without a rib, but bearing a chevron, whereas the distal caudal vertebrae lack a chevron. Institutional abbreviations : BMNH = The Natural History Museum (former British Museum of Natural History), London, United Kingdom; FGGUB = Facultatea de Geologie şi Geofizica, Universitatea Bucure şti, Bucharest, Romania; IPS = Institut Català de Paleontologia (former Institut de Paleontologia Dr. M. Crusafont), Sabadell, Spain; MGUV = Museo de Geologia, Universidad de Valencia, Spain; MPV = Museo Paleontológico de Valencia, Spain.

A definition of “hadrosaurid” Confusion exists in the use of the terms “hadrosaur” and “hadrosaurid”, mainly due to the different definitions of the clade Hadrosauridae (a family according to the Linnean systematics) used by the various authors in recent years. Some authors considered Hadrosauridae as a clade composed of Telmatosaurus and the Euhadrosauria (= Hadrosaurinae + ) (for example, WEISHAMPEL & HORNER , 1990; WEISHAMPEL et al ., 1993; HORNER et al ., 2004; PEREDA - SUBERBIOLA et al ., 2009a, b). Others preferred a less inclusive and more stable definition: Hadrosaurinae + Lambeosaurinae (FORSTER , 1997; GODEFROIT et al ., 1998, 2008; YOU et al ., 2003; PRIETO -MÁRQUEZ et al ., 2006). Finally, PRIETO - MÁRQUEZ & WAGNER (2009) gave a different definition of the clade Hadrosauridae: Hadrosaurus foulkii + Saurolophidae; the clade Saurolophidae includes the Saurolophinae and the Lambeosaurinae. Hadrosauroid remains found in the uppermost Cretaceous of Europe are generally reported as “hadrosaurids”, but this attribution is usually not supported by a rigorous identification of hadrosaurid synapomorphies on the specimens according to the chosen definition of Hadrosauridae: it is simply an untested oversimplification. I consider here the clade as all dinosaurs more closely related to than , following SERENO (1998). The Hadrosauridae are here considered as the Hadrosaurinae, the Lambeosaurinae and all descendents of their most recent common ancestor, following PRIETO -MARQUEZ et al. (2006). However, the definition by PRIETO -MÁRQUEZ & WAGNER (2009) will be accepted in future, if the topology of the phylogenetic tree on which it is based will demonstrate to be stable.

The Telmatosaurus skeleton: some corrections WEISHAMPEL et al . (1993) reported only the register numbers of the material of Telmatosaurus present in the Nopcsa Collection at the Natural History Museum, without specifying the corresponding skeletal element. Actually, the register numbers of the former British Museum of Natural History (BMHN) refer to sets of purchased specimens, some of which include many and various bone remains.

2

Fig. 1 - Telmatosaurus transsylvanicus , lectotype of WEISHAMPEL et al . (1993), BMNH R. 3386. A) skull roof and braincase, dorsal view (A1) and right lateral view (A2); B) left squamosal with part of the left paroccipital process; C) a massive piece (possibly part of the rostrum?) that does not fit in the main part; D) right (D1) and left (D2) quadrates, Scale bars = 2 cm.

Therefore, the 35 referred specimens from the Natural History Museum reported by WEISHAMPEL et. al . (1993, p. 362) actually include some hundred bones. The diagnosis of Telmatosaurus transsylvanicus given in WEISHAMPEL et al . (1993, p. 362) is based mainly on the associated skull and lower jaws BMNH R.3386, which were chosen by those authors as the holotype. In fact, NOPCSA

3

Fig. 2 - Telmatosaurus transsylvanicus , lectotype of WEISHAMPEL et al . (1993), BMNH R. 3386. Skull roof and braincase in occipital view. Abbreviations : fm = foramen magnum.

(1900) did not indicate a holotype; the specimens he used in the description of Limnosaurus transsylvanicus (become Telmatosaurus transsylvanicus in 1903 because of synonymy) were listed as “Exemplar Nr. 1” (BMNH R.3386), “Exemplar Nr. 2” (BMNH R.3388) and “Exemplar Nr. 3” (BMNH R.3387), all from the Sâmpetru Formation near the village of Sâmpetru (then Szenpeterfalva; Sîmpetru according to an alternative, now abandoned spelling) along the Sibi şel valley. Therefore, BMNH R.3386 as designated by WEISHAMPEL et al . (1993) is actually a lectotype. The lectotype skull is poorly preserved (more than it can be supposed from the figures in NOPCSA , 1900; see DALLA VECCHIA , 2009, fig. 13 and Figs. 1-2) and the apomorphic characters of the braincase were mainly observed in other specimens (BMNH R.3387,Fig. 3 – BMNHBMNH R.3387,R.3401 braincasep.p., and in BMNH R.4915 p.p., the latter from the Densu ş- Ciulaventral Formation view. Scale near bar = V 2 ǎcm.lioara). The basicranium shown in DALLA VECCHIA

4 (2006, fig. 9B) as a particular of the lectotype is actually the specimen BMNH R.3387 in ventral view (Fig. 3). According to the register (Fig. 4), BMNH R.3387 “belongs” to the set BMNH R.3843 that includes “fragments of maxilla, coracoid, rib frag. caudal vertebra”. Possibly, all those specimens were grouped together because they are from individuals of similar and relatively small size. In fact, the coracoid was later attributed to (WEISHAMPEL et al ., 2003), thus the set BMHN R.3843 is not an association of bones from a single individual, despite the note on the register, probably based on Nopcsa’s indications.

Fig. 4 – The part of the register of the British Museum of Natural History reporting the information om BMNH R.3843. "[BMNH R.384]3 Ditto (C) Fragments of maxilla, coracoid, rib frag. caudal vertebra.. Ibid ″ Specimen R.3887 belongs to this”.

As noted in DALLA VECCHIA (2009), the isosceles triangle-shaped rostral process of the jugal is not unique to Telmatosaurus and occurs also in Aralosaurus tubiferus , subadults (A. Prieto-Marquez, pers. comm.; see fig. 20.5A in HORNER et al ., 2004), and to some extent also in canadensis and peeblesorum . Absence of a diastema between the predentary and the dentary dentition is also not unique of Telmatosaurus but, for example, occurs also in the new taxon from the Villaggio del Pescatore (DALLA VECCHIA , in press) and in (GODEFROIT et al ., 1998). No femur is preserved in the material of Telmatosaurus transsylvanicus . Nopcsa described two femurs attributed to “ Orthomerus ” (which he considered as a senior synonym of Telmatosaurus at that time) only in 1915 and at least one of the two came from the Densu ş-Ciula Formation near V ǎlioara, not from the formation and locality of the lectotype.

The left maxilla shown in DALLA VECCHIA (2006, fig. 12A) as belonging to the lectotype is actually the small specimen BMNH R.3388, only 93 mm long (Fig. 5). It has just one functional tooth per tooth family. According to the register (Fig. 6), BMNH R.3388, BMNH R.3842 and BMNH R.3401A belong to a same individual referred to as “Telmatosaurus transsylvanicus individual B”. According to the register, the set BMNH R.3842 includes quadrates, premaxilla (possibly cancelled), scapula, humerus, femur, tibia, dorsal and caudal vertebrae, metapodials, rib and possibly two teeth (the handwritten note is here difficult to interpret) for a total of 45 specimens. However, no scapula, premaxilla, quadrate

5

Fig. 5 - BMNH R 3388, left maxilla in medial (lingual) view. Scale bar = 2 cm.

and teeth can be found today in the set; instead phalanges are present. To increase confusion, BMNH R.3401 remains are registered as belonging to suessi “specimen B” and no BMNH R.3401A is mentioned in the same page of the register; WEISHAMPEL et al . (2003, pp. 362 and 365-68) used the number BMNH R.3401 to indicate the Telmatosaurus material. Today, material labeled BMNH R.3401A includes part of a braincase, a portion of a left premaxilla, a small fragment of a dentary and a fragment of another bone, possibly a squamosal. Two nearly complete and small hadrosauroid dentaries bearing the number BMNH R.3401A are in a separate drawer with BMNH R.3842; they are possibly the BMNH R.3401(J) (J = jaws?) mentioned in the register (see Fig. 6). NOPCSA (1928) referred some of those bones to (= Mochlodon ; now Zalmoxes ) and others to Orthomerus (= Telmatosaurus ), thus at that time it was obvious that they did not come from a single individual. WEISHAMPEL et al . (2003, p. 115) attributed the premaxilla, maxilla, partial braincase, quadrate and dentary from BMNH R.3401 to Zalmoxes robustus . Also in this case, I suspect that all those specimens were originally grouped together just because belonging to of a similar size, showing that the data in the register, presumably based on Nopcsa’s information, are not fully reliable.

The cast of the brain of Telmatosaurus transsylvanicus taken from BMNH R.3386 according to NOPCSA (1900, plate IV, fig. 2) is not deposited in the Nopcsa Collection. It is surprising that a cast with such a good definition of the particulars had been taken from such a poorly preserved skull.

The maxillary tooth crown figured by NOPCSA (1900, pl. III, fig. 5; reported as fig. 14D in DALLA VECCHIA , 2006) without any reference to the three

6

Fig. 6 – The part of the register of the British Museum of Natural History reporting the information about BMNH R.3842. "[BMNH R.384]2 Ditto (B) Quadrates, premaxilla [possibly cancelled], scapula humerus, femur, tibia dorsal & caudal vertebrae metapodials, rib, two teeth [?]. (45) Ibid. " Specimens R3401A, (J) & R.3888 belong to this individual”.

specimens used in the description of the new taxon, does not belong to the lectotype (Exemplar Nr. 1 of NOPCSA , 1900), because maxillary teeth are poorly preserved in BMNH R.3386. The register of the British Museum of Natural History reports BMNH R.11550 as the “maxillary tooth figured in Nopcsa 1899 [recte 1900], Pl. III, fig. 5”, and actually it resembles the tooth figured in NOPCSA (1900; Fig. 7A), but lacks the apical part of the crown (Fig. 7B). A maxillary tooth without the apical part of the crown is figured in WEISHAMPEL et al . (1993, fig. 3F) and is reported as R4966, but the register has “ dacus – skull and parts of the skeleton” under that number and it is possibly BMNH R.11550. The specimen BMNH R.11551 is an isolated tooth crown reported in the register as a maxillary tooth, but it is actually a dentary tooth, as suggested by the low median ridge and the slightly recurved apex (see Fig. 7C). The dentary teeth figured by NOPCSA (1900, pl. II, figs 2-3 and pl. VI, fig. 3; reported as fig. 14A-B in DALLA VECCHIA , 2006) apparently as belonging to the “Exemplar Nr. 1” do not belong to BMNH R.3386 and are not in the Nopcsa Collection. The dentary teeth attributed to Telmatosaurus , if all belonging to a same species, show a certain degree of variability (see DALLA VECCHIA , 2009, fig. 14A- F). The three replacement teeth preserved in situ in the anterior half of the lectotype right dentary are unlike the isolated crown figured in WEISHAMPEL et al . (1993, fig. 3G). They have straight, symmetrical crowns with only a straight median carena and no marginal denticles are visible, although the margins might be damaged (DALLA VECCHIA , 2009, fig. 14A).

7

Fig. 7 – Teeth attributed to Telmatosaurus . A) isolated maxillary tooth figured by NOPCSA (1900, pl. III, fig. 5a-c), buccal view (A1), mesiodistal view (A2), cross-section (A3); B) BMNH R.11550, maxillary tooth crown, buccal view; C) BMNH R.11551, dentary tooth crown, lingual view.

The axis and articulated cervical vertebrae 3-5 and the last cervical and first dorsal vertebra figured in WEISHAMPEL et al . (1993, fig. 4A-B) and in DALLA VECCHIA (2006, fig. 16A-B) are deposited under the number BMNH R.3841 (Fig. 8A, D). That number includes also a single cervical vertebra (Fig. 8B), three articulated mid-cervical vertebrae (Fig. 8C), four incomplete dorsal vertebrae (Fig. 8E), several other more or less fragmentary vertebral centra (Fig. 8F), many fragments of dorsal ribs (Figs. 8G-H), two metapodials (Figs. 8I-J), a phalanx (Fig. 8K), a single dentary crown still preserved in the rocky matrix (Fig. 8L) and a few other fragments. According to NOPCSA (1928), the cervical, dorsal and caudal vertebrae from BMNH R.3841 belong to the “Exemplar Nr. 1” of his 1900 paper (“ R3841. Alle Halswirbel, ferner einige Rumpf- und Schwanzwirbel jenes Orthomerus-exemplares, dessen Schädel 1899 [recte 1900] …beschrieben wurde (Exemplare A [recte Exemplar Nr.1 of NOPCSA, 1900])”, p. 287). In the register of the British Museum of Natural History, BMNH R.3841 is registered as “Telmatosaurus transsylvanicus . Individual A. Numerous cervical & dorsal & caudal vertebrae, ribs, metapodials, phalanges. Type specimen the skull being figured and registered as R. [empty space because the curator forgot to report the catalogue number R.3386] Quarry n. 1“ (Figs. 9-10). Probably the curator reported the information given to him by Nopcsa in 1906 when the specimens were registered, and considered all the 100 specimens as coming from the same individual as BMNH R.3386 (individual A = Exemplar Nr.1). If this is the case, they belong to the type material of Telmatosaurus transsylvanicus , as remarked by the curator of the British Museum of Natural History. However, this appears to be doubtful because the bones do not seem to come all from a same level (the colour and the state of preservation is not the same in all specimens). Also, their relationship with the skull material BMNH R.3386 is not explained (e.g., were the

8

Fig. 8 – The set of specimens BMNH R.3841. A) Cervical vertebrae 2 to 5 described and figured in NOPCSA (1928), and again in WEISHAMPEL et al . (1993); B) isolated mid-cervical 9 vertebra; C) string of four articulated middle cervicals described and figured in NOPCSA (1928); D) two vertebrae reported in the label, as well as in WEISHAMPEL et al . (1993), as the last cervical and the first dorsal; E) dorsal vertebrae; F) several caudal vertebral centra; G) five fragments of dorsal rib shafts; H) box with several, small fragments of dorsal rib shafts; I) metapodial, probably a left metatarsal IV; J) distal part of a metapodial; K) probably a manual phalanx III-1; L) isolated dentary tooth on matrix. Scale bar = 2 cm.

Fig. 9 - The page of the register of the British Museum of Natural History reporting the information on BMNH R.3841.

10

Fig. 10 – Particular of figure 9. “ Telmatosaurus transsylvanicus . Individual A. Numerous cervical & dorsal & caudal vertebrae, ribs, metapodials, phalanges….Type specimen the skull being figured & registered as R. [empty space because the curator forgot to report the catalogue number R.3386] Quarry n. 1”.

cervical vertebrae articulated to the skull? Were all the bones collected in a same bed and in a same small area?). It is possible that they represent the result of collecting in a same, more or less extended area (“Quarry n. 1”) exposing bones from different animals accumulated by floodplain drainage and other taphonomic processes (see THERRIEN , 2005) and that they were erroneously considered as coming from a same individual by Nopcsa, or by the persons who collected fossils for him. This possibility is supported by the proved mixing of bones from different taxa in other sets of the collection each referred to a single taxon and even to a single individual in the register (as reported above). However, in absence of detailed information, we cannot be sure about anything.

The proximal caudal vertebra BMNH R.4973 figured as complete in WEISHAMPEL et al . (1993, fig. 4D) and consequently also in DALLA VECCHIA (2006, fig. 16D), actually lacks the neural spine (Fig. 11A). The figure of WEISHAMPEL et al . (1993) was based on NOPCSA (1928, pl. V, fig. 5; here Fig. 11B). However, Nopcsa specified that the neural spine was reconstructed by plaster in the caption of the figure (see Fig. 12). Nopcsa reconstructed the neural spine of BMNH R.4973 following the neural spine morphology of a complete proximal caudal vertebra from the set BMNH R.4915 (also figured in NOPCSA , 1928 pl. V, fig. 6; here Fig. 13B) that, however, is from a more distal position in the tail as suggested by the smaller rib. Furthermore, it is from another site (V ǎlioara) and another formation (Densu ş-Ciula Formation) respect to BMNH R.4973, which comes from the Sâmpetru Formation near Sâmpetru (Szenpeterfalva, reported in the register, is the Hungarian name of this village). It is worth of noting that BMNH R.4973 has huge posterior facets for the articulation of the haemapophyses (Fig. 11), therefore it is not one of the first caudal vertebrae. The only supposed Telmatosaurus coracoid (from the set BMNH R.3843 ) figured in WEISHAMPEL et al . (1993, fig. 5B) and consequently in DALLA VECCHIA (2006, fig. 17B) has been later referred to the primitive iguanodontian Zalmoxes by WEISHAMPEL et al . (2003).

The bones of the manus are not totally unknown as reported in DALLA VECCHIA (2006), as they are present in the material of the Nopcsa Collection

11 attributed to Telmatosaurus (e.g., BMNH R.3841 p.p., possibly also in BMNH R.3842), which includes also some metatarsals (BMNH R.3841 p.p.). No haemapophyses are found in the material of the Nopcsa Collection referred to Telmatosaurus .

Fig. 11 – The proximal caudal vertebra BMNH R. 4973 from the Sâmpetru Formation near the village of Sâmpetru as it is now (A) without the neural spine made of plaster, and as it was figured by NOPCSA (1928 pl. V, fig. 5b) (B). Arrows point to the line of separation between the true and the artificial part of the neural spine.

Other European hadrosauroid dinosaurs: a few updatings The single dentary tooth BMNH R.496 named “ cantabrigensis ” and late Albian in age probably belongs to an unknown non-hadrosaurid hadrosauroid, although it lacks secondary ridges like the dentary teeth of some hadrosaurids. Undescribed hadrosauroid bones (mainly vertebrae) from the Maastrichtian of the Haute-Garonne (SE France) exposed in the Museum des Dinosaures of Esperaza (France) are attributed to Telmatosaurus , but actually do not belong to the Transylvanian taxon (pers. obs.). A second, larger right dentary (MPV 181) and a fragmentary one (MPV 182) have been reported from the La Solana site (Valencia, Spain) and iare similar to the smaller MGUV 2200 (COMPANY , 2004; PEREDA -SUBERBIOLA et al ., 2009b). La

12

Fig. 12 – Legend of plate V in NOPCSA (1928).

Solana site is now correlated with the Villalba de la Sierra Formation, which age is late Maastrichtian (PEREDA -SUBERBIOLA et al ., 2009b). All hadrosauroid-bearing sites in the Tremp Basin (Conca de Tremp, Lleida Province, Catalonia, Spain) occur inside the Cretaceous portion of the , i.e., the grey unit and the overlaying lower red unit sensu ROSELL et al . (2001), both Maastrichtian in age (RIERA et al ., 2009). The Barcedana site is in the lower red unit. The stratigraphic position of the Morò (Moror) site is uncertain. The Abella de la Conca site is not reported in RIERA et al . (2009). The Els Nerets site is in the grey unit, while the sites reported as Sant Romà d’Abella (which is at the base of the northern flank of the Tossal de la Doba and yielded the type material of Pararhabdodon isonensis ), Sant Romà d’Abella II (renamed Coll de la Torre), and Les Llaus (where the dentary of Pararhabdodon isonensis was found) are in the upper part of the lower red unit. The most recent systematic revision of Pararhabdodon isonensis by PRIETO -MARQUEZ & WAGNER (2009) refers the right dentary IPS SRA-27 (holotype of Koutalisaurus kohlerorum according to PRIETO

13 Fig. 13 – The caudal vertebra from the set BMNH R. 4915 containing fossils from Densu ş-Ciula Formation near V ǎlioara, as it is now (A) and as it was figured by NOPCSA (1928, pl. V, fig. 6) (B).

MARQUEZ et al ., 2006) to Pararhabdodon isonensis again, although it comes from a separate site with respect to the type material. The dentary from the Fontllonga site (Conca d’Ager, Lleida Province, Catalonia, Spain) was collected in the upper part of the lower red unit of the Tremp Formation. Six fossiliferous levels with hadrosauroid bones occur near the village of Arén (Areny in Catalan; Huesca Province, Aragón, Spain) and are reported in literature as Blasi 1-5 sites (LOPEZ MARTINEZ et al., 2001). Actually, Blasi 1-3 sites are just different levels inside the few-meters thick section of a single site at the passage between the Arén Formation and the Tremp Formation. Blasi 1 is at the top of the Arén Formation, Blasi 2(a-b) and 3 are at the base of the Tremp Formation. Here the passage between the two formations is much younger than in the close Tremp Basin (occurring to the east), because it represents a regressive event with the sea retiring from east to the west. The hadrosaurid material from Blasi 3 cited in DALLA VECCHIA (2006 and 2009) belongs to the new lambeosaurine Arenysaurus ardevoli (see PEREDA -SUBERBIOLA et al ., 2009a). The description of a new hadrosauroid taxon from the late -early Maastrichtian (see DALLA VECCHIA , 2008) site of the Villaggio del Pescatore (Duino, Trieste, Friuli Venezia Giulia Region, NE Italy) is in press (DALLA VECCHIA , in press). The hadrosauroid teeth found near Kozina (SW Slovenia) may be late Campanian-Maastrichtian in age and roughly coeval with the hadrosauroid of the Villaggio del Pescatore (see DALLA VECCHIA , 2008). The trackmaker of the ichnotaxon Apulosauripus fredericianus from the Calcare di Altamura () of Altamura (Puglia Region, Bari Province, southern Italy) is probably an ankylosaurian (DALLA VECCHIA , 2009; G. Gierlinski, pers. comm .). Craspedodon lonzeensis from the a Santonian of Belgium, which DALLA VECCHIA (2006) considered as an iguanodontian ornithopod following DOLLO

14 (1883) and NORMAN (2004), is actually based on three neoceratopsian teeth (GODEFROIT & LAMBERT , 2007).

Fig. 14 - The page of the register of the British Museum of Natural History reporting the information on the purchase of BMNH R.3886. “[BMNH R.388]6 Limnosaurus transsylvanicus Nopcsa. Type skull & mandible figured & described by Nopcsa in Denksch. Ak. Wiss. Wien vol 68 (1900) p. 555 pls. I-V. Cretaceous Szentpeterfalva Transsylvania. Purchased from Baron F. Nopcsa May. 1906.

A further note on the Nopcsa Collection at the Natural History Museum One can believe that the Hungarian Baron Ferenc Nopcsa (Franz is the German translation of his Hungarian name) sold his fossil collection when the Transylvanian region passed from the Austro-Hungarian Empire to the Romanian Kingdom after the end of the World War I (1918) and all his properties there were confiscated, and he was in need of money. Actually, the register of the British Museum of Natural History clearly shows that Nopcsa sold the specimen BMNH R.3386 in May 1906 (Fig. 14) with BMNH R.3387, BMNH R.3388, BMNH R.3844 and many others. He sold further Telmatosaurus fossils later in 1909 and 1923 (most of the specimens sold in 1923 were from the Densu ş-Ciula Formation near V ǎlioara). The specimen BMNH R.5164 (part of a right maxilla with the rostral process of the jugal still in place on the jugal facet; Fig. 15) of the Nopcsa Collection was actually collected by Rupert Terk (the Austrian air-ace of the World War I or a homonym?) and purchased in 1926. The number was inverted in the list of specimens of WEISHAMPEL et al . (1993) (i.e., it is BMNH R.5614).

Conclusions Important changes have occurred in our knowledge on the European hadrosauroid record in only three years and more are expected in the near years. Because of the time necessary for a paper to be submitted, reviewed, corrected, accepted and published (sometimes more than two years), publication cannot keep the pace with the rhythm of the changes in the dinosaurs knowledge. Papers get

15 published when some parts are already obsolete. The present contribution updates that published in 2006 and corrects some wrong data. Telmatosaurus transsylvanicus is in need of a revision that takes into consideration all the Romanian material referred to this taxon to check if just one or more taxa are represented in the sample.

Fig. 15 - BMNH R.5164, part of a right maxilla with the rostral process of the jugal. Abbreviations : J = jugal, fo = neurovascular foramina. Scale bar = 2 cm.

Acknowledgements My research on the European hadrosauroids was finalized to the study of the dinosaurs found in the Italian site of the Villaggio del Pescatore (Trieste). The research was supported by a grant from the DML (Dinosaur Mailing List), the Società Paleontologica Italiana and the Museo di Storia Naturale of Trieste. Research at the Natural History Museum, London, received support from the SYNTHESYS Project, which is financed by European Community Research Infrastructure Action under the FP6 "Structuring the European Research Area" Programme (referent Angela Milner). I thank also Sandra Chapman, curator of the Fossil vertebrate collections, for the support at the Natural History Museum. I thank Franklin E. Bliss, Weston, Wyoming, for his efforts in collecting the contributions from the DML donors. I thank also Àngel Galobart, Cap de l'àrea de recerca del Mesozoic, Institut Català de Paleontologia and Rodrigo Gaete, Director of the Museum of Isona i Conca Dellà, for the information on the stratigraphy of the Spanish uppermost Cretaceous.

16 References COMPANY J. (2004) - Vertebrados continentales del Cretácico superior (Campaniense- Maastrichtiense) de Valencia . Ph. D. dissertation, University of Valencia, 410 pp. DALLA VECCHIA F. M. (2006) - Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An overview . Natura Nascosta, v. 32, pp. 1-55, Monfalcone. DALLA VECCHIA F. M. (2008) - I dinosauri del Villaggio del Pescatore (Trieste): qualche aggiornamento . Atti Museo Civico di Storia Naturale di Trieste, suppl. to n. 53, pp. 111- 130, Trieste. DALLA VECCHIA F. M. (2009) - European hadrosauroids . Actas de las IV Jornadas Internacionales sobre Paleontologia de Dinosaurios y su Entorno, pp. 45-74, Colectivo Arqueológico-Paleontológico de Salas, Salas de los Infantes. DOLLO L. (1883) – Note sur les restes de dinosauriens recontrés dans le Crétace supérieur de la Belgique. Bulletin de Museum Royal de Histoire Naturelles de Belgique, v. 2, pp. 205-221, Bruxelles. FORSTER C. A. (1997) - Phylogeny of the and Hadrosauridae . Journal of Vertebrate Paleontology, v.17 (3 Abstracts), p. 47A, Lawrence. GODEFROIT P., DONG Z.-M., BULTYNCK P., LI H. & FENG L. (1998) - Sino-Belgian Cooperation Program “Cretaceous Dinosaurs and Mammals from Inner Mongolia. 1. New Bactrosaurus (Dinosauria: Hadrosauroidea) material from Iren Dabasu (Inner Mongolia, P. R. China). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique - Sciences de la Terre, v. 68 (supp.), pp. 3-70, Bruxelles. GODEFROIT P., HAY S., YOU T., & LAUTERS P. (2008) - New hadrosaurid dinosaurs from the uppermost Cretaceous of northeastern China . Acta Palaeontologica Polonica, v. 53, pp. 47–74, Warsaw. GODEFROIT P. & LAMBERT O. (2007) - A re-appraisal of Craspedodon lonzeensis Dollo, 1883 from the Upper Cretaceous of Belgium: the first record of a neoceratopsian dinosaur in Europe? Bulletin de l’Institut Royal des Sciences Naturelles de Belgique - Sciences de la Terre, v. 77, pp. 83-93, Bruxelles. HORNER J.R., WEISHAMPEL D.B. & FORSTER C.A. (2004) - Hadrosauridae ; pp. 438-463 in WEISHAMPEL D. B., DODSON P. & OSMOLSKA H. (eds), The Dinosauria – Second Edition . University of California Press, Berkeley and Los Angeles. LOPEZ -MARTINEZ N., CANUDO J.I., ARDEVOL LL., PEREDA SUPERBIOLA X., ORUE - EXTEBARRIA X., CUENCA -BESCOS G., RUIZ -OMEÑACA J. I., MURELAGA X. & FEIST M. (2001) – New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees: implications for the dinosaur extinction pattern in Europe . Cretaceous Research, v. 22, pp. 41-61. NOPCSA F. (1900) – Dinosaurierreste aus Siebenbürgen (Schädel von Limnosaurus transsylvanicus nov. gen. et spec.). Denkschriften der königlichen Akademie der Wissenschaften, Wien, v. 68, pp. 555-591, Wien. NOPCSA F. (1903) – Telmatosaurus , new name for the dinosaur Limnosaurus . Geological Magazine, (s. 4) v. 10, pp. 94-95, London. NOPCSA F. (1915) - Die Dinosaurier der siebenbürgischen Landesteile Ungarns . Mitteilungen Jb. K. Ungar. Geol. Reichsanst., v. 23, pp. 1-24. NOPCSA F. (1928) - Dinosaurierreste aus Siebenbürgen. IV. Die wirbelsäule von Rhabdodon und Orthomerus . Palaeontologia Hungarica , vol. 1(1921-1923), pp. 273-304, Budapest. NORMAN D.B. (2004) – Basal Iguanodontia. In: WEISHAMPEL D.B., DODSON P., OSMÓLSKA H. (eds), The Dinosauria, University of California Press, pp.413-437, Berkeley. PEREDA -SUBERBIOLA X., CANUDO J.I., CRUZADO -CABALLERO P., BARCO J.L., LÓPEZ - MARTÍNEZ N., OMS O. & RUIZ -OMEÑACA J.I. (2009a) - The last hadrosaurid dinosaur of Europe: A new lambeosaurine from the Uppermost Cretaceous of Aren (Huesca, Spain) . Comptes Rendus Palevol., v. 8, pp. 559-572. 17 PEREDA -SUBERBIOLA X., CANUDO J.I., COMPANY J., CRUZADO -CABALLERO P. & RUIZ - OMEÑACA J.I. (2009b) - Hadrosauroid dinosaurs from the latest Cretaceous of the Iberian Peninsula . Journal of Vertebrate Paleontology., v. 29(3), pp. 946-951, Hanover. PRIETO -MÁRQUEZ A., GAETE R., RIVAS G., GALOBART À. & BOADA M. (2006) - Hadrosaurid dinosaurs from the Late Cretaceous of Spain: Pararhabdodon isonensis revisited and Koutalisaurus kohlerorum , gen et sp. nov. . Journal of Vertebrate Paleontology , v. 26(4), pp. 929-943, Lawrence. PRIETO -MARQUEZ A. & WAGNER J. R. (2009) – Pararhabdodon isonensis and Tsintaosaurus spinorhinus: a new clade of lambeosaurine hadrosaurids from Eurasia . Cretaceous Research, doi: 10.1016/j. cretres.2009.06.005. RIERA V.,O MS O., GAETE R. & GALOBART A. (2009) - The end-Cretaceous dinosaur succession in Europe: The Tremp Basin record (Spain) . Palaeogeography, Palaeoclimatology, Palaeoecology, v. 283, pp. 160-171, Amsterdam. ROSELL J., LINARES R. & LLOMPART C. (2001) - El “Garumniense” prepirenaico . Revista de la Sociedad Geológica de España, v. 14 (1-2), pp. 47-56, Madrid. SERENO P. (1998) - A rationale for phylogenetic definitions, with application to higher- level of Dinosauria . Neue Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 210, pp. 41–83, Stuttgart. THERRIEN F. (2005) - Palaeoenvironment of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from fluvial deposits and paleosols of the Transylvanian and Ha ţeg basins . Palaeogeography, Palaeoclimatology, Palaeoecology, v. 218, pp. 15-56, Amsterdam. WEISHAMPEL D.B. & HORNER J.R. (1990) - Hadrosauridae . In: WEISHAMPEL D.B., DODSON P., OSMÓLSKA H. (eds), The Dinosauria , University of California Press, pp. 534- 561, Berkeley. WEISHAMPEL D.B., NORMAN D.B. & GRIGORESCU D. (1993) - Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur . Palaeontology, v. 36, pp. 361-385, London. WEISHAMPEL D.B., JIANU C.-M., CSIKI Z. & NORMAN D.B. (2003) - Osteology and phylogeny of Zalmoxes (n.g.), an unusual Euornithopod dinosaur from the latest Cretaceous . Journal of Systematic Palaeontology, v.1(2), pp. 65-123, London. YOU H., LUO Z., SHUBIN N. H., WITMER L. M., TANG Z. & TANG F. (2003) - The earliest- known duck-billed dinosaur from deposits of late Early Cretaceous age in northwest China and hadrosaur evolution . Cretaceous Research, v. 24, pp. 347-355.

18 Natura Nascosta Numero 39 Anno 2009 pp. 19-25 Figure 7

LE STROMATOLITI DEL SENTIERO RILKE (DUINO, TRIESTE)

Anna Tentor

Riassunto – In questo lavoro viene descritta la sezione stratigrafica affiorante lungo il sentiero Rilke di Duino (Trieste). Si tratta di una successione carbonatica di età Cretacico sup.-Paleocene, dove una fase di emersione, testimoniata da un livello bauxitico-lateritico, non ha permesso la deposizione durante il Campaniano p.p.-Paleocene p.p.. L’affioramento risulta particolarmente interessante per la presenza di stromatoliti colonnari, attribuibili al Paleocene, osservate per la prima volta nelle successioni terziarie del Carso.

Parole chiave – Stromatoliti, Ooidi bauxitici, Passaggio K/T, Coskinon rajkae , Cymopolia paronai , Carso.

Abstract – This paper describes the stratigraphic section outcropping along the Rilke path of Duino (Trieste). This is a carbonatic succession of upper Cretaceous-Paleocene age, where an emersion phase, as witnessed by a bauxitic-lateritic level, did not allow the deposition during the Campanian p.p.-Paleocene p.p.. The outcrop is particularly interesting for the presence of columnar , of Paleocene age, observed for the first time in the Tertiary succession of the Karst.

Key words – Stromatolites, Bauxitic ooids, K/T boundary, Coskinon rajkae , Cymopolia paronai , Karst.

Introduzione Lungo il sentiero Rilke di Duino (Trieste) è presente una successione carbonatica, dove sono state osservate delle stromatoliti sferoidali, con diametro di circa 20 cm (Fig. 1). Questo tipo di stromatoliti si forma anche attualmente; uno degli esempi più noti è quello di Shark Bay in Australia (Fig. 2). L’area di Duino (Fig. 3) è già stata oggetto di uno studio stratigrafico riguardante il passaggio K/T nel Carso triestino nel corso degli anni Ottanta. La serie esaminata da CILIBERTO et al . (1982) è rappresentata dal basso verso l’alto da calcari a rudiste, breccia bianco-rosea, calcari a frammenti di rudiste intervallati da un livello pisolitico, calcari neri fossiliferi del Liburnico (Fig. 4). In seguito al rinvenimento delle stromatoliti, sono stati esaminati dei campioni al fine di comprendere il contesto stratigrafico-ambientale in cui si sono formate. I livelli esaminati si pongono tra i calcari a frammenti di rudiste e i calcari neri del Liburnico descritti da CILIBERTO et al . (1982).

19

Fig. 1 – .

Fig. 2 – Stromatoliti attuali a Shark Bay in Australia.

20

Fig. 3 – Mappa indice della zona.

Descrizione della successione L’affioramento è caratterizzato da strati con inclinazione da piuttosto elevata a subverticali. Alla base sono presenti dei calcari a rudiste, con abbondante presenza di sparite e un orizzonte brecciato, con probabile presenza di laterite (campione OOL -2), dove si è anche osservata la presenza di una sacca a ooidi bauxitici con matrice fangosa (Fig. 6 A). La microfacies di questi livelli è caratterizzata soprattutto dalla presenza di frammenti di gusci di rudiste. La tessitura grossolana indicherebbe un accumulo legato a un evento di idrodinamismo piuttosto elevato. Successivamente sono presenti dei calcari a matrice prevalentemente fangosa, dove l’associazione fossilifera è data soprattutto da Rotalidae, Miliolidae, Textulariidae, Ophtalmidiidae, Goesella , ostracodi, gasteropodi, bivalvi e alghe Dasycladacee. A questi segue un livello fangoso, con abbondanti fenestrae , cavità geopetali e tracce di bioturbazione, che indicherebbero l’instaurarsi di un ambiente inter-sopratidale, dove sono presenti le stromatoliti sferoidali. La presenza di sporadiche caracee, associate a rare Discorbidae e Ophtalmidiidae (OOL 2), suggerisce variazioni di salinità in un contesto schizoalino. Al di sopra si trova un livello con aspetto clastico, interpretabile come una brecciolina alterata contenente Rotalidae, Miliolidae, probabili Fleuryana (Fig. 5 A, B, C, D), Thaumatoporella . La sezione prosegue con dei calcari a prevalente contenuto fossilifero, che dal punto di vista tessiturale possono essere definiti come dei wackstone-packstone. Il contenuto fossilifero di questi livelli è rappresentato soprattutto da Miliolidae, Textulariidae, Rotalidae (Fig. 5 E), gasteropodi (tra cui Stomatopsis , Fig. 7), bivalvi e alghe Dasycladacee; in particolare nel campione OOL B si riconosce Kayseriella sp. (Fig. 5 F). Sono presenti inoltre Haymanella (OOL A), Coskinon rajkae ( Fig. 5 H) e Cribrobulimina carniolica (OOL B). Tra le alghe sono da segnalare Cymopolia paronai (Fig. 6 C), ?Broeckella (Fig. 6 D) e Decastroporella . Talora si notano cavità geopetali e bioturbazione. L’osservazione di Microcodium (Fig. 6 B) nel campione OOL E rappresenterebbe il passaggio ad un ambiente subaereo. 21

Fig. 4 – Colonnina biostratigrafica da CILIBERTO B.M . et al. (1982) modificata e integrata.

22

Fig. 5 – A-B-C-D) ? Fleuryana , E) Rotalidae, F) Kayseriella sp. , G) Coskinon sp., H) Coskinon rajkae. La scala di riferimento è pari a 0,1 mm.

Nel campione OOL 3 sono presenti dei coralli dendroidi in una facies caratterizzata da matrice fangosa e che presenta forme quali Miliolidae, Textulariidae, Rotalidae, gasteropodi e alghe Dasycladacee, forme che indicherebbero un ambiente lagunare.

23

Fig. 6 – A) Sacca a ooidi bauxitici in matrice fangosa, B) Microcodium e Dasycladaceae, C) Cymopolia paronai, D ) ?Broeckella .

Conclusioni L’evoluzione ambientale e i litotipi osservati a Duino presentano delle similitudini con la sezione di Cotici (VENTURINI et al ., 2008). Infatti in entrambe si passa da un ambiente di piattaforma,spesso ad alta energia e caratterizzato da calcari bioclastici a rudiste, ad un ambiente più protetto, dove si sono formate strutture stromatolitiche. Sia a Cotici, sia a Duino si sono preservati alcuni metri di calcari a rudiste, di età campaniana, al di sopra dell’orizzonte a Keramosphaerina tergestina . In questo quadro, il livello a pisoliti segnalato da CILIBERTO et al . (1982) una decina di metri sopra a Keramosphaerina tergestina può essere coevo alle oncoliti e stromatoliti intra-campaniane di Cotici. La successione cretacica di Duino è troncata da un livello lateritico-bauxitico, che penetra anche nelle sottostanti facies a rudiste. Al di sopra di questa significativa fase di emersione, si sono deposti dei calcari scuri di ambiente lagunare protetto, riferibili al Paleocene medio-inferiore in particolare per la presenza di Goesella , Haymanella , Kayseriella , Coskinon rajkae , Cribrobulimina carniolica , Cymopolia paronai e Decastroporella . In questo contesto si inserisce un episodio schizoalino caratterizzato da grosse stromatoliti colonnari, coperto da un orizzonte di brecciola con possibili rimaneggiamenti, testimoniati da forme affini a Fleuryana . La successione esaminata culmina con facies a coralli dendroidi, di ambiente relativamente più aperto. Rispetto a Cotici (VENTURINI et al ., 2008) e al Villaggio del Pescatore (DALLA VECCHIA , 2008), la lacuna tra Cretacico e Paleocene risulta

24 più ampia, con assenza sia di livelli tardo-campaniani a Murciella , sia di quelli maastrichtiani a Rhapydionina liburnica . Rispetto a Cotici, anche la base del Paleocene è apparentemente lacunosa, visto il modesto spessore tra i livelli a coralli e il passaggio K/T.

Duino risulta quindi una zona lungamente emersa nel Campaniano p.p., Maastrichtiano e Paleocene p.p., rispetto alle aree circostanti. Questa zona è caratterizzata, alla base del Paleocene, da grosse stromatoliti colonnari, osservate per la prima volta nella successione terziaria del Carso, a testimonianza di un evento peculiare dal punto di vista paleoambientale

Fig. 7 – Stomatopsis sp.

Ringraziamenti Un ringraziamento particolare a Sandro Venturini per la disponibilità e per l’aiuto nella realizzazione di questo lavoro.

Bibliografia CILIBERTO B.M., PIRINI RADRIZZANI C. & PUGLIESE N. (1982) – La piattaforma carbonatica al passaggio Cretacico-Terziario nell’area di Duino (Carso triestino) . Geologica Romana, v. 21, pp. 849-857. Roma. DALLA VECCHIA F.M. (2008) – I dinosauri del Villaggio del Pescatore (Trieste): qualche aggiornamento . Atti Mus. Civ. Stor. Nat. Trieste, suppl. v. 53, pp. 111-130. Trieste. VENTURINI S., TENTOR M. & TUNIS G. (2008) – Episodi continentali e dulcicoli ed eventi biostratigrafici nella sezione Campaniano-Maastrichtiana di Cotici (M.te San Michele, Gorizia) . Nat. Nas., n. 36, pp. 6-23. Monfalcone.

25 Natura Nascosta Numero 39 Anno 2009 pp. 26-32 Figure 1

A POSSIBLE CONTRIBUTION OF VOLCANISM TO THE END- PLEISTOCENE MEGAFAUNAL EXTINCTION

Dmitry A. Ruban

Abstract - The causes of the end-Pleistocene megafaunal extinction (EPMFE) remain unclear. Previous hypotheses have attributed the extinctions to human activity (overkill and/or hyperdisease), climate change, sea-level rise, and extraterrestrial impact. Sulfate records from the ice cores drilled in Greenland and East Antarctica suggest an intensification of volcanic eruptions near the end of the Pleistocene. Although single eruptions could not induce numerous extinctions, a cumulative effect from high-frequency volcanism can be considered as an important natural disaster able to contribute to the last pulse of the EPMFE, which embraced North and South America and North Eurasia. None of possible EPMFE triggers, including intensified volcanism, can provide an ultimate explanation of this catastrophe and, thus, a coincidence of several triggers should be considered. Key words : megafaunal extinction, mass extinction, volcanism, eruption frequency, palaeoclimate, natural disaster, Late Pleistocene.

Introduction Dozens of genera of large terrestrial mammals became extinct in North and South America, North Eurasia, and Australia around the end of the Pleistocene (MARTIN , 2005). Human activity, which would include overkill and/or hyperdisease (MAC PHEE & MARX , 1997; MARTIN , 2005; HAYNES , 2007; see also a discussion in LYMAN , 2004), climate change (WROE & FIELD , 2001, 2006; GRAYSON & METZLER , 2002, 2003; WROE et al ., 2006), and sea-level rise (LOUYS et al ., 2007) have been discussed as possible causes, which might have acted individually or together. FIRESTONE et al . (2007) and KENNETT et al . (2008) have presented strong arguments in favour of an extraterrestrial trigger. Although the end-Pleistocene megafaunal extinction (EPMFE) was not a true mass extinction, but just a significant biotic crisis, it is discussed in a manner similar to the proved mass extinctions (RUBAN , 2008). If so, what about volcanism, which is mentioned among the main possible triggers of the greatest / (ERWIN , 2006) and the Cretaceous/Tertiary (COURTILLOT , 2007) catastrophes? This paper briefly summarizes several new evidences, which suggest that an intensified volcanism in triggering the EPMFE should, at least, be taken in consideration.

P.O. Box (a/jashik) 7333, Rostov-na-Donu, 344056, Russian Federation e-mail: [email protected], [email protected]

26 Materials Detailed continuous records of volcanic activity during the past 50 kyr were obtained from the ice cores in both hemispheres. ZIELINSKI et al . (1996) interpreted the sulfate record of the GISP2 ice core obtained in Greenland, whereas CASTELLANO et al . (2004) did the same with the EDC96 ice core drilled in East Antarctica. An application of statistical tools revealed the changes in the frequency of volcanic events. MASON et al . (2004) composed a database on supereruptions in the geologic past. These results are considered in the present paper in order to discuss an intensity of volcanism at times of the EPMFE.

Evidences of the end-Pleistocene volcanism intensity The intensity of volcanism changed during the last 50 kyr (Fig. 1). The Northern Hemisphere volcanic record (ZIELINSKI et al ., 1996) suggests a strong

Fig. 1 - Temporal relationships between the volcanic eruption frequency and the EPMFE. Curves of eruption frequency are interpreted from the sulfate profiles of the ice cores: 1 - GISP2, Greenland (modified from ZIELINSKI et al ., 1996), 2- EDC96, East Antarctica (modified from CASTELLANO et al ., 2004). Volcanism intensifications are highlighted by grey circles. The relative intensity of the EPMFE is shown very schematically. Timing of pulses are according MARTIN (2005), WROE & FIELD (2006), and HAYNES (pers. comm.) with an account of post-extinction survival. The Holocene GSSP is after OGG et al . (2008) and WALKER et al . (2009). The age of the Glacier Peak eruption follows KUEHN et al . (2009). The age of the Taupo supereruption is after WILSON (2001).

increase in eruption frequency within the 17-6 ka time interval. Evidence from the Southern Hemisphere (CASTELLANO et al ., 2004) is as follows. While the long- normal statistic interpretation implies a rise in volcanism within 25-20 ka time interval, two other interpretations (judged by CASTELLANO et al . (2004) as altered 27 by record artifacts) suggest a peak within 18-13 ka time interval. A discrepancy between the two records is evident, but it is not so large. Moreover, both emphasize an intensification of volcanism before or at a time of the last pulse of the EPMFE, which embraced North and South America as well as North Eurasia (Fig. 1). An extinction of megafauna in Australia seems to be occurred before the end- Pleistocene acceleration of number of volcanic eruptions (Fig. 1). The only supereruption, which occurred during the past 50 kyr was that of Taupo in New Zealand at 26.5 ka (MASON et al ., 2004). Although it was a high- magnitude event, its physical parameters were much less than those of the Toba supereruption, which took place at 74 ka (WILSON , 2001, 2008; MASON et al ., 2004). LOUYS (2007) argued that the Toba supereruption had little effect on regional faunas. A number of other impressive explosive eruptions, however, coincided with the EPMFE peak at about 12-11 ka. A typical example was an eruption of the Glacier Peak in western North America, which occurred at 13.7- 13.4 ka (KUEHN et al ., 2009) (Fig. 1). This event produced widespread tephra beds, which are common in the US Northwest and Canadian southwest. Some significant eruptions of Taupo also occurred at the end-Pleistocene (WILSON , 2008).

Mechanism of triggering the EPMFE To find some temporal coincidence between a global intensification of volcanism and the last pulse of the EPMFE is not enough. To judge eruptions as a possible trigger it is necessary to establish causal relationships. Intensified volcanism is an important natural disaster, and it has both direct and indirect consequences on organisms. Besides local killing effects, falling ash may affect and even devastate vegetation of large areas, and it is also dangerous for health (SELF & BLAKE , 2008). More important are alterations of global energy and chemical fluxes between the land surface and the atmosphere. In particular, voluminous eruptions (if they are sulfur-rich) are able to provoke significant changes in sun lightening, global cooling by several degrees, ozone loss, photosynthesis drop, break of the food chains, etc. (RAMPINO et al ., 1988; RAMPINO , 2008; SELF & BLAKE , 2008; STOTHERS , 2009). Modelling the effects of the Permian/Triassic and the Cretaceous/Tertiary mass extinctions suggest that global warming due to carbon dioxide emission and total water acidification were two other dramatic consequences (ERWIN , 2006; COURTILLOT , 2007). Among modern humans, famine and widespread diseases as well as social perturbations are common results of large eruptions (TANGUY et al ., 1998; GRATTAN , 2005, 2006; WITHAM , 2005). LOUYS (2007) suggested that a supereruption of Toba at 74 ka did not affect faunas so much. However, some extinctions did occur as a consequence. Prehistoric humans were stressed by this event with an extraordinary strength (RAMPINO , 2008). Moreover, an effect of just a single volcanic disaster, even if large, was considered by LOUYS (2007). A higher frequency of eruptions as reported near the end of the Pleistocene (Fig. 1) suggests their cumulative effect might have been much more important. If even the end-Pleistocene eruptions did not overlap, their high frequency induced a punctuated stress to global ecosystems. Although some other intrinsic (SIMA et al ., 2004; BROECKER , 2006; BRADLEY & ENGLAND , 2008; CARLSON , 2008) and extrinsic (FIRESTONE et al ., 2007) factors were able to provoke the Younger Dryas and other climatic perturbations, an

28 intensification of volcanism might have also been responsible for them. If the suggestion by ZIELINSKI et al . (1996) that deglaciation was also able to strengthen eruptions is valid, one may hypothesize a self-accelerating volcanism at the Pleistocene-Holocene transition. Undoubtedly, an indirect climatic effect of volcanism might have stressed ecosystems so as to cause numerous extinctions of megafauna. It is also sensible to note that a hyperdisease among large mammals in the end-Pleistocene (MCPHEE & MARX , 1997) sounds similar to an increase of diseases among humans as a consequence of large volcanic disasters (TANGUY et al ., 1998; GRATTAN , 2005, 2006).

Discussion Intensified volcanism cannot provide a better explanation of the EPMFE than other possible triggers (Table 1). E.g., it probably did not cause extinctions in Australia, which occurred far earlier than the spectacular increase in the frequency of eruptions (Fig. 1). Another argument against volcanism as a main trigger may be as follows. Eruptions became relatively more frequent in some other time intervals such as 86-81 ka (ZIELINSKI et al ., 1996), but this did not lead to a total decline of large animals on the land. However, none from the other possible triggers of the EPMFE provide an ultimate explanation of this catastrophe (Table 1). Debates on human activity versus climate change (GRAYSON & MELTZER , 2002, 2003; MARTIN , 2005; WROE & FIELD , 2006) underline this. Integrated models (e.g., LOUYS et al ., 2007) are more successful. If an intensification of volcanism coincided with the last pulse of the EPMFE and a causal relationship was possible, it will be sensible to hypothesize that frequent eruptions contributed

29 to the extinctions by strengthening the influence of other factors. This seem to be an example of an extraordinary coincidence.

Conclusions Catastrophic events played a great role in the geological history and the evolution of life (BABIN , 2007; COMBES , 2008). However, even such very "young" biotic crises as the EPMFE, which perhaps were observed by prehistoric humans directly (MARTIN , 2005; MAYOR, 2005), remain unclear with respect to their causes. New evidences imply that an intensification of volcanism just before the end of the Pleistocene was able to contribute to the extinctions of megafauna in North and South America and North Euarasia. The causal relationships between intensified volcanism and the EPMFE are yet to be revealed, but they appear potentially plausible. However, this hypothesis does neither reject not even concur with the other ones, which propose human activity, abrupt climate changes, sea-level rise, and extraterrestrial impact as possible triggers of the EPMFE.

Acknowledgements The author gratefully thanks P.C. MARTZ (USA) for her opinion on this paper and a linguistic correction. J. BIERNACKA (Poland), E. CASTELLANO (Italy), J. FIELD (Australia), A.H. HARRIS (USA), G. HAYNES (USA), E. JOHNSON (USA), T.L. JONES (USA), D.J. KENNETT (USA), S.C. KUEHN (Canada), A.J. VAN LOON (Netherlands/Poland), R.L. LYMAN (USA), G.J. PRICE (Australia), W. RIEGRAF (Germany), J.J. SAUNDERS (USA), and T. ZIELI ŃSKI (Poland) are acknowledged for useful suggestions and/or help with literature. This paper is treated as an invitation to a broad discussion. It does not reflect necessarily the opinion of the above-mentioned specialists.

References BABIN C. (2007) - Autour du catastrophisme . Vuibert/ADAPT, Paris, 169 pp. BRADLEY R.S. & ENGLAND J.H. (2008) - The Younger Dryas and the Sea of Ancient Ice . Quaternary Research, v. 70, pp. 1–10. BROECKER W.S. (2006) - Abrupt climate change revisited . Global and Planetary Change, v. 54, pp. 211–215. CARLSON A.E. (2008) - Why there was not a Younger Dryas-like event during the Penultimate Deglaciation . Quaternary Science Reviews, v. 27, pp. 882–887. CASTELLANO E., BECAGLI S., JOUZEL J., MIGLIORI A., SEVERI M., STEFFENSEN J.P., TRAVERSI R. & UDISTI R. (2004) - Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes . Global and Planetary Change, v. 42, pp. 195–205. COMBES C. (2008): The role of extreme events in evolution . Comptes Rendus Geoscience, v. 340, pp. 591–594. COURTILLOT V. (2007) - Evolutionary Catastrophes: the Science of Mass Extinction . Cambridge University Press, Cambridge, 173 pp. ERWIN D.H. (2006) - Extinction: How Life on Earth Nearly Ended 250 Million Years Ago . Princeton University Press, Princeton, Oxford, 296 pp. FIRESTONE R.B., WEST A., KENNETT J.P., BECKER L., BUNCH T.E., REVAY Z.S., SCHULTZ P.H., BELGYA T., KENNETT D.J., ERLANDSON J.M., DICKENSON O.J., GOODYEAR A.C., HARRIS R.S., HOWARD G.A., KLOOSTERMAN J.B., LECHLER P., MAYEWSKI P.A., MONTGOMERY J., POREDA R., DARRAH T., QUE HEE S.S., SMITH A.R., STICH A., TOPPING W., WITTKE J.H. & WOLBACH W.S. (2007) - Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling . Proceedings of the National Academy of Sciences, v. 104, pp. 16016–16021.

30 GRATTAN J. (2005) - Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies . Lithos, v. 79, pp. 343–353. GRATTAN J. (2006) - Aspects of Armageddon: An exploration of the role of volcanic eruptions in human history and civilization . Quaternary International, v. 151, pp. 10–18. GRAYSON D.K. & MELTZER D.J. (2002) - Clovis Hunting and Large Mammal Extinction: A Critical Review of the Evidence . Journal of World Prehistory, v. 16, pp. 313–359. GRAYSON D.K. & MELTZER D.J. (2003) - A requiem for North American overkill . Journal of Archaeological Science, v. 30, pp. 585–593. HAYNES G. (2007) - A review of some attacks on the overkill hypothesis, with special attention to misrepresentations and doubletalk . Quaternary International, v. 169-170, pp. 84–94. KENNETT D.J., KENNETT J.P., WEST G.J., ERLANDSON J.M., JOHNSON J.R., HENDY I.L., WEST A., CULLETON B.J., JONES T.L. & STAFFORD T.W. JR. (2008) - Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the Allerod-Younger Dryas boundary (13.0-12.9 ka) . Quaternary Science Reviews, v. 27, pp. 2530–2545. KUEHN S.C., FROESE D.G., CARRARA P.E., FOIT F.F. JR., PEARCE N.J.G. & ROTHEISLER P. (2009) - Major- and trace-element characterization, expanded distribution, and a new chronology for the latest Pleistocene Glacier Peak tephras in western North America . Quaternary Research, v. 71, pp. 201–216. LOUYS J. (2007) - Limited effect of the Quaternary's largest super-eruption (Toba) on land mammals from Southeast Asia . Quaternary Science Reviews, v. 26, pp. 3108–3117. LOUYS J., CURNOE D. & TONG H. (2007) - Characteristics of Pleistocene megafauna extinctions in Southeast Asia . Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, pp. 152–173. LYMAN R.L. (2004) - Aboriginal Overkill in the Intermountain West of North America: Zooarchaeological tests and implications . Human Nature, v. 15, pp. 169–208. MAC PHEE R.D.E. & MARX P.A. (1997) - The 40,000-year plague: Humans, hyperdisease, and first-contact extinctions . In: GOODMAN S. & PATTERSON B. (eds.), Natural change and human impact on Madagascar . Smithsonian Institution Press, Washington, pp. 169–217. MARTIN P.S. (2005) - Twilight of the Mammoths: Ice age Extinctions and the Rewilding of America . University of California Press, Berkeley, Los Angeles, 251 pp. MASON B.G., PYLE D.M. & OPPENHEIMER C. 2004. The size and frequency of the largest explosive eruptions on Earth . Bulletin of Volcanology, v. 66, pp. 735–748. MAYOR A. (2005) - Fossil Legends of the First Americans . Princeton University Press, Princeton, Oxford, 446 pp. OGG J.G., OGG G. & GRADSTEIN F.M. (2008) - The Concise Geologic Time scale . Cambridge University Press, Cambridge, 177 pp. RAMPINO M.R. (2008) - Super-volcanism and other geophysical processes of catastrophic import . In: BOSTROM , N. & ĆIRKOVI Ć, M.M. (eds.), Global Catastrophic Risks . Oxford University Press, Oxford, pp. 205–221. RAMPINO M.R., SELF S. & STOTHERS R.B. (1988) - Volcanic winters . Annual Review of Earth and Planetary Sciences, v. 16, pp. 73–99. RUBAN D.A. (2008) - Probable causes of the End-Permian and the End-Pleistocene extinctions among continental faunas: fundamental difference or similarity? In: ŠTAMBERG , S. & ZAJÍC , J. (eds.), Faunas and palaeoenvironments of the Late Palaeozoic. Special Publication to "5 th Symposium on Permo- Faunas" and workshop "Interpretation of Marine and Freshwater Environments in Carboniferous and Permian Deposits", July 7 - 11, 2008 . Museum of Eastern Bohemia at Hradec Králové, Hradec Králové, pp. 32–33. SELF S. & BLAKE S. (2008) - Consequences of Explosive Supereruptions . Elements, v. 4, pp. 41–46.

31 SIMA A., PAUL A. & SCHULZ M. (2004) - The Younger Dryas - an intrinsic feature of late Pleistocene climate change at millennial timescales . Earth and Planetary Science Letters, v. 222, pp. 741–750. STOTHERS R.B. (2009) - Volcanic Eruptions and Climate Change . In: GORNITZ , V. (ed.), Encyclopedia of Paleoclimatology and Ancient Environments . Springer, Dordrecht, pp. 976–979. TANGUY J.-C., RIBIÈRE C., SCARTH A. & TJETJEP W.S. (1998) - Victims from volcanic eruptions: a revised data base . Bulletin of Volcanology, v. 60, pp. 137–144. WALKER M., JOHNSEN S., RASMUSSEN S.O., STEFFENSEN J.P., POPP T., GIBBARD P., HOEK W., LOWE J., BJORCK S., CWYNAR L., HUGHEN K., KERSHAW P., KROMER B., LITT T., LOWE D.J., NAKAGAWA T., NEWNHAM R. & SCHWANDER J. (2009) - Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records . Journal of Quaternary Science, v. 24, pp. 3–17. WILSON C.J.N. (2001) - The 26.5 ka Oruanui eruption, New Zealand: and introduction and overview . Journal of Volcanology and Geothermal Research, v. 112, pp. 133–174. WILSON C.J.N. (2008) - Supereruptions and Supervolcanoes: Processes and Products . Elements, v. 4, pp. 29–34. WITHAM C.S. (2005) - Volcanic disasters and incidents: A new database . Journal of Volcanology and Geothermal Research, v. 148, pp. 191–233. WROE S. & FIELD J. (2001) - Mystery of Megafaunal Extinction Remains . Australasian Science, v. 22, pp. 21–25. WROE S. & FIELD J. (2006) - A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation . Quaternary Science Reviews, v. 25, pp. 2692-2703. WROE S., FIELD J. & GRAYSON D.K. (2006) - Megafaunal extinction: climate, humans and assumptions . Trends in Ecology & Evolution, v. 21, pp. 61–62. ZIELINSKI G.A., MAYEWSKI P.A., MEEKER L.D., WHITLOW S. & TWICKLER M.S. (1996) - A 100,000-Yr Record of Explosive Volcanism from the GISP2 (Greenland) Ice Core Quaternary Research, v. 45, pp. 109–118. .

32 Natura Nascosta Numero 39 Anno 2008 pp. 33-48 Figure 16

CENSIMENTO DELLE CAVITÀ DI GUERRA SUL CARSO DI MONFALCONE (Parte sesta)

Maurizio Tentor

Riassunto – Prosegue anche in questo numero di Natura Nascosta il lavoro di censimento delle cavità di guerra che il Gruppo Speleologico Monfalconese A.d.Fante ha intrapreso nell’anno 2000 nell’ambito del “ Progetto Emme”. Il lavoro, ancora in corso, prevede la ricerca, il posizionamento su Cart a Tecnica Regionale 1:5000 e il rilievo delle cavità della Grande Guerra. Queste cavità si trovano principalmente all’interno delle trincee.

Introduzione Vengono presentate in questa quinta parte altre 7 cavità artificiali risalenti alla Grande Guerra (Fig. 2) presenti nelle trincee del Carso a nord di Monfalcone. Come già specificato nei numeri precedenti, il lavoro di inventariazione delle cavità, è stato denominato “Progetto Emme” (ZOFF 2000). Tale lavoro comprende il posizionamento e il rilevamento di tutte le cavità che molto spesso risultano essere di piccole dimensioni salvo alcune eccezioni.

Fig. 1 – Graffito posto all’interno della cavita denomnata M58 dove si legge “Centuria 572 fatto il 24-3-1917”.

33

Fig. 2- Carta CTR 1:5000 ridotta con la posizione delle cavità. Le linee nere più grosse rappresentano le trincee.

34 Cavità artificiale “M43” La cavità (Figg. 3-4) ha l'ingresso posto all’interno di una trincea alla quota di 80 m ed è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’34”,3 e latitudine 45°48’45”,4. Presenta uno sviluppo spaziale di 3,1 m per un volume di 3,1 m3.

Fig. 3 - L'ingresso della cavità denominata “M43”.

35

Fig. 4 - Rilievo della cavità.

36 Cavità artificiale “M44” Questa cavità (Figg. 5-6) più complessa delle precedenti ha tre ingressi uno dei quali non più agibile ed è posizionata alla fine di un breve valloncello alla quota di 81 m ed è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’34”,8 e latitudine 45°48’44”,8. Presenta uno sviluppo spaziale di 42 m per un volume di 84 m3. Le pareti di questa cavità sono interamente intonacate con malta.

Fig. 5 - L'ingresso della cavità denominata “M44”.

37

Fig. 6 - Rilievo della cavità.

38 Cavità artificiale “M45” La cavità (Figg. 7-8) ha due ingressi uno dei quali in muratura. Tale ingresso è in parte interrato e per accedervi tocca strisciare. Si trova alla quota di 79 m ed è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’17”,4 e latitudine 45°48’50”,8. Presenta uno sviluppo spaziale di 27,5 m per un volume di 78,4 m3. I due ingressi hanno le pareti rivestite in cemento e all'interno si notano due piccole stanze con due ampi portali ad arco costruiti con mattoni.

Fig. 7 - L'ingresso della cavità denominata “M45”.

39 Fig. 8 - Rilievo della cavità.

40 Cavità artificiale “M46” La cavità scavata interamente nella roccia (Figg. 9-10) ha un solo ingresso e si trova alla quota di 80 m. La piccola cavità è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’33”,2 e latitudine 45°48’43”,6. Presenta uno sviluppo spaziale di 7 m per un volume di 10,5 m3.

Fig. 9 - L'ingresso della cavità denominata “M46”.

41

Fig. 10 - Rilievo della cavità.

42 Cavità artificiale “M58” La cavità scavata interamente nella roccia (Figg. 11-12) ha l'ingresso che si trova alla quota di 79,6 m. La piccola cavità è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’38”,6 e latitudine 45°48’45”,4. Presenta uno sviluppo spaziale di 6,9 m per un volume di 12 m3.

Fig. 11 - L'ingresso della cavità denominata “M58”.

43

Fig. 12 - Rilievo della cavità.

44 Cavità artificiale “M60” La cavità scavata interamente nella roccia (Figg. 13-14) ha un solo ingresso e si trova alla quota di 77 m. La piccola cavità è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’49”,1 e latitudine 45°48’46”,2. Presenta uno sviluppo spaziale di 9 m per un volume di 28 m3.

Fig. 13 - L'ingresso della cavità denominata “M60”.

45

Fig. 14 - Rilievo della cavità.

46 Cavità artificiale “M61” La cavità scavata interamente nella roccia (Figg. 15-16) ha un solo ingresso e si trova alla quota di 78 m. La piccola cavità è rintracciabile su C.T.R. 1:5000 elemento 088152 Monfalcone Stazione con longitudine 13°32’48”,5 e latitudine 45°48’46”,1. Presenta uno sviluppo spaziale di 7 m per un volume di 10,5 m3.

Fig. 15 - L'ingresso della cavità denominata “M61”.

47

Fig. 16 - Rilievo della cavità.

Bibliografia Zoff A., (2000) – La Grande Guerra sul Carso monfalconese: le trincee raccontano. Natura Nas costa, n. 21, pp. 42-48.

48 INDICE

TELMATOSAURUS AND THE OTHER HADROSAUROIDS OF THE CRETACEOUS EUROPEAN ARCHIPELAGO. AN UPDATE. F. M. Dalla Vecchia pag. 1

LE STROMATOLITI DEL SENTIERO RILKE (DUINO, TRIESTE) A. Tentor pag. 19

A POSSIBLE CONTRIBUTION OF VOLCANISM TO THE END PLEISTOCENE MEGAFAUNAL EXTINCTION D. A. Ruban pag. 26

CENSIMENTO DELLE CAVITÀ DI GUERRA SUL CARSO DI MONFALCONE (PARTE QUARTA). M. Tentor pag. 33

I numeri esauriti di Natura Nascosta, possono essere richiesti e verranno inviati in fotocopia, solamente previo versamento delle spese di realizzazione e spedizione, mentre per gli arretrati disponibili verranno richieste solamente le spese postali.

The sold out numbers of Natura Nascosta will be sent by request as photocopies and just after the payment of the cost of the photocopies and the postal charges. Only the postal charges will be requested for the available issues.

I numeri esauriti di Natura Nascosta si possono scaricare in formato PDF dal sito: http://www.museomonfalcone.it

The sold out numbers of Natura Nascosta can be downloaded as PDF for files in the site : http://www. museomonfalcone.it

49 Pubblicazioni del Gruppo Speleologico Monfalconese A.d.F.

Natura Nascosta n°. 1 (1974) esaurito/sold out Natura Nascosta n°. 2 (1978) esaurito/sold out Natura Nascosta n°. 3 (1981) esaurito/sold out Natura Nascosta n°. 4 (1990) esaurito/sold out Natura Nascosta n°. 5 (1990) esaurito/sold out Natura Nascosta n°. 6 (1992) esaurito/sold out Natura Nascosta n°. 7 (1993) esaurito/sold out Natura Nascosta n°. 8 (1993) esaurito/sold out Natura Nascosta n°. 8 (suppl.) (1993) Natura Nascosta n°. 9 (1994) esaurito/sold out Natura Nascosta n°. 10 (1995) esaurito/sold out Natura Nascosta n°. 11 (1995) esaurito/sold out Natura Nascosta n°. 12 (1996) esaurito/sold out Natura Nascosta n°. 13 (1996) esaurito/sold out Natura Nascosta n°. 14 (1997) esaurito/sold out Natura Nascosta n°. 15 (1997) esaurito/sold out Natura Nascosta n°. 16 (1998) esaurito/sold out Natura Nascosta n°. 17 (1998) esaurito/sold out Natura Nascosta n°. 18 (1999) Natura Nascosta n°. 19 (1999) Natura Nascosta n°. 20 (2000) Natura Nascosta n°. 21 (2000) Natura Nascosta n°. 22 (2001) Natura Nascosta n°. 23 (2001) Natura Nascosta n°. 24 (2002) Natura Nascosta n°. 25 (2002) Natura Nascosta n°. 26 (2003) Natura Nascosta n°. 27 (2003) Natura Nascosta n°. 28 (2004) Natura Nascosta n°. 29 (2004) Natura Nascosta n°. 30 (2005) Natura Nascosta n°. 31 (2005) Natura Nascosta n°. 32 (2006) Natura Nascosta n°. 33 (2006) Natura Nascosta n°. 34 (2007) Natura Nascosta n°. 35 (2007) Natura Nascosta n°. 36 (2008) Natura Nascosta n°. 37 (2008) Natura Nascosta n°. 38 (2009)

50