Terrestrial Ecosystems on the Mesozoic Peri-Adriatic Carbonate Platforms: the Vertebrate Evidence

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Ecosystems on the Mesozoic Peri-Adriatic Carbonate Platforms: the Vertebrate Evidence Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 77-83. Buenos Aires, 30-6-2001 Terrestrial ecosystems on the Mesozoic peri-Adriatic carbonate platforms: the vertebrate evidence Fabio M. DALLAVECCHIN Abstract. The remains of Mesozoic carbonate platforms outcrop along the margins of the Adriatic Sea and the mountain chains surrounding them in Italy, Slovenia and Croatia. Despite the fact that the platforms were far from continents, abundant evidence of terrestrial vertebrates was recently found, mainly in the Norian, Lower Jurassic and Cretaceous, and is here reviewed. The presence of populations of large ter- restrial vertebrates (mainly dinosaurs) on these carbonate platforms, and in particular the discovery of late Hauterivian-early Barremian sauropods and late Santonian hadrosaurids, has important paleoecological and paleogeographical implications. Key words. Peri-Adriatic carbonate platforms. MesozoicTethysianpaleogeography.Mesozoicterrestrial vertebrates. Paleoichnology.Reptilia. Dinosauria. Theropoda. Sauropoda. Ornithopoda. Hadrosauridae. Introduction by them to the African (Early Cretaceous) or Laurasian (Triassic-Early Jurassic) continent, but Mesozoic carbonate platforms outcrop as thick were at best very far (hundreds of kilometres) from sequences of carbonates, more or less disrupted and "land", considering it in the "orthodox" way, i.e. a piled up by the Alpine orogeny, along the margins of wide area of silicoclastic fluvialjlacustrine sedimen- the Adriatic Sea in Italy, Slovenia and Croatia. tation or non-deposition. The vertebrate faunas During the Norian these platforms were not clearly found on them (mainly the Cretaceous ones) are thus differentiated and the whole region was part of a the very singular case of faunas living on carbonate wide pericontinental carbonate platform along the platforms separated from a continental area. All oth- northem margin of westem Paleotethys, far away er carbonate platforms bearing traces of large terres- from the continent (see Marcoux et al., 1993).During trial inhabitants were pericontinental and the verte- Early Jurassic times the Trento Platform was identi- brate evidence was found near the continent-plat- fied in N Italy, surrounded to E and W by deep ma- form transition (e.g. the Lower Cretaceous of the rine basins. The Cretaceous platforms are represent- Gulf Coastal Plain in North America). ed by the Adriatic-Dinaric Platform (= Karst The peri-Adriatic platforms are considered as ma- Platform of Masse et al., 1993), now outcropping rine environments because of the absence of conti- along the eastem margin of the sea, included in the nental clastics. However, many events of local emer- Dinarids and ending northward into the Karst and sion are represented by other geological and paleo- Julian Prealps, Latium-Abruzzi-Campania Platform botanical (see Dalla Vecchia,2000) evidence. The re- (= Apennine Carbonate Platform, Masse et al., 1993) cently discovered vertebrate record (figure 1) strong- included in the northem part of southem Apennines, ly supports this evidence of emersion. and Apulia Platforrn, partly included in the Southem Apennines and partly constituting the undeformed The terrestrial vertebrate record peninsula of Puglia. They are usually reported in lit- erature as "intraoceanic" platforms, placed during Late Triassic (Norian) the Cretaceous between African and LaurasianjEurasian continents and surrounded by Skeletons of early pterosaurs (Eudimorphodon, deep sea basins (see for example Masse et al., 1993). Peteinosaurus and Preondactylus), the pralacertiform It was noted by Dalla Vecchia (1997b, 1998b) that Langobardisaurus, the diapsids incertae sedis these platforms were in some cases connected with Drepanosaurus and Megalancosaurus and the sphen- other carbonate platforms and, possibly, sometimes odont Diphydontosaurus are found in middle Norian (Alaunian) racks derived from sediments deposited in anoxic intraplatform basins of N Italy (Lombardy 'Museo Paleontologico Cittadino, Via Valentinis 134, 1-34074 Monfalcone (Gorizia),Italy. and Friuli regions). Larger reptiles are represented E-mail:[email protected] by the aetosaur Aetosaurus and the phytosaur ©Asociación Paleontológica Argentina 0328-347X/01$00.00+50 78 F.M. Dalla Vecchia 8•• 10 11 ••••• un CAMPANIAH (f) :l "","""'" •••• c:::::::.. O CEHOMAHIAH • w • Adriatic O ALBtAN ITALY EAJU,' ••••• ~ Sea w APnAN a: z IlARRI!MIAN ~ •••••• O lE HAUTERIVIAN o8 VALANOIHIAN z•• • BERIIIASIAN TITltONIAN 1.7 UTE KIMMEIIIDGIAN OXFOIIDIAN O CALLOVlAN Ci) BATHONIAN (f) DOU! c( BAJOCIAN a: AALENIAN ..,:l TOARCIAN Tyrrhenian Sea •..... LlENBIIACHIAN 4- $INEIIIURIAN HETTANGIAN • •••••• O NOIIIAN ••••• Ci) LA" (f) • c( CAIINIAN LADIHIAN • ir DOU 1- ANI8IAN Al. IAN ••••• bone remains footprints • Mediterranean Sea Figure 1. Location of the outcrops of the Mesozoic peri-Adriatic carbonate platforms with terrestrial vertebrate evidence. 1) Lombardy (Cene, Zogno etc.), Norian bone remains, 2) Camic Pre-Alps (Preone, Forchiar Creek, etc.), Norian bone remains, 3) Camic Pre-Alps (Andreis, Claut, Cimolais), Norian footprints, 4) E Dolomites (M. Pelmetto, etc.), early Norian footprints, 5) W Dolomites, Norian foot- prints, 6) W Slovenia, Norian footprints, 7) Saltrio, Early Jurassic bone remains, 8) Lavini di Marco and environs, Early Jurassic footprints, 9) Becco di Filadonna, Early Jurassic footprints, 10) Mt. Pasubio, Early Jurassic footprints, 11) Mts Lessini, Early Jurassic footprints, 12) Cisterna, Hauterivian footprints, 13) near S. Marco in Lamis (Gargano), late Hauterivian - early Barremian footprints, 14) Cansiglio Platea u, late Hauterivian - early Barremian footprints, 15) Valle/Bale, late Hauterivian - early Barremian bone rernains, 16) Brioni Archipelago, late Barremian footprints, 17) Pietraroia, early Albian bone remains, 18) Brioni Archipelago, late Albian footprints, 19) Puntesella, late Albian footprints, 20) Solaris site, late Albian footprints, 21) Quieto/Mima river mouth, late Albian footprints, 22) Fenoliga islet, late Cenomanian footprints, 23) Grakalovac, late Cenomanian footprints, 24) Carigador, late Cenomanian footprints, 25) S. Lorenzo di Daila, late Cenomanian footprints, 26) Altamura, late Coniacian-early Santonian footprints, 27) Villaggio del Pescatore, late Santonian bone remains, 28) Kozina, Maastrichtian bone remains. A.P.A. Publicación Especial 7, 2001 Mesozoic Peri-Adriatic carbonate platforms 79 Mystriosuchus. Many sites with dinosaurian and "chi- tooth of a mid-size one (Dalla Vecchia, 1998b).A par- rotheroid" footprints in the Dolomites and Carnic tial caudal vertebra suggests the possible presence of Pre-Alps of N Italy, and in W Slovenia (see Dalla large theropods too. Early Barremian dinoturbation Vecchia, 1997a, Dalla Vecchia and Mietto, 1998)con- is reported in SW Istria (Dini et al., 1998).A site with firm the cornmon presence of terrestrial vertebrates tridactyl footprints ranging in length from 15up to 40 on the platform. The site of Mt. Pelmetto (Eastern cm was discovered in the Gargano Promontory Dolomites) is stratigraphically placed near the pas- (Puglia, S Italy, Apulia Platform) (Gianolla et al., sage between Carnian and Norian, the others are 2000). probably higher in the stratigraphic column. The di- nosaur ichnological record is represented mainly by Late Barremian tridactyl footprints with a length from 10up to 35 cm. Footprints of large theropods are present in a site Early [urassic on the Main Brioni Island and probably also on the nearby Vanga Island, SW Istria (Dalla Vecchia et al., Abundant dinosaur ichnologic evidence was 1993;Dalla Vecchia and Tarlao, 1995; Dalla Vecchia, found in the Trento Platform of NE Italy. Large to 1998b). small theropod, large to small ornithopod and sauro- pod footprints are reported from the Hettangian- Early Albian Sinemurian site of the Lavini di Marco (Leonardi and Mietto, 2001).There are at least other three sites with The small juvenile theropod Scipionyx samniticus footprints in the Trento Province (M. Avanzini, pers. (Dal Sasso and Signore, 1998) was found in the cornm.). Large tridactyl footprints are found in the Pietraroia site (Latium-Abruzzi-Campania Platform, Pliensbachian of the Lessini Mts. (Mietto and Roghi, S Italy) together with the amphibian CeItedens (also 1993). found in Spain), the rhyncocephalian Derasmosaurus, Remains of a large theropod the size of an adult the lacertilians Cosiasaurus and Chometokadmon, and Allosaurus, were found in Lombardy in 1996. They small crocodiles (Barbera and Macuglia, 1988). were preserved in limestone formed in an open ma- rine setting (a ramp between a carbonate platform Late Albian and a deep basin) and they have a middle Sinemurian age. Both humeri (about 35 cm long), a Dinosaur footprints are common in W Istria. Mid- complete manual digit and another partial manual size bipedal individuals, probably mainly theropods, digit with the corresponding metacarpal, a partial are represented in five sites (seven levels), the Solaris furcula, a tooth and the proximal part of a fibula are one with more than 500 footprints and tracks (Dalla among the preserved bones (c. Dal Sasso, pers. Vecchia and Tarlao, 2000). The track of a relatively comm.). large ornithopod (footprint length = 28 cm) is found in the Main Brioni Island (Dalla Vecchia, 1997a), Hauterivian where rare large theropod prints are signalled too (Bachofen-Echt, 1925) but are not preserved in siiu A site with two large tridactyl footprints
Recommended publications
  • Abstract (Pdf)
    2 Congresso GeoSed 25-26 Settembre 2008 Aula Magna Palazzo di Scienze della Terra Campus Universitario Via E. Orabona 4 BARI Atti del Congresso a cura di: Massimo Moretti ORGANIZZAZIONE Coordinamento Luisa Sabato Segreteria Luigi Spalluto Comitato organizzatore Salvatore Gallicchio Massimo Moretti Luisa Sabato Luigi Spalluto Marcello Tropeano Collaboratori Alessia Barchetta Elisa Costantini Antonietta Cilumbriello Antonio Grippa Michele Labriola Rosanna Laragione Stefania Lisco Vincenzo Onofrio Mariangela Pepe Patrocinio e Contributo Università degli Studi di Bari Dipartimento di Geologia e Geofisica Dottorato di Scienze della Terra Regione Puglia Regione Basilicata Provincia di Bari Comune di Bari Commissione Italiana “Anno Internazionale del Pianeta Terra” 4 INDICE DEL VOLUME G. Aiello, A. Conforti, B. D’Argenio Regional marine geologic cartography of the Naples Bay (scale 1:10.000): the geological map n. 465 “Procida” pag. 1 G. Aiello, E. Marsella, S. Passaro The continental slopes off the Ischia island (Naples Bay): submarine gravity instability processes investigated by means of marine geological and geophysical data pag. 4 M. Aldinucci, I. Martini, F. Sandrelli The Pliocene deposits of the northern Siena Basin (Tuscany, Italy) revised through unconformity-bounded stratigraphic units pag. 6 A. Alfarano, M. Delle Rose, L. Orlanducci, F. Resta Rapporti stratigrafici tra pietra leccese, piromafo e Calcareniti di Andrano (area urbana e periferia est di Lecce) pag. 8 S. Andreucci, V. Pascucci, M. D. Bateman Record of three peaks during the Marine Isotopic Stage MIS5 along the Alghero coast, NW Sardinia, Italy: Sea level implication pag. 10 A. Barchetta, L. Spalluto Stratigrafia e caratteri di facies delle successioni carbonatiche affioranti nell’area compresa tra Binetto e Grumo Appula (Murge baresi, Puglia) pag.
    [Show full text]
  • The Paleozoic Record of Thaumatoporella PIA, 1927?
    Geologia Croatica 66/3 155–182 12 Figs. 3 Tabs. 8 Pls. Zagreb 2013 Palaeozoic record of Thaumatoporella PIA, 1927 (incertae sedis)? Felix Schlagintweit1, Jindrich Hladil2, Martin Nose3 and Carlo Salerno4 1 Lerchenauerstr. 167, 80935 München, Germany; ([email protected]) 2 Institute of Geology ASCR, v. v. i., Rozvojová 269, 16500 Praha, Czech Republic; ([email protected]) 3 SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, GeoBioCenterLMU, Richard-Wagner-Str. 10, 80333 München, Germany; ([email protected]) 4 Lenzhalde 70, 70192 Stuttgart, Germany; ([email protected]) doi: 10.4154/gc.2013.14 GeologiaGeologia CroaticaCroatica AB STRA CT From Palaeozoic (mainly Devonian) shallow-water carbonates, spherical to irregular shaped microfossils with thin, apparently homogeneous or perforate micritic walls are widely reported. They are classically referred either to uniloc- ular parathuramminid foraminifera, algae incertae sedis or calcispheres (e.g., Bisphaera, Cribrosphaeroides, Uslo­ nia, Vermiporella myna, Irregularina). Due to their morphology and microstructural features, they are interpreted here as possibly belonging to Thaumatoporella PIA, a widespread Mesozoic-Early Cenozoic taxon of incertae sedis showing a remarkably high morphological variability. In analogy to Mesozoic thaumatoporellaceans, Bisphaera ma­ levkensis BIRINA is interpreted as the cyst (i.e.= resting) stage of forms ascribed to different genera, i.e., Cribro­ sphaeroides, Uslonia and Vermiporella (here: Vermiporella myna WRAY). Note that in the Mesozoic many taxa were also synonymized with Thaumatoporella: Polygonella ELLIOTT, Lithoporella elliotti (EMBERGER), Messopota­ mella DRAGASTAN et al., Vermiporella crisiae DRAGASTAN et al., Micritosphaera SCOTT. This new interpretation, based on material from the Devonian of W-Germany and the Czech Republic, leads to taxonomic reassessment as Thaumatoporella? malevkensis (BIRINA) nov.
    [Show full text]
  • General Report of Hydrogeological Risk Management
    Project FLAT 2019/2020 “Flood and Landslide Assistance and Training” General report of Hydrogeological risk management ITALIAN SECTION MONTENEGRIN SECTION ALBANIAN SECTION GENERAL INDEX ITALIAN SECTION 1. Introduction to hydrogeological risks pag. 4 2. The territory of Brindisi: geology and hydrogeomorphology pag. 6 2.1 Geographic location pag. 6 2.2 Geological setting pag. 7 2.3 Morphological features pag. 8 2.4 Hydrological features pag. 8 3. Elements of geological and hydrogeological risk in the territory of Brindisi pag. 10 3.1 Hazard due to the activation of landslides pag. 10 3.2 Hazard due to coastal erosion phenomena pag. 10 3.3 Hazard due to flood phenomena pag. 11 4. Representative risk areas pag. 12 4.1 Geomorphological risk pag. 12 4.2 Hydrological risk pag. 19 5. Defense and hydrogeological risk management in the Brindisi area pag. 24 5.1 The Regional Flood Management Plan (Piano di Gestione Regionale della Alluvioni-PGRA) pag. 24 5.2 Hydrogeological risk plan of Apulia Region (Piano Stralcio per l’Assetto Idrogeologico della Puglia - PAI) pag. 27 5.2.1 Methods for hydrogeological risk analysis pag. 27 5.2.2 Evaluation of Hazard from Landslide - Methodology and Perimetration pag. 30 5.2.3 PAI methodology pag. 32 5.2.4 Evaluation of Hydraulic Hazard - Methodology and Perimetration pag. 39 5.2.5 Interventions for Hydraulic Risk Mitigation pag. 41 5.3 Regional Coastal Plan of the Apulia region (Piano Regionale delle Coste della Puglia-PRC) pag. 46 6. Recommendations for hydrogeological risk protection in the Brindisi area pag. 48 References pag.
    [Show full text]
  • New Insights on Secondary Minerals from Italian Sulfuric Acid Caves Ilenia M
    International Journal of Speleology 47 (3) 271-291 Tampa, FL (USA) September 2018 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie New insights on secondary minerals from Italian sulfuric acid caves Ilenia M. D’Angeli1*, Cristina Carbone2, Maria Nagostinis1, Mario Parise3, Marco Vattano4, Giuliana Madonia4, and Jo De Waele1 1Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy 2DISTAV, Department of Geological, Environmental and Biological Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy 3Department of Geological and Environmental Sciences, University of Bari Aldo Moro, Piazza Umberto I 1, 70121 Bari, Italy 4Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy Abstract: Sulfuric acid minerals are important clues to identify the speleogenetic phases of hypogene caves. Italy hosts ~25% of the known worldwide sulfuric acid speleogenetic (SAS) systems, including the famous well-studied Frasassi, Monte Cucco, and Acquasanta Terme caves. Nevertheless, other underground environments have been analyzed, and interesting mineralogical assemblages were found associated with peculiar geomorphological features such as cupolas, replacement pockets, feeders, sulfuric notches, and sub-horizontal levels. In this paper, we focused on 15 cave systems located along the Apennine Chain, in Apulia, in Sicily, and in Sardinia, where copious SAS minerals were observed. Some of the studied systems (e.g., Porretta Terme, Capo Palinuro, Cassano allo Ionio, Cerchiara di Calabria, Santa Cesarea Terme) are still active, and mainly used as spas for human treatments. The most interesting and diversified mineralogical associations have been documented in Monte Cucco (Umbria) and Cavallone-Bove (Abruzzo) caves, in which the common gypsum is associated with alunite-jarosite minerals, but also with baryte, celestine, fluorite, and authigenic rutile-ilmenite-titanite.
    [Show full text]
  • GEOLOGICAL and GEOMORPHOLOGICAL CONTROLS on FLOOD PHENOMENA in the PUTIGNANO TOWN, SOUTHERN ITALY Paolo Giannandrea 1, Salvatore
    Available online http://amq.aiqua.it ISSN (print): 2279-7327, ISSN (online): 2279-7335 Alpine and Mediterranean Quaternary, 31 (2), 2018, 221 - 234 https://doi.org/10.26382/AMQ.2018.17 GEOLOGICAL AND GEOMORPHOLOGICAL CONTROLS ON FLOOD PHENOMENA IN THE PUTIGNANO TOWN, SOUTHERN ITALY Paolo Giannandrea 1, Salvatore Laurita 1, Francesca Pugliese 2 1 Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy 2 Via Roma, 13, 70017 Putignano (BA), Italy Corresponding author: P. Giannandrea <[email protected]> ABSTRACT: The geological/geomorphological map of Putignano town (Bari, Southern Italy) contains useful evidence of landforms and sedimentary successions in both urbanized and industrial areas, contributing also to a better understanding of floodings dur- ing high-magnitude pluviometric events in the area. The analyzed flooded areas correspond to surfaces karst landforms with differ- ent shapes and sizes. Our detailed geological/geomorphological study shows that most of the industrial area of Putignano was built on Cretaceous calcareous units in a depressed area, which corresponds to an extensive endorheic basin (locally called "il Basso"). Part of the local urban expansion, built from 1950 to present day, occupies the most depressed areas of numerous karst valleys that, despite this urbanization, still preserve their hydraulic function. Usually these geological and geomorphological fea- tures are not yet completely identified and, unfortunately, not taken into consideration in the planning stages of the urban expan- sion and industrial settlement. Keywords: Putignano town, southern Italy, Apulian Foreland, Quaternary, flood, karst 1. INTRODUCTION thropogenic deposits. Putignano is a small town in the south-eastern 2. GEOLOGICAL AND GEOMORPHOLOGICAL Murge, an area frequently exposed to alluvial events SETTING OF THE MURGE RELIEF that occur despite the numerous mitigation actions tak- en to reduce or eliminate long-term risk to people and The carbonate rocks of the Murge hills, with the infrastructure.
    [Show full text]
  • Proceedings of The
    Proceedings of the Volume One 17th INTERNATIONAL CONGRESS OF SPELEOLOGY Sydney, NSW, Australia July 22–28, 2017 Proceedings VOLUME 1 Edited by Kevin Moore Susan White 2017 Proceedings of the 17th International Congress of Speleology i 17th INTERNATIONAL CONGRESS OF SPELEOLOGY Sydney, NSW, Australia July 22–28, 2013 Proceedings VOLUME 1 Produced by the Organizing Committee of the 167th International Congress of Speleology. Published by the Australian Speleological Federation Inc and Speleo2017 in the co-operation with the International Union of Speleology. Design by Kevin Moore Layout by Kevin Moore Printed in Victoria Australia Te contributions were assisted with language and edited. Contributions express author(s) opinion. Recommended form of citation for this volume: Moore K., White S. (Eds), 2017. Proceedings of the 17th International Congress of Speleology, July 22–28, Sydney, NSW Australia Volume 1, Australian Speleological Federation Inc. Sydney. ISBN 978-0-9808060-5-2-07-6 © 2017 Australian Speleological Federation Inc, Tis work is licensed under Creative Commons Attribution ShareAlike International License (CC-BY-SA). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Individual Authors retain copyright over their work, while allowing the conference to place this unpub- lished work under a Creative Commons Attribution ShareAlike which allows others to freely access, use, and share the work, with an acknowledgement of the work’s authorship and its initial presentation at the 17th International Congress of Speleology, Sydney NSW Australia. Cover photo : Keir Vaughan-Taylor on Lake 2, Koonalda Cave, Nullarbor Plain. (Photo by Kevin Moore) Back Cover : Te Khan and Beagum in Kubla Khan Cave Tasmania (Photo by Garry K.
    [Show full text]
  • 09-Tucci-Morbidelli Et Al
    Per. Mineral. (2004), 73, 127-140 http://go.to/permin SPECIAL ISSUE 3: A showcase of the Italian research in applied petrology An International Journal of MINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY, ORE DEPOSITS, PETROLOGY, VOLCANOLOGY and applied topics on Environment, Archaeometry and Cultural Heritage «Apulian marbles» of the Ostuni District (south-eastern Murge, Apulia, Italy). Identification and characterisation of ancient quarries for archaeometric purposes PATRIZIA TUCCI* and PAOLA MORBIDELLI Dipartimento di Scienze della Terra, Università di Roma «La Sapienza», P.le A. Moro 5, 00185 Roma, Italy ABSTRACT. — The so-called «Apulian marbles» Melpignano) in the megabreccia (Maastrichtian- have been, and still are, widely used as both building Paleocene). and ornamental materials. The lithotypes exploited in antiquity in nine quarries identified in the Ostuni RIASSUNTO. — Come è noto, i cosiddetti «marmi district (South-Eastern Murge, Apulia, Italy) were pugliesi» sono stati e sono a tuttoggi largamente studied. This research aims at: i) characterising, utilizzati sia come materiale da costruzione che from minero-petrographic and geochemical points of come materiale ornamentale. Nel presente lavoro view, the outcropping lithotypes (this kind of study vengono studiati i litotipi anticamente coltivati in being scarce or lacking in literature); ii) attributing nove cave riconosciute nel distretto di Ostuni them to their geological formation of provenance; (Murge sud orientali, Puglia, Italia). Finalità della iii) furnishing a data-base for comparisons (features ricerca è caratterizzare dal punto di vista minero- of quarry materials), in order to solve archaeometric petrografico e geochimico i litotipi affioranti - problems related to the various archaeological sites essendo carenti e/o assenti in letteratura studi in tal and monuments occurring in South-Eastern Murge.
    [Show full text]
  • Mikrofosilne Zajednice Vršnog Dijela Formacije Gornji Humac Uvale Blaca, Otok Brač
    SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK ADRIANA VARGA MIKROFOSILNE ZAJEDNICE VRŠNOG DIJELA FORMACIJE GORNJI HUMAC UVALE BLACA, OTOK BRAČ Diplomski rad Zagreb, 2018. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK ADRIANA VARGA MIKROFOSILNE ZAJEDNICE VRŠNOG DIJELA FORMACIJE GORNJI HUMAC UVALE BLACA, OTOK BRAČ Diplomski rad predložen Geološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog stupnja magistra geologije Mentor: dr. sc. Blanka Cvetko Tešović, izv. prof. Zagreb, 2018. Ovaj diplomski rad je izrađen u sklopu diplomskog studija na smjeru geologija- paleontologija, pod vodstvom izv. prof. dr. sc. Blanke Cvetko Tešović, na Geološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu. ZAHVALE Zahvaljujem se mentorici izv. prof. dr. sc. Blanki Cvetko Tešović na stručnom vodstvu, savjetima, podršci, razumijevanju te velikoj pomoći prilikom izrade ovog rada. Zahvaljujem Robertu Košćalu na pomoći pri izradi geološkog stupa. Zahvale upućujem svim profesorima, asistentima i ostalim djelatnicima Geološkog odsjeka na prenesenom znanju i vještinama tijekom cjelokupnog studija. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek Diplomski rad MIKROFOSILNE ZAJEDNICE VRŠNOG DIJELA FORMACIJE GORNJI HUMAC UVALE BLACA, OTOK BRAČ Adriana Varga Rad je izrađen: Geološko-paleontološki zavod, Geološki odsjek, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Horvatovac 102a
    [Show full text]
  • Telmatosaurus and the Other Hadrosaurids of the Cretaceous European Archipelago
    0 Natura Nascosta Numero 39 Anno 2009 pp. 1-18 Figure 15 TELMATOSAURUS AND THE OTHER HADROSAUROIDS OF THE CRETACEOUS EUROPEAN ARCHIPELAGO. AN UPDATE. Fabio M. Dalla Vecchia Institut Català de Paleontologia (ICP), E-08193 Cerdanyola del Vallès, SPAIN and Museo della Rocca di Monfalcone – Sezione Paleontologica, I-34074 Monfalcone, ITALY Abstract – The paper “ Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An overview” published in Natura Nascosta on 2006 is updated. Obsolete information and wrong data are corrected to avoid future confusion. I opt now for a different, less inclusive definition of “hadrosaurid” (Hadrosauridae). The attribution of the whole hadrosauroid material found in the Maastrichtian of Transylvania (Romania) to a single species is considered doubtful and should be proved. Some problems regarding the hypodigm of Telmatosaurus transsylvanicus are evident after a study of the Nopcsa Collection in the Natural History Museum in London. The stratigraphy of the uppermost Cretaceous of northern Spain became clear after visiting the sites. Pararhabdodon has been recently reviewed and the new lambeosaurine Arenysaurus ardevoli was added to the short list of the European hadrosauroid species. Key words – Telmatosaurus transsylvanicus , European hadrosauroids, Ferenc Nopcsa, Maastrichtian. Introduction When three years ago I published the paper “ Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An overview”, I had not studied yet the Nopcsa Collection at the Natural History Museum in London. I had the chance to do it later, in the January 2007, thanks to a SYNTHESYS grant of the European Union for the project “ Study of the iguanodontian dinosaurs from the Late Cretaceous site of the Villaggio del Pescatore (Trieste, Italy) and comparison with the hadrosaurid material of the Nopcsa collection at the Natural History Museum ”.
    [Show full text]
  • Did Adria Rotate Relative to Africa?
    1 -TITLE PAGE- 2 3 4 Did Adria rotate relative to Africa? 5 6 7 DOUWE J.J. VAN HINSBERGEN1, MARILY MENSINK1, COR G. LANGEREIS1, MARCO MAFFIONE1, 8 LUIGI SPALLUTO2, MARCELLO TROPEANO2, AND LUISA SABATO2 9 10 1. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD 11 Utrecht, the Netherlands, 12 2. Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi "Aldo 13 Moro" di Bari, Via E. Orabona 4, 70125, Bari, Italy 14 15 Corresponding author: 16 Douwe van Hinsbergen: [email protected] 17 18 19 20 For: Solid Earth 21 1 22 Abstract 23 The first and foremost boundary condition for kinematic reconstructions of the 24 Mediterranean region is the relative motion between Africa and Eurasia, constrained 25 through reconstructions of the Atlantic Ocean. The Adria continental block is in a 26 downgoing plate position relative to the strongly curved Central Mediterranean subduction- 27 related orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides- 28 Hellenides. It is connected to the African plate through the Ionian Basin, likely with lower 29 Mesozoic oceanic lithosphere. If the relative motion of Adria versus Africa is known, its 30 position relative to Eurasia can be constrained through a plate circuit, thus allowing robust 52 Deleted: the 31 boundary conditions for the reconstruction of the complex kinematic history of the 53 Deleted: and hard 32 Mediterranean region. Based on kinematic reconstructions for the Neogene motion of Adria 54 Deleted: are obtained 33 versus Africa, as interpreted from the Alps and from the Ionian Basin and its surrounding 55 Deleted: Kinematic 56 Deleted: , 34 areas, it has been suggested that Adria underwent counterclockwise vertical axis rotations 57 Deleted: s, however, lead to scenarios 35 ranging from ~0 to 20°.
    [Show full text]
  • Detailed Conference Program
    “Sedimentology to face societal challenges on risk, resources and record of the past” Detailed Conference Program ISBN 978-88-944576-6-7 2 7-9 7-9 9 6-9 7-9 7-9 September Sept Sept Sept Sept Sept Sept Short Course Icebreaker Monday 2 A1 A2 A4 A5 A6 A8 10 Opening Plenary Registration Oral Lunch Oral Oral Poster September Ceremony lecture Coffee Coffee 8.30 - 9.00 11.30-12.30 12.30-13.30 13.30-15.00 15.30-17.00 17.00-19.00 Tuesday 9.00 - 10.00 10.00-11.00 11 Plenary Lunch Oral Oral Oral Oral Poster September Coffee lecture 12.30-13.30 Coffee 8.30-10.00 10.30-11-30 13.30-15.00 15.30-17.00 17.00-19.00 Wednesday 11.30-12.30 12 September IM1 IM2 IM3 IM4 IM6 IW1 IW1 IW1 Social Dinner Thursday 13 Plenary General Oral Oral Lunch Oral Poster September Coffee lecture Coffee Assembly 8.30-10.00 11.30-13.00 13.00 - 14.00 14.00-15.30 16.00-18.00 Friday 10.30 - 11.30 18.00-19.00 September B1 B2 B5 B7 Saturday 14-15 14-18 14-18 14-15 Sept Sept Sept Sept 13.10 Group photo in front of Earth Science Department Pre-meeting fi eld trip Intra-meeting fi eld trip Post-meeting fi eld trip Short course Half-a-da intra-meeting workshop Patronage of Patronage Index Meeting Activities Abstracts Plenary Lectures Speakers Plenary Lectures Session description,convener(s)andSKThours (oral,sessionkeynotetalks,poster) Guidelines forpresentation Timetable How toreach Accommodation Venue scientists(ECS) Activities forearlycareer La SapienzaMainCampusMap General andpracticalinformation andScientificCommittees Organizing Welcome GeoSed President’s Welcome Chair’s Congress Welcome I.A.S.
    [Show full text]
  • Did Adria Rotate Relative to Africa? Et Al
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Solid Earth Discuss., 6, 937–983, 2014 Open Access www.solid-earth-discuss.net/6/937/2014/ Solid Earth SED doi:10.5194/sed-6-937-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 6, 937–983, 2014 This discussion paper is/has been under review for the journal Solid Earth (SE). Did Adria rotate Please refer to the corresponding final paper in SE if available. relative to Africa? D. J. J. van Hinsbergen Did Adria rotate relative to Africa? et al. D. J. J. van Hinsbergen1, M. Mensink1, C. G. Langereis1, M. Maffione1, 2 2 2 L. Spalluto , M. Tropeano , and L. Sabato Title Page 1 Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Abstract Introduction Netherlands 2 Dipartimento di Scienze della Terra e Geoambientali, Universitá degli Studi “Aldo Moro” di Conclusions References Bari, Via E. Orabona 4, 70125, Bari, Italy Tables Figures Received: 17 March 2014 – Accepted: 18 March 2014 – Published: 28 March 2014 Correspondence to: D. J. J. van Hinsbergen ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 937 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract SED The first and foremost boundary condition for kinematic reconstructions of the Mediter- ranean region is the relative motion between Africa and Eurasia, constrained through 6, 937–983, 2014 reconstructions of the Atlantic Ocean. The Adria continental block is in a downgoing 5 plate position relative to the strongly curved Central Mediterranean subduction-related Did Adria rotate orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides- relative to Africa? Hellenides.
    [Show full text]