A Review of Stuart Kauffman's a World Beyond Physics and Its Parallel

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Stuart Kauffman's a World Beyond Physics and Its Parallel Available online at https://jps.library.utoronto.ca/index.php/nexj Visit our blog at newexplorations.net Vol 1 № 1 (Spring 2020) A Review of Stuart Kauffman’s A World Beyond Physics and Its Parallel with McLuhan’s Reversal of Cause and Effect. Robert K. Logan University of Toronto ABSTRACT A review of Stuart Kauffman’s A World Beyond Physics is made and its parallels with McLuhan’s reversal of cause and effect is made. KEYWORDS: McLuhan; physics; enablement; general systems; extensions of man; media; technology; tool Robert K. Logan [email protected] 2 New Explorations: Studies in Culture & Communication In A World Beyond Physics, Stuart Kauffman (2019, 10) critiques the “physics-based view of the world” and the notion that physics can ultimately explain all phenomena of the universe including biology and cognition. He wrote, Brilliant physicist Steven Weinberg voiced the physicist thoughts: (1) the explanatory arrow always points downwards from social systems to people to organs to cells, to biochemistry to chemistry and finally physics; (2) the more we know of the universe, he wrote, the more meaningless it appears (ibid.). Kauffman (2019, 12-13) states that Weinberg is categorically wrong and points out, “One thing missing in the world according to physics is the crucial idea of agency… Given agency, meaning exists in the universe.” He then asks "How did the universe get from matter to mattering? In the meaningless, numb universe of Weinberg, where does mattering come from?” Mattering, in Kauffman’s play on words, is simply meaning or information and information is about the informing of a living agent that is able to propagate its organization. Physics has no explanation of agency or an agent capable of propagating its organization. A living agent to create and propagate its organization must be able to take energy from its environment and convert it into work which requires constraints. The constraint of the cylinder in an automobile engine that directs the energy of the gasoline air mixture explosion to push against the piston and hence do work is an example of the necessity of constraints to do work. In a paper entitled Propagating Organization: An Enquiry (Kauffman, Logan, et al. 2007) we argued that the constraints are information and hence possess meaning or meaningfulness. According to Kauffman, this ability for a system to self-organize in such a way as to propagate its organization is the extra ingredient that cannot be explained by physics. Kauffman (2019, 5) invokes the notion of the propagation of organization to explain how “the biosphere has become complex with teeming diversity since its origin on the earth 3.7 billion years ago.” He points out that each living self-propagating system or Review of Kauffman’s A World Beyond Physics3 organism enables other living self-propagating systems or organisms to come into being. Kauffman (2019, 107) suggests that, Each species affords one or more adjacent possible new niches for yet new species, which so expands what now becomes possible… each species also affords adjacent possible… new niches that invite the next new species… new niches expand faster than the species that create them. Thus, each new species that emerges enables still other new species to emerge, a process which Kauffman (2019, 117) describes as ‘enablement’ rather than ‘cause.’ “All of the niche creation of which we speak in this open-ended evolution is enablement not cause.” As a media ecologist I particularly enjoyed the way in which Kauffman expanded the notion of enablement, niche creation and teeming diversity in his treatment of the evolution of biological species and then applied it to the evolution of technology in the epilogue to his book entitled The Evolution of the Economy. He suggested that once again as was the case with living species that each technology creates a new niche that enables the emergence of still newer technologies. He applies this idea to the way in which mainframe computers enabled personal computers, and in turn enabled word processing, the modem, the Internet, the Web, and Amazon. There are many other examples of the existence of one technology enabling others. The Newcomen steam engine enabled the Watt steam engine which in turn enabled the steam boat and the steam locomotive. The Watt steam engine enabled the internal combustion engine. The internal combustion engine plus the carriage originally powered by the horse enabled the automobile, which explains why the very first automobiles came equipped with a buggy whip holder. 4 New Explorations: Studies in Culture & Communication While not suggesting a causal connection, I see a parallel between Kauffman’s notion of enablement and McLuhan’s notion of the reversal of cause and effect and the evolution of technology. For example, McLuhan evokes the reversal of cause and effect when he suggested that the effect of the telegraph was the cause of the telephone. I believe that McLuhan’s observation would be better formulated using Kauffman’s notion of enablement to say that the invention of the telegraph enabled the emergence of the telephone rather than caused the telephone. By the way, McLuhan first developed the notion of the reversal of cause and effect when explaining that the artist always starts with an effect he or she wants to create and then looks for the causes that will create that effect. He therefore concluded that effects precede causes and then applied this notion to the evolution of technology. Kauffman’s notion of enablement is closely related to his notion of niche construction. The way in which a species enables another species to come into existence is by creating a niche in which the new species comes into existence. The examples of the above two paragraphs can be reformulated in terms of niche construction rather than enablement. Mainframe computers created the niche in which personal computers emerged, which in turn created the niche in which word processing, the modem, the Internet, the Web, and Amazon, one by one emerged. Expanding on Kauffman’s suggestion of biological species, technologies and economies enabling a teeming diversity in their respective domains, let me suggest that perhaps the same dynamics applies to the evolution of ideas. Is it possible that McLuhan’s idea of the reversal of cause and effect created a niche for or enabled Kauffman’s notion of niche creation and enablement? Both Kauffman and McLuhan were influenced by Ludwig von Bertalanffy the founder and originator of general systems theory who describes his general systems theory as follows: Review of Kauffman’s A World Beyond Physics5 General system theory… is a general science of wholeness... The meaning of the somewhat mystical expression, “The whole is more than the sum of its parts” is simply that constitutive characteristics are not explainable from the characteristics of the isolated parts. The characteristics of the complex, therefore, appear as new or emergent (http://www.nwlink.com/~donclark/history_isd/bertalanffy.html, accessed Dec. 26, 2019). Both Kauffman and McLuhan incorporated general systems thinking in their work. Kauffman’s notion of autocatalysis as the origin of life explicitly incorporates Bertalanffy’s general systems approach. McLuhan who developed an ecological approach to the interaction of media and their users was an avid reader of Bertalanffy’s books and corresponded with him. Bertalanffy in turn was a fan of McLuhan. Bertalanffy was the link between Kauffman and McLuhan and perhaps explains the connection between Kauffman’s enablement and McLuhan’s reversal of cause and effect. I had the good fortune to work with both of these intellectual giants. In the article “Propagating Organization: An Enquiry (Kauffman, Logan, Este, Goebel, Hobill & Shmulevich 2008)” we claimed that Constraints are information and information is constraints. The first part of this twosome, constraints are information is, we believe, secure. The second part, information is constraints, may be more problematic (ibid.). 6 New Explorations: Studies in Culture & Communication The idea that constraints are the information, instructional or biotic information, was first formulated in a conversation I had Kauffman when he asked me how cells were able to do the work to build constraints that allowed them to convert external energy from their environment into work if the constraints that are required to turn energy into work did not exist at first. I told Stuart that it was a chicken and egg problem and that I could not answer his question but that I believed that the constraints are the information, which I came up with by channeling Marshall McLuhan and his notion that ‘the medium is the message’. I saw the constraints that allowed energy to become work as a medium and the information that are the constraints became the message and therefore the medium (i.e. the constraint) is the message (i.e. the information) became the constraint is the information. Here is an example of what Kauffman called enablement. McLuhan’s notion of “the medium is the message” enabled us to formulated the notion that the constraints are the information. The lesson from this little episode is that Kauffman’s notion that biological species enable new living organisms to come into existence and McLuhan’s notion that technologies enable new technologies to come into existence can be generalized to obtain the notion that ideas enable new ideas to come into existence. Stuart Kauffman’s A World Beyond Physics is a book full of ideas that stimulates and enhances new ideas. I therefore can highly recommend that you read Stuart Kauffman’s new book as it will enable all kinds of new ideas for you as it did for me. It will also make you want to read some of Kauffman’s other books if you have not already done so.
Recommended publications
  • THE PAST of a DELUSION by Warren Sturgis Mcculloch
    Winter-Edition 2007 THE PAST OF A DELUSION by Warren Sturgis McCulloch Englisch Deutsch Editorial Editorial By Joachim Paul, editor of von Joachim Paul, Hrsg.: www.vordenker.de www.vordenker.de To make Warren McCulloch's essay Den aus dem Jahr 1953 stammenden Aufsatz "THE PAST OF A DELUSION" from the "THE PAST OF A DELUSION" von Warren year 1953 now available in a German McCulloch als Arbeitstext auch in deutscher translation is in need to be explained. Sprache zugänglich zu machen, bedarf einer erläuternden Anmerkung. Undoubtedly Warren Sturgis McCulloch Warren Sturgis McCulloch ist unbestritten is one of the leading scientists of the einer der wichtigsten Wissenschaftler des 20. 20th century. His influence ranges from Jahrhunderts. Sein Einfluß reicht von den the early days of the Macy-Conferences frühen Tagen der Macy-Konferenzen über das over MIT and Biological Computer Lab in MIT und das Biological Computer Lab in Urbana, Illinois to the foundation of the Urbana, Illinois, bis hin zur Gründung des renowned "Santa Fe Institute for renommierten "Santa Fe Institute for Sciences Sciences of Complexity", where one of of Complexity", zu dessen bekannteren Mitar- the more prominent collaborators was beitern der Mediziner, Biochemiker und Biophy- the physician, biochemist and biophysi- siker Stuart Kauffman gehörte, zeitweilig ein cist Stuart Kauffman, a temporary Schüler McCullochs. 1927 bis 1934, bevor disciple of McCulloch. Before McCulloch McCulloch, einer der Väter von Kybernetik und returned to the academic world and Neuroinformatik,
    [Show full text]
  • The Cybernetic Brain
    THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3.
    [Show full text]
  • 42 LS08 Abstracts
    42 LS08 Abstracts IP0 plasticity, whereas a breakdown in trafficking appears to be Public Lecture: Reinventing the Sacred: Science, a contributory factor to a number of neurodegenerative dis- Faith and Complexity eases associated with memory loss including Alzheimer’s. I propose to discuss three topics. Several alternative the- ories and experimental work bear on the origin of molecu- Paul C. Bressloff lar reproduction (here we at least think we know what we University of Utah are talking about). Second, we discuss agency, the capac- Department of Mathematics ity of organisms to act on their own behalf, hence doing bressloff@math.utah.edu (here molecular reproduction causes value to enter the bio- sphere). Third, I discuss the evolution of the biosphere by Darwinian preadaptations, which, I believe, is partially IP2 beyond natural law. On the first topic I will discuss the Magnetic Resonance Elastography classical view that life must be based on template repli- cated DNA, RNA or their cousins, the RNA world, the Many disease processes such as cancer cause profound membrane-cell first world, my own work on the emergence changes in the mechanical properties of tissues, yet none of collectively autocatalytic sets of organic molecules and of the conventional medical imaging techniques such as polymers, experimental evidence for collectively autocat- CT, MRI, and ultrasound are capable of delineating this alytic sets of DNA and peptide sequences, and our own and property. Magnetic Resonance Elastography (MRE) is an other workers’ evidence that random peptides fold, at least emerging diagnostic imaging technology that uses a special to molten globules, hence may well have catalytic activity.
    [Show full text]
  • Against Biopoetics
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Against biopoetics: on the use and misuse of the concept of evolution in contemporary literary theory Bradley Bankston Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the English Language and Literature Commons Recommended Citation Bankston, Bradley, "Against biopoetics: on the use and misuse of the concept of evolution in contemporary literary theory" (2004). LSU Doctoral Dissertations. 1703. https://digitalcommons.lsu.edu/gradschool_dissertations/1703 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AGAINST BIOPOETICS: ON THE USE AND MISUSE OF THE CONCEPT OF EVOLUTION IN CONTEMPORARY LITERARY THEORY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of English By Bradley Bankston B.A., New College, 1990 M.A., Louisiana State University, 1999 May 2004 Table of Contents Abstract................................................iii Introduction..............................................1 Part I: Evolutionary Psychology
    [Show full text]
  • Exploring the Science of Complexity: Ideas and Implications for Development and Humanitarian Efforts
    Overseas Development Institute Exploring the science of complexity: Ideas and implications for development and humanitarian efforts Ben Ramalingam and Harry Jones with Toussaint Reba and John Young Foreword by Robert Chambers Working Paper 285 Results of ODI research presented in preliminary form for discussion and critical comment Working Paper 285 Exploring the science of complexity Ideas and implications for development and humanitarian efforts Second Edition Ben Ramalingam and Harry Jones with Toussainte Reba and John Young Foreword by Robert Chambers October 2008 Overseas Development Institute 111 Westminster Bridge Road London SE7 1JD ISBN 978 0 85003 864 4 © Overseas Development Institute 2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publishers. ii Contents Foreword by Robert Chambers vii Executive summary viii Introduction viii Key concepts of complexity science viii Conclusions viii 1. Introduction 1 1.1 Aims and overview of the paper 1 1.2 Background: The RAPID programme and the focus on change 2 2. Putting complexity sciences into context 4 2.1 Origins 4 2.2 Applications in the social, political and economic realms 5 3. Concepts used in complexity sciences and their implications for development and humanitarian policy and practice 8 3.1 Unpacking complexity science: Key concepts and implications for international aid 8 3.2
    [Show full text]
  • Multilevel Ensemble Explanations: a Case from Theoretical Biology
    Multilevel Ensemble Explanations: A Case from Theoretical Biology Luca Rivelli University of Padua, Philosophy Department (FISPPA) I analyze a well-known argument by Stuart Kauffman about complex sys- tems and evolution to show it contains a hierarchy of non-mechanistic, non- causal explanations—which I would call, following Kauffman, “ensemble explanations”—quite closely resembling the explanations of the structural kind proposed in Huneman (2017), but lacking their absolute mathemat- ical certainty, being based on results of non-exhaustive computer simulations. In Kauffman’s core argument ensemble explanations form an explanatory chain along a hierarchy of levels, where each explanans at one level gets itself recursively explained at the lower level. Explanations at adjacent levels turn out to be related not by mereological containment as in a multi- level mechanistic explanation, but by an analog to the relationship between two specifications at different levels of a specification/implementation hierar- chy as understood by computer science. A mechanistic explanation grounds the whole hierarchy enabling the explanatory chain. Interestingly, the pre- liminary production of ensemble explanations enables the multilevel mecha- nistic explanations of systems manifesting what Bedau (1997) defines as weak emergence. 1. Introduction In this paper I will reconstruct and analyze a famous argument by Stuart Kauffman about complex systems and evolution, in order to highlight the use in theoretical biology of a kind of non-mechanistic and non-causal explanation which I propose to call, following Kauffman, ensemble expla- nation. The aim is to contribute to the ongoing philosophical debate about non-causal explanations in the special sciences, kinds of explanation apparently extraneous to the received causal-mechanistic view.
    [Show full text]
  • The Unfinished Project of Theoretical Biology from a Schellingian Perspective
    Swinburne Research Bank http://researchbank.swinburne.edu.au Author: Gare, A. Title: Overcoming the Newtonian paradigm: the unfinished project of theoretical biology from a Schellingian perspective Year: 2013 Journal: Progress in Biophysics and Molecular Biology Volume: 113 Issue: 1 Pages: 5-24 URL: http://doi.org/10.1016/j.pbiomolbio.2013.03.002 Copyright: Copyright © 2013 Elsevier Ltd. This is the author’s version of the work, posted here with the permission of the publisher for your personal use. No further distribution is permitted. You may also be able to access the published version from your library. The definitive version is available at: http://www.sciencedirect.com/ Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au Powered by TCPDF (www.tcpdf.org) ACCEPTED MANUSCRIPT 1 Overcoming the Newtonian paradigm: The unfinished project of theoretical biology from a Schellingian perspective Arran Gare* Philosophy, Faculty of Life and Social Sciences, Swinburne University, Melbourne, Australia Keywords: Reductionism; Emergence; Epigenesis; Biosemiotics; Relational biology; Teleology; Biomathics ABSTRACT: Defending Robert Rosen’s claim that in every confrontation between physics and biology it is physics that has always had to give ground, it is shown that many of the most important advances in mathematics and physics over the last two centuries have followed from Schelling’s demand for a new physics that could make the emergence of life intelligible. Consequently, while reductionism prevails in biology, many biophysicists are resolutely anti-reductionist. This history is used to identify and defend a fragmented but progressive tradition of anti-reductionist biomathematics. It is shown that the mathematico-physico-chemico morphology research program, the biosemiotics movement, and the relational biology of Rosen, although they have developed independently of each other, are built on and advance this anti-reductionist tradition of thought.
    [Show full text]
  • Comments to “Investigations” by Stuart Kauffman
    Comments to “Investigations” by Stuart Kauffman Carlos Gershenson Warning: This is not a review of Kauffman’s book (read it!), only sparse informal comments. “Investigations” is a great book. It is a huge step in bringing closer biology and physics, the so called “soft” and “hard” sciences. Not because it is able to reduce biology to physics. Quite the opposite. It argues for the need of new laws for understanding biospheres, but nevertheless related to the physical laws. It is just that living organisms have properties that systems which can be studied with classical physics lack. Mainly the fact that living organisms change their environment. Therefore it is difficult (tending to silly) to study them as isolated systems... Moreover, the classic way of studying systems (initial conditions, boundary conditions, laws, and compute away1) falls too short when studying systems which change their own boundaries and environment. Classical physics always assumes “anything else being equal”... but with living organisms, not anything keeps being equal! Once we begin to observe living systems as open, we see that they affect each other’s fitness. As Kauffman notes, living organisms co-construct each other, their niches, and their search procedures (e.g. sexual reproduction as a way of exploring new genetic combinations). Not only organisms and species are selected according to their fitness, since the fitness landscapes of different species affect each other. But probably also we can speak about selection of fitness landscapes, since those which are more easily searchable by a particular method (mutation, recombination) will have an advantage. But then, the search methods will be selected accordingly to the current fitness landscapes.
    [Show full text]
  • Deconstruction, Theoretical Biology, and the Creative Universe As We H
    Chapter Three--1 Chapter Three “There Is No World”: Deconstruction, Theoretical Biology, and the Creative Universe As we have noted in the previous two chapters, much ink has been spilled on questions of “epistemology” and “phenomenology” in relation to Stevens’ poetry and poetics. In the next two chapters—and in this one in particular--I want to lay the foundations for what would be, in a different context, an extensive undertaking: to show how the epistemological and phenomenological questions in Stevens’ poetry are actually better understood if they are reframed in terms of a reconceptualization of ecological poetics that is available to us by means of a cross-conjugation of theoretical biology and post- structuralist thought (my example will be deconstruction, though it need not be limited to that in the larger project to which I have just gestured). The emphasis here, as I have already insisted, is a non- representationalist understanding of poeisis: whether we are talking about the poiesis of “life” and the evolution of the biosphere in theoretical biology, or the poiesis of worlding and world-making in deconstruction, or the poiesis of Stevens’ poetic practice. Part of my motivation is that deconstruction has been considered less relevant than other approaches to the kinds of questions around “life” and ecology that I will be pursuing. Martin Hägglund has noted, for example, that “the revival of `life’ as a central category during the last decade of continental philosophy” has led to the downgrading of deconstruction “in the name
    [Show full text]
  • Emergence, Intelligent Design, and Artificial Intelligence
    Emergence, Intelligent Design, and Artificial Intelligence Eric Scott, Andrews University 23 February, 2011 Abstract We consider the implications of emergent complexity and compu- tational simulations for the Intelligent Design movement. We discuss genetic variation and natural selection as an optimization process, and equate irreducible complexity as defined by William Dembski with the problem of local optima. We disregard the argument that method- ological naturalism bars science from investigating design hypotheses in nature a priori, but conclude that systems with low Kolmogorov complexity but a high apparent complexity, such as the Mandelbrot set, require that such hypotheses be approached with an high degree of skepticism. Finally, we suggest that computer simulations of evolu- tionary processes may be considered a laboratory to test our detailed, mechanistic understandings of evolution. 1 Introduction \Die allgemeine Form des Satzes ist: Es verh¨altsich so und so." { Das ist ein Satz von jener Art, die man sich unz¨ahlige Male wiederholt. Man glaubt, wieder and wieder der Natur nachz- ufahren, und f¨ahrtnur der Form entlang, durch die wir sie betra- chten. \The general form of propositions is: This is how things are." { That is the kind of proposition one repeats to himself countless times. One thinks that one is tracing nature over and over again, and one is merely tracing round the frame through which we look at it. { Ludwig Wittgenstein1 The origin of life's immense complexity and adaptability is tantalizing in at least two respects: 1) We want to understand where we and our world came from, and 2) We want to imitate nature in our engineering projects.
    [Show full text]
  • System Science D
    System Science D. L. Hysell Earth and Atmospheric Sciences Cornell University June, 2011 definition There is no universal definition of \system science." People seem to have trouble defining \system science" without using the term \system." Is \system science" whatever people say it is? What do we say? 2 / 20 practice The Department of at invites applications for an Assistant Professor in the area of extreme weather under climate change. ... The incumbent could take an Earth system approach to the subject, emphasizing the interactions of atmospheric, oceanic, and land-surface processes in responding to forcing from the climate system ... 1 1An actual position announcement 3 / 20 Earth System Science \Given the concerns that humankind is impacting the earth's physical climate system, a broader concept of the earth as a system is emerging. Within this concept, knowledge from the traditional earth science disciplines of geology, meteorology and oceanography along with biology is being gleaned and integrated to form a physical basis for Earth System Science. The broader concept of Earth System Science has also come to include societal dimensions and the recognition that humanity plays an ever increasing role in global change." \The Earth System Science concept fosters synthesis and the development of a holistic model in which disciplinary process and action lead to synergistic interdisciplinary relevance." 2 2Johnson, D. R., et al., What is Earth System Science?, Proceedings of the 1997 International Geoscience and Remote Sensing Symposium, Singapore, August 4 - 8, 1997, pp 688 - 691 4 / 20 science education \The Earth system is often represented by interlinking and interacting \spheres" of processes and phenomena.
    [Show full text]
  • Propagating Organization: an Enquiry
    1 Propagating Organization: An Enquiry May 3 , 2006 - Toronto draft 36BLSK Stuart Kauffman Institute for Biocomplexity and Informatics, University of Calgary Robert K. Logan Department of Physics, University of Toronto Institute for Biocomplexity and Informatics, University of Calgary Robert Este, Institute for Biocomplexity and Informatics, University of Calgary Randy Goebel Department of Computer Science, University of Alberta David Hobill Department of Physics and Astronomy, University of Calgary Ilya Shmulevich Institute of Systems Biology, Seattle Washington Abstract It is obvious that information is both created and communicated within the process comprising biological evolution, and that the systematic reductionist analysis of component parts has provided much scientific insight about Darwin's grand theory. For example, the combined work of biologists, physicists, and chemists has provided our understanding of DNA as a 2 significant foundation for the "gemmules" that Darwin and his contemporaries sought as the explanation for the evolution of the biotic universe. Here we seek a non-reductionist explanation for the synthesis, accumulation, and propagation of information, which we hope will provide some insight into both the biotic and abiotic universe, in terms of the basic work cycle energy, work, information creation and the propagation of organization. The idea is to combine ideas from biology, physics, and computer science, to formulate explanatory hypotheses on how information can be captured and rendered in the expected physical manifestation, which can then propagate the organization of process in the expected biological work cycle to create the diversity in our observable biosphere. Our study is far from complete, but our progress places fundamental perspectives on information in context, to help focus the challenge of possible explanatory hypotheses and possibly the first steps to developing a theory of the organization of process.
    [Show full text]