The Unfinished Project of Theoretical Biology from a Schellingian Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nicolas Rashevsky's Mathematical Biophysics
Journal of the History of Biology 37: 333–385, 2004. 333 Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. Nicolas Rashevsky’s Mathematical Biophysics TARA H. ABRAHAM Max Planck Institute for the History of Science Wilhelmstrae 44 10117 Berlin Germany E-mail: [email protected] Abstract. This paper explores the work of Nicolas Rashevsky, a Russian e´ migre´ the- oretical physicist who developed a program in ‘‘mathematical biophysics’’ at the Uni- versity of Chicago during the 1930s. Stressing the complexity of many biological phenomena, Rashevsky argued that the methods of theoretical physics – namely mathematics – were needed to ‘‘simplify’’ complex biological processes such as cell division and nerve conduction. A maverick of sorts, Rashevsky was a conspicuous figure in the biological community during the 1930s and early 1940s: he participated in several Cold Spring Harbor symposia and received several years of funding from the Rockefeller Foundation. However, in contrast to many other physicists who moved into biology, Rashevsky’s work was almost entirely theoretical, and he eventually faced resistance to his mathematical methods. Through an examination of the conceptual, institutional, and scientific context of Rashevsky’s work, this paper seeks to understand some of the reasons behind this resistance. Keywords: Mathematical biology, Neurophysiology, Nicolas Rashevsky, Physiology, Rockefeller Foundation, Theory, University of Chicago, Warren Weaver Introduction The migration of physicists into the biological sciences during the early 20th century has been a topic of interest in the history and philosophy of biology, with associated issues of the disciplinary authority of physics, the autonomy of biology, and the reduction of biological phenomena to physical terms.1 Most often, these migrations 1 The relationship between physics and biology has occupied Anglo-American phi- losophers of science in the 20th century, as they inherited a set of questions posed by logical positivists during the 1930s. -
Reading the World, Writing the Mind: Ideology, Morphogenesis, Revolution
READING THE WORLD, WRITING THE MIND: IDEOLOGY, MORPHOGENESIS, REVOLUTION by Philip Edmond Olsen A Thesis Submitted to the Faculty of The Wilkes Honors College in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences with a Concentration in Philosophy Wilkes Honors College of Florida Atlantic University Jupiter, Florida May 2014 READING THE WORLD, WRITING THE MIND: IDEOLOGY, MORPHOGENESIS, REVOLUTION by Philip Edmond Olsen This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Daniel White, and has been approved by the members of her/his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences. SUPERVISORY COMMITTEE: ____________________________ Dr. Daniel White ____________________________ Dr. Michael Harrawood ______________________________ Dean Jeffrey Buller, Wilkes Honors College ___________ Date ii ACKNOWLEDGMENTS I would like to thank my thesis advisor, Dr. Daniel White, for his insight, conversation, and encouragement. I would also like to thank Dr. Michael Harrawood for giving me a lot of books and talking about philosophy with me. Finally, I would like to thank Calvin Bankert, John Carney, Alexa Robinson, Janeen Smith, and Daniel Zengotita for talking to me about things. It all helped. iii ABSTRACT Author: Philip Edmond Olsen Title: Reading the World, Writing the Mind: Ideology, Morphogenesis, Revolution Institution: Wilkes Honors College of Florida Atlantic University Thesis Advisor: Dr. Daniel White Degree: Bachelor of Arts in Liberal Arts and Sciences Concentration: Philosophy Year: 2014 In the 1960s, the French Communist thinker Louis Althusser undertook to reorient capitalistic societies toward realizing socialist ideals. -
Terms for Talking About Information and Communication
Information 2012, 3, 351-371; doi:10.3390/info3030351 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Concept Paper Terms for Talking about Information and Communication Corey Anton School of Communications, Grand Valley State University, 210 Lake Superior Hall, Allendale, MI 49401, USA; E-Mail: [email protected]; Tel.: +1-616-331-3668; Fax: +1-616-331-2700 Received: 4 June 2012; in revised form: 17 August 2012 / Accepted: 20 August 2012 / Published: 27 August 2012 Abstract: This paper offers terms for talking about information and how it relates to both matter-energy and communication, by: (1) Identifying three different levels of signs: Index, based in contiguity, icon, based in similarity, and symbol, based in convention; (2) examining three kinds of coding: Analogic differences, which deal with positive quantities having contiguous and continuous values, and digital distinctions, which include “either/or functions”, discrete values, and capacities for negation, decontextualization, and abstract concept-transfer, and finally, iconic coding, which incorporates both analogic differences and digital distinctions; and (3) differentiating between “information theoretic” orientations (which deal with data, what is “given as meaningful” according to selections and combinations within “contexts of choice”) and “communication theoretic” ones (which deal with capta, what is “taken as meaningful” according to various “choices of context”). Finally, a brief envoi reflects on how information broadly construed relates to probability and entropy. Keywords: sign; index; icon; symbol; coding; context; information; communication “If you have an apple and I have an apple and we exchange apples then you and I will still each have one apple. -
THE PAST of a DELUSION by Warren Sturgis Mcculloch
Winter-Edition 2007 THE PAST OF A DELUSION by Warren Sturgis McCulloch Englisch Deutsch Editorial Editorial By Joachim Paul, editor of von Joachim Paul, Hrsg.: www.vordenker.de www.vordenker.de To make Warren McCulloch's essay Den aus dem Jahr 1953 stammenden Aufsatz "THE PAST OF A DELUSION" from the "THE PAST OF A DELUSION" von Warren year 1953 now available in a German McCulloch als Arbeitstext auch in deutscher translation is in need to be explained. Sprache zugänglich zu machen, bedarf einer erläuternden Anmerkung. Undoubtedly Warren Sturgis McCulloch Warren Sturgis McCulloch ist unbestritten is one of the leading scientists of the einer der wichtigsten Wissenschaftler des 20. 20th century. His influence ranges from Jahrhunderts. Sein Einfluß reicht von den the early days of the Macy-Conferences frühen Tagen der Macy-Konferenzen über das over MIT and Biological Computer Lab in MIT und das Biological Computer Lab in Urbana, Illinois to the foundation of the Urbana, Illinois, bis hin zur Gründung des renowned "Santa Fe Institute for renommierten "Santa Fe Institute for Sciences Sciences of Complexity", where one of of Complexity", zu dessen bekannteren Mitar- the more prominent collaborators was beitern der Mediziner, Biochemiker und Biophy- the physician, biochemist and biophysi- siker Stuart Kauffman gehörte, zeitweilig ein cist Stuart Kauffman, a temporary Schüler McCullochs. 1927 bis 1934, bevor disciple of McCulloch. Before McCulloch McCulloch, einer der Väter von Kybernetik und returned to the academic world and Neuroinformatik, -
Outsiders As Innovators in the Life Sciences
Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 12-1-2006 Outsiders as Innovators in the Life Sciences Michael Dietrich Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael, "Outsiders as Innovators in the Life Sciences" (2006). Open Dartmouth: Published works by Dartmouth faculty. 34. https://digitalcommons.dartmouth.edu/facoa/34 This Book Chapter is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. oren harman & michael r. dietrich introduction outsiders as innovators in the life sciences introduction Both intellectually and institutionally, the life sciences oc- cupy a fascinating middle ground between the physical and exact sciences, on the one hand, and the social sciences and humanities on the other. If biology were an animal, it would be a duck- billed platypus— something that appears chimeric, yet is fully rooted in its own historical lineage of accumu- lating adaptations, tinkering, and change. Like that strange aquatic mammal, “half bird, half beast,”1 its features point to its origins and ecol ogy. Biology as a science has come into being as a patchwork, assuming its present visage as a consequence of myriad interactions between diff erent traditions of knowledge, method, and phi- losophy while maintaining an overarching quest for understanding of the natural world. -
From L'homme Machine to Metabolic Closure Steps Towards
Journal of Theoretical Biology 286 (2011) 100–113 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi 50th Anniversary Year Review From L’Homme Machine to metabolic closure: Steps towards understanding life Juan-Carlos Letelier a, Marı´a Luz Ca´rdenas b, Athel Cornish-Bowden b,Ã a Departamento de Biologı´a, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile b Unite´ de Bioe´nerge´tique et Inge´nierie des Prote´ines, Centre National de la Recherche Scientifique, 31 chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France article info abstract Available online 12 July 2011 The nature of life has been a topic of interest from the earliest of times, and efforts to explain it in Keywords: mechanistic terms date at least from the 18th century. However, the impressive development of Origin of life molecular biology since the 1950s has tended to have the question put on one side while biologists (M,R) systems explore mechanisms in greater and greater detail, with the result that studies of life as such have been Autopoiesis confined to a rather small group of researchers who have ignored one another’s work almost Chemoton completely, often using quite different terminology to present very similar ideas. Central among these Self-organization ideas is that of closure, which implies that all of the catalysts needed for an organism to stay alive must be produced by the organism itself, relying on nothing apart from food (and hence chemical energy) from outside. The theories that embody this idea to a greater or less degree are known by a variety of names, including (M,R) systems, autopoiesis, the chemoton, the hypercycle, symbiosis, autocatalytic sets, sysers and RAF sets. -
THE INTELLECTUAL ORIGINS of the Mcculloch
JHBS—WILEY RIGHT BATCH Top of ID Journal of the History of the Behavioral Sciences, Vol. 38(1), 3–25 Winter 2002 ᭧ 2002 John Wiley & Sons, Inc. (PHYSIO)LOGICAL CIRCUITS: THE INTELLECTUAL ORIGINS OF THE Base of 1st McCULLOCH–PITTS NEURAL NETWORKS line of ART TARA H. ABRAHAM This article examines the intellectual and institutional factors that contributed to the col- laboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Historians and scientists alike often refer to the McCulloch–Pitts paper as a landmark event in the history of cybernetics, and funda- mental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch–Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Al- though they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch– Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena. ᭧ 2002 John Wiley & Sons, Inc. -
SMB Newsletter Volume 23 #2 - May 2010
SMB Newsletter Volume 23 #2 - May 2010 Inside this Issue: Letter from President.......................................................................................................................................2 2010 SIAM Great Lakes conference on Modeling and Numerical PDEs in Mathematical Biology..............3 VCU/NHLBI Spring 2010 Conference........................................................................................................4-5 African Society for Biomathematics Inaugural Conference........................................................................6-7 Nicolas Rashevsky...........................................................................................................................................7 Systems approaches in immunology: advances and challenges in multi-scale modeling...........................8-9 My Career in Math Biology: Leon Glass.................................................................................................10-11 First International Workshop “Mathematical Methods in Systems Biology”..........................................12-13 Center and Institute Updates....................................................................................................................14-15 Dynamical Systems Applied to Biology and Natural Science................................................................16-17 Positions Available..................................................................................................................................17-19 SMB 2010 Updates....................................................................................................................................20 -
Mathematical Biology, an Interdisciplinary Future
Quarterly newsletter Last quarter 2014 / First quarter 2015 CSIC - UAM - UC3M - UCM EDITORIAL Mathematical Biology, an interdisciplinary future Mathematical Biology is a scientific field devoted to the study networks in epidemiology requires ideas belonging to graph theory; of biological processes using mathematical techniques. It is an combinatorial algebra is applied to systems control in ecology; the area where the interests of biologists and mathematicians mainly topological branch of knot theory describes the way in which a DNA converge, and to a lesser extent those of researchers from other molecule is configured; research into molecular genetics requires branches of knowledge. certain stochastic processes (Markov chains and processes, branching processes, Brownian motion, diffusion processes); Monte Carlo It is without doubt an attractive field that is now on the rise. It has Markov chains and numerical methods based on the theory of large progressed rapidly during the last two decades and has modified deviations are found in the simulation of rare events in biological the controversial, historical relation between experimental science, models; linear and nonlinear models in neurobiology employ Biology, and Mathematics, the latter being characterized by its deterministic and stochastic partial differential equations; in addition, degree of abstraction. Traditionally, biologists have not disguised measured or sampled data lead to goodness of fit and estimation their mistrust in the contributions made by mathematicians, on the procedures in statistics. grounds that the level of complexity of living beings could not be translated into terms provided by a handful of equations. At present, Computational advances in recent decades and the development of the close interaction between professionals belonging to both fields new numerical methods have enabled the diverse challenges faced has made these equations into a mathematical synthesis capable of encapsulating the essential aspects of a biological reality while leaving other superficial considerations aside. -
What Is Systems Theory?
What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A. -
Computer Simulation of Neural Networks Using Spreadsheets: the Dawn of the Age of Camelot
Педагогiка вищої та середньої школи 2019. Випуск 51. C. 159–191 УДК 004.94:37.091.39 Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot Serhiy O. Semerikov1[0000−0003−0789−0272], Illia O. Teplytskyi1, Yuliia V. Yechkalo2[0000−0002−0164−8365] and Arnold E. Kiv3 1 Kryvyi Rih State Pedagogical University, 54, Gagarina Ave., Kryvyi Rih, 50086, Ukraine [email protected] 2 State Institution of Higher Education “Kryvyi Rih National University”, 11, Vitali Matusevich St., Kryvyi Rih, 50027, Ukraine [email protected] 3 Ben-Gurion University of the Negev, Beer Sheba, Israel [email protected] Abstract. The article substantiates the necessity to develop training methods of computer simulation of neural networks in the spreadsheet environment. The systematic review of their application to simulating artificial neural networks is performed. The authors distinguish basic approaches to solving the problem of network computer simulation training in the spreadsheet environment, joint application of spreadsheets and tools of neural network simulation, application of third-party add-ins to spreadsheets, development of macros using the embedded languages of spreadsheets; use of standard spreadsheet add-ins for non-linear optimization, creation of neural networks in the spreadsheet environment without add-ins and macros. After analyzing a collection of writings of 1890–1950, the research determines the role of the scientific journal “Bulletin of Mathematical Biophysics”, its founder Nicolas Rashevsky and the scientific community around the journal in creating and developing models and methods of computational neuroscience. There are identified psychophysical basics of creating neural networks, mathematical foundations of neural computing and methods of neuroengineering (image recognition, in particular). -
The Cybernetic Brain
THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3.