Introduction to Digital Circuits

Basic Logic Circuits The CMOS NOR Gate

 W   W    ≈ 2.5N   L   L  + VDD PMOS NMOS + VDD N= number of inputs

B B

Y = A + B Y = A + B

A A

1 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits The CMOS NAND Gate

 W  2.5  W    ≈    L PMOS N  L NMOS + VDD N= number of inputs

Y = A ⋅ B B

A

2 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Complex CMOS Gates

The pull-up and pull-down networks must have complementary Boolean functions. +VDD

Example function : A Pull-up network For the pull-up B PMOS devices Y Y = A ⋅ (B + C ⋅ D) Y

and its complement Pull-down For the pull-down A B network Y Y = A ⋅ (B + C ⋅ D) = A + B ⋅ (C + D) NMOS devices

A general CMOS . Both the pull-up and pull-down networks have the same inputs.

3 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Complex CMOS Gates

It can be shown that the pull-up and pull-down networks + of a complementary CMOS structure are dual networks. VDD (De Morgan) A = ⋅ + ⋅ Y A (B C D) A parallel connection of transistors in the pull-up B Pull-up network network corresponds to a series connection of the C corresponding devices in pull-down network, and vice versa.

D Pull-up network : Subnet CD has series connection − Y (C D) Subnet B has parallel connection with CD B (C − D) B Y = A + B ⋅ (C + D) Subnet A has series connection with A − (B (C − D)) Pull-down network previous parallel net A C D Pull-down network : Subnet CD has parallel connection (C D) Subnet B has series connection with CD (B − (C D)) Subnet A has parallel connection with A (B − (C D)) previous net

4 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Complex CMOS Gates

Example function : Y = B + A + VDD

Y = B + A = B ⋅ A Q1 Q3 Q4 A PU Y = B + A

B B B A Y Q1 Q2 Q3 Q4 Q5 Q6 PD PU Q5 0 0 1 ON OFF OFF ON OFF ON OFF ON PD OFF ON ON ON OFF OFF OFF ON A 0 1 1 A Q2 Q6 1 0 0 ON OFF OFF OFF ON ON ON OFF 1 1 1 OFF ON ON OFF ON OFF OFF ON

PU=Pull-up PD=Pull-down

5 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Transmission Gate

Parallel connected NMOS and PMOS transistor, controlled by the C and comlement of C respectively.

C NMOS

A S D B PMOS C C A B

C

6 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Transmission Gate

Assumption: C = -1- v = V (1) V (1) G1 C NMOS v = V (0) G1 G2 V (1) A B If A = -1- = V(1) S D G2 ⇒ vGS1 = V (1)− V (1) = 0 NMOS is cutoff C PMOS V (0) vGS2 = V (1)− V (0) > VTO PMOS conducts V (1) NMOS If A = -0- = V(0) C G1 V (0) ⇒ vGS1 = V (1)− V (0) > VTO NMOS conducts A S D B v = V (0)− V (0) = 0 PMOS is cutoff GS2 G2 C PMOS V (0)

7 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Transmission Gate

V (0) NMOS Assumption: C = -0- vG1 = V (0) C G1 vG2 = V (1) V (1) A S D B If A = -1- = V(1) G2 C = ( )− ( ) < NMOS is cutoff PMOS ⇒ vGS1 V 0 V 1 0 V (1)

vGS2 = V (1)− V (1) = 0 PMOS is cutoff V (0) C NMOS If A = -0- = V(0) V (0) G1 v = V (0)− V (0) = 0 ⇒ GS1 NMOS is cutoff A S D B G2 V (0) < V (1) ⇒ vS2 < vG2 PMOS is cutoff C PMOS V (1)

8 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Transmission Gate

A = B when C = −1 − Example of two-input multiplexer = ⋅ + ⋅ C F (A S B S) A 1 A B F v B 0 o S C Transmission gates S +VDD A

S vo B S

9 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Families

HC High-speed CMOS - for example 74HC30 AHC Advanced High-speed CMOS - for example 74AHC30 HCT High-speed CMOS, TTL compatible AHCT Advanced High-speed CMOS, TTL compatible - for example 74AHCT30

AUC Advanced Ultra-low-voltage CMOS : 0.8-2.5V Product Life Cycle CBT LV AHC LVC 3.3V GTLP HC VME CD4000 ALVC Little Logic ACL AVC FCT CBTLV TVC CB3x PCA/PCF 1.8V AUC AUP LVCxT AUP1T AVCxT Introduction Growth Maturity Decline Obsolescence

10 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits CMOS Families

From book : Digital Design With CMOS load John F. Wakerly V = 4.5 − 5V CC HC AHC HCT AHCT

VILmax 1.35V 1.35V 0.8V 0.8V IImax = ±1µA with any Vin

VIH min 3.85V 3.85V 2.0V 2.0V

IOLmax 0.02mA 0.05mA 0.02mA 0.05mA "Power-supply Standards" VOLmax 0.1V 0.1V 0.1V 0.1V 5V 3.3±0.3V I -20µA -50µA -20µA -50µA 2.5±0.2V OH max 1.8±0.15V V 4.4V 1.5±0.1V OH min 4.4V 4.4V 4.4V 1.2±0.1V An example of input- and output specifications for CMOS families : HC, AHC and AHCT.

11 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode logic -transistor logic (DTL) Transistor-transistor logic (TTL) Emitter-coupled logic (ECL) BiCMOS logic

12 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode Logic AND gate

+ VCC Inputs Output

0 0 0 0 1 0 1 0 0 1 1 1 A Y

Truth table : AND gate B If diode gates are cascaded, the gate needs transistor amplifier to restore logic levels.

GND

13 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode Logic OR gate

A Y

B

GND

14 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

Assumptions :

Cut-in voltages :

Vγ = 0.5V for transistor

Vγ = 0.6V for diode 5V + VCC RC Transistor voltages : R1 (5kΩ) (2.2kΩ) Y V = 0.7V A BE( on ) IB P D1 D2 IC = B VBE( sat ) 0.8V B C I1 I2 VCE( sat ) = 0.2V E R2 (5kΩ) V (0 ) = VCE( sat ) = 0.2V

V (1) = VCC = 5.0V

NO output load

15 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

One input, C, is V(0) Other : don't care ⇒

VP = VCE( sat ) + 0.7V = 0.9V + VCC 5V ⇒ RC R1 (5kΩ) 2.2kΩ) Y VP < 0.7V + 0.7V = 1.4V A IB P D1 D2 IC ⇒ B B C I1 I2 D1 and D2 are cutoff E 0.2V R2 VBE = 0V < Vγ = 0.5V (5kΩ) ⇒ Transistor is cutoff

Y = V (1) = VCC = 5.0V

16 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

Inputs A, B and C are V(1) 5V + VCC

RC ⇒ All three input diodes are cutoff R1 (5kΩ) 2.2kΩ) Y A IB ⇒ VP = 0.7V + 0.7V + VBE( sat ) = 2.2V P D1 D2 IC B B C I1 I2 ⇒ E 5.0V R2 (5kΩ) All three input diodes are reverse biased, VD = -2.8V

VCC − VP 5V − 2.2V If current gain is high enough, the transistor I1 = = = 0.560mA is saturated. R1 5kΩ ⇒ Y = V (0 ) = VCE( sat ) = 0.2V V 0.8V BE( sat ) − I2 = = = 0.160mA VCC VCE( sat ) Ω IC( sat ) = = 2.182mA R2 5k 2.2kΩ I ⇒ I = I − I = 400µA C( sat ) B 1 2 β F (min) = = 5.46 ⇒ Transistor is saturated. 400µA 17 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

Assumption : Diode D1 is removed

⇒ Input C is V(0) = 0.2V + ⇒ VP = 0.2V + 0.7V = 0.9V 5V VCC RC R1 (5kΩ) 2.2kΩ) ⇒ VBE = 0.9V − 0.6V = 0.3V Y A IB P D2 IC VBE < Vγ = 0.5V B B C I1 I2 ⇒ Transistor is cutoff E 0.2V R2 (5kΩ)

NO output load

NM Vγ − VBE = 0.2V ⇒ Noise marginal L is low, because of missing diode D1

18 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

Ouput is loaded by the standard load.

Inputs A, B and C are V(1)

V (1) + 5V ⇒ Y = V (0) = VCE(sat) = 0.2V VCC 5V RC R1 (5kΩ) 0.2V (2.2kΩ) 5kΩ I Y P B A I B A 0.9V P D1 D2 IC B Input current I (Standard Load N=1) B C I1 I2 I E V − V 5V − 0.9V R2 I I = CC P = = 0.820mA (5kΩ) 5kΩ 5kΩ N=1 equal inputs DTL NAND gate

If we assume that VCE(sat) is independent of collector current ⇒ IC = IC(sat) + NI = 2.182mA + N ×0.82mA

19 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Diode-Transistor Logic DTL NAND gate

Output is loaded by the N standard load.

Assumption : V (1) + VCC 5V 5V β F (min) = 30 RC R1 (5kΩ) 0.2V (2.2kΩ) 5kΩ I ⇒ Y P B A I B A P D1 D2 IC B IC = β F (min) I B = 30 × 400µA = 12mA B C I1 I2 I E R2 I IC = IC( sat ) + NI = 12mA (5kΩ) N equal inputs = 2.182mA + N ×0.82mA DTL NAND gate ⇒

N =11 Fan Out

20 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Schotky transistor

Transition time

Saturation mode forward active cut off mode

Transition time of BJT is long because of storage time of minority-carriers

The Schottky transistor is used in digital circuits to increase switching speed. collector base TTL families 74Sxx 74LSxx emitter 74ALSxx

21 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Transistor-Transistor Logic TTL NAND gate

One input is V(0) vi = 0.2V Other : don't care

Multiple-emitter transistor Q1 Transistor Q1 is saturated (V = 0.2V) CE +V ⇒ CC 5V Input diodes R1 R2 VP = 0.2V + 0.2V = 0.4V (4kΩ) (5kΩ) RC Q1 (4kΩ) P ⇒ Q2 Y A Transistors Q2 and Q3 are cut off. B Q3 ⇒ C B E Unloaded output voltage is : 0.2V R3 (1kΩ) D1 D2 Y = V (1) = VCC = 5.0V TTL NAND gate

22 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Transistor-Transistor Logic TTL NAND gate

Inputs A, B and C are V(1) + ⇒ V (1) VCC 5V Emitters of Q1 is reverse biased and R2 collector-base junction is forward-biased. R1 (4kΩ) (5kΩ) RC ⇒ Q1 (4kΩ) P Transistor Q1 works in the inverted mode Q2 Y A B ⇒ Q3 C B Transistors Q2 and Q3 are saturated. E R3 ⇒ (1kΩ) Unloaded ouput voltage is :

Y = V (0) = VCE(sat) = 0.2V

To increasing speed :

We replace the passive pull-up resistor RC by an active pull-up circuit. 23 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Transistor-Transistor Logic TTL NAND gate with totem-pole output

To increasing speed

+VCC 5V

We replace the passive pull-up resistor RC by an active pull-up circuit. 1.4kΩ 100Ω

B4 1.0V Q4 Totem-pole output 5V 4kΩ 0.8V E4 Q1 DO Q2 Y = 0.2V Inputs A, B and C are V(1) A B2 0.2V Y B C E2 Q3 B3 CL Transistors Q2 and Q3 are saturated 1kΩ 0.8V E3 Q4 is cut off mode

Diode DO keeps Q4 in cut off mode when output Y is V(0) = 0.2V

24 ©Loberg INTRODUCTION TO DIGITAL CIRCUITS

Basic Logic Circuits Bipolar Logic

Transistor-Transistor Logic

Floating input V(1) +5V

A Y B

A Y B <300Ω Unused inputs must be tied up or down. Noise !

TTL gate

25 ©Loberg The End

26