List & Label Preview File

Total Page:16

File Type:pdf, Size:1020Kb

List & Label Preview File L I N A R I S I n f o r m a t i o n B I O L O G I S C H E P R O D U K T E PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. Mouse Anti-Cardiolipin Ig's -ve control for ELISA 1 ml ADI-5502 IgG Mouse 0,5 mg ADI-AMPT11-M-500 Anti-Cardiolipin Ig's +ve control for ELISA polyclonal Mouse 1 ml ADI-5503 CD27 PE (Armenian Hamster IgG1) Hamster 50 tests ADI-MCD027-PE Monoclonal Anti-VSV-G-Cy conjugate for Mouse 0,1 mg ADI-VSV11-Cy Immunofluorescence Interleukin-4 IgG Mouse 0,1 mg ADI-AB-10710 Anti-Myelin Oligodendrocyte Glycoprotein IgG Mouse 0,1 mg ADI-AB-19910 CD160 mAb, PE, , (mouse IgG2bk) Mouse 50 tests ADI-MCD160-PE CD81, Purified (mouse IgG1) Mouse 0,1 mg ADI-MCD081-UL Interleukin-2 receptor IgG Rat 0,1 mg ADI-AB-10310 Interleukin-2 IgG Rat 0,1 mg ADI-AB-10510 Interleukin-4 IgG Rat 0,1 mg ADI-AB-10810 Interleukin-10 IgG Rat 0,1 mg ADI-AB-11310 Interleukin-12p40 IgG Rat 0,1 mg ADI-AB-11410 CTLA-4 IgG Rat 0,1 mg ADI-AB-11610 CD80 IgG Rat 0,1 mg ADI-AB-13310 CD11a IgG Rat 0,1 mg ADI-AB-13510 CD11b-FITC IgG Rat 0,1 mg ADI-AB-13610 B220 IgG Rat 0,1 mg ADI-AB-13910 CD90 Thy-1.1 IgG Rat 0,1 mg ADI-AB-14010 CD90 Thy-1.2 IgG Rat 0,1 mg ADI-AB-14110 CD90 Thy-1 IgG Rat 0,1 mg ADI-AB-14210 CD4 IgG Rat 0,1 mg ADI-AB-16510 IFN-gamma IgG Rat 0,1 mg ADI-AB-16610 CD3 IgG Rat 0,1 mg ADI-AB-17510 Interleukin-12p75 IgG Rat 0,1 mg ADI-AB-20910 CD8b , PE-Cy5 (Clone CT-CD8b) (rat IgG2a) Rat 50 tests ADI-MCD008B-PC5 CD45RB, PE-Cy5 (rat IgG2a) Rat 50 tests ADI-MCD045RB-PC5 CD94, PE, (clone Rat 50 tests ADI-MCD094-PE CD134L/OX40L, PE (rat IgG1) Rat 50 tests ADI-MCD134L-PE CD147, PE (rat IgG1) Rat 50 tests ADI-MCD147-PE CD157, PE (Rat IgG2c) Rat 50 tests ADI-MCD157-PE CD200, PE (rat IgG2a) Rat 50 tests ADI-MCD200-PE CD200R, PE (rat IgG2a) Rat 50 tests ADI-MCD200R-PE C-Reactive Protein IgG-biotin conjugate polyclonal Rabbit 0,05 ml ADI-CRP26-BTN CD3e, Biotin (hamster IgG) Hamster 100 tests ADI-MCD003E-B CD3e, FITC (hamster IgG) Hamster 100 tests ADI-MCD003E-F CD3z, Biotin (hamster IgG) Hamster 100 tests ADI-MCD003Z-B CD3z, FITC (hamster IgG) Hamster 100 tests ADI-MCD003Z-F CD3z, PE (hamster IgG) Hamster 100 tests ADI-MCD003Z-PE CD27 Biotin (Armenian Hamster IgG1) Hamster 100 tests ADI-MCD027-B CD120b , PE (Clone TR75-54.7) (hamster IgG) Hamster 100 tests ADI-MCD120b-PE CD27 FITC (Armenian Hamster IgG1) Hamster 50 tests ADI-MCD027-F CD5 , Biotin (Clone CG16) (mouse IgG2b) Mouse 100 tests ADI-MCD005-B LINARIS Biologische Produkte GmbH · Frankenweg 18 · D-69221 Dossenheim Telefon: ++ 49 (0) 621 / 400677-0 · Telefax: ++ 49 (0) 621 / 400677-19 Bank: Volksbank Kraichgau eG, BLZ 672 922 00, Konto 333 633 03 · E-Mail: [email protected] · Internet: http://www.linaris.de Page 1 Amtsgericht Mannheim, HRB-Nr. 711070 · Geschäftsführer/CEO Dr. Peter HARBARTH, Dr. Steffen ROTH L I N A R I S B I O L O G I S C H E P R O D U K T E I n f o r m a t i o n PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. CD5 , FITC (Clone CG16) (mouse IgG2b) Mouse 100 tests ADI-MCD005-F CD5 , PE (Clone CG16) (mouse IgG2b) Mouse 100 tests ADI-MCD005-PE CD11a, Biotin (mouse IgG2a) Mouse 100 tests ADI-MCD011A-B CD11a, FITC (mouse IgG2a) Mouse 100 tests ADI-MCD011A-F CD11a, PE (mouse IgG2a) Mouse 100 tests ADI-MCD011A-PE CD160 mAb, Biotin, , (mouse IgG2bk) Mouse 100 tests ADI-MCD160-B CD72.1, Biotin (mouse IgG2a) Mouse 100 tests ADI-MCD072-B CD72.1, FITC (mouse IgG2a) Mouse 100 tests ADI-MCD072-F CD72.1, PE (mouse IgG2a) Mouse 100 tests ADI-MCD072-PE CD160 mAb, FITC, , (mouse IgG2bk) Mouse 50 tests ADI-MCD160-F Rat CD81, Biotin (mouse IgG1) Mouse 100 tests ADI-MCD081-B CD81, FITC (mouse IgG1) Mouse 100 tests ADI-MCD081-F CD81, PE (mouse IgG1) Mouse 100 tests ADI-MCD081-PE CD4 Biotin (rat IgG2a) Rat 100 tests ADI-MCD004-B CD4 FITC (rat IgG2a) Rat 100 tests ADI-MCD004-F CD4 PE (rat IgG2a) Rat 100 tests ADI-MCD004-PE CD8b , Biotin (Clone CT-CD8b) (rat IgG2a) Rat 100 tests ADI-MCD008B-B CD8b , FITC (Clone CT-CD8b) (rat IgG2a) Rat 100 tests ADI-MCD008B-F CD8b , PE (Clone CT-CD8b) (rat IgG2a) Rat 100 tests ADI-MCD008B-PE CD11b , Biotin (rat IgG2b) Rat 100 tests ADI-MCD011B-B CD11b, FITC (rat IgG2b) Rat 100 tests ADI-MCD011B-F CD11b, PE (rat IgG2b) Rat 100 tests ADI-MCD011B-PE CD25 , Biotin (rat IgG1) Rat 100 tests ADI-MCD025-B CD25 , FITC (rat IgG1) Rat 100 tests ADI-MCD025-F CD25 , PE (rat IgG1) Rat 100 tests ADI-MCD025-PE CD32/CD16, Biotin (rat IgG2a) Rat 100 tests ADI-MCD03216-B CD32/CD16, FITC (rat IgG2a) Rat 100 tests ADI-MCD03216-F CD34, Biotin (rat IgG2a) Rat 100 tests ADI-MCD034-B CD34, FITC (rat IgG2a) Rat 100 tests ADI-MCD034-F CD34, PE (rat IgG2a) Rat 100 tests ADI-MCD034-PE CD40 , Biotin (rat IgG2a) Rat 100 tests ADI-MCD040-B CD40, PE (rat IgG2b) Rat 100 tests ADI-MCD040-PE CD44, Biotin (rat IgG2a) Rat 100 tests ADI-MCD044-B CD44, FITC (rat IgG2a) Rat 100 tests ADI-MCD044-F CD44, PE (rat IgG2a) Rat 100 tests ADI-MCD044-PE CD45, Biotin (rat IgG1) Rat 100 tests ADI-MCD045-B CD45, FITC (rat IgG1) Rat 100 tests ADI-MCD045-F CD45, PE (rat IgG1) Rat 100 tests ADI-MCD045-PE CD45R , Biotin (Clone RA3-6B2) (rat IgG2a) Rat 100 tests ADI-MCD045R-B CD45RB, Biotin (rat IgG2a) Rat 100 tests ADI-MCD045RB-B CD45RB, FITC (rat IgG2a) Rat 100 tests ADI-MCD045RB-F CD45RB, PE (rat IgG2a) Rat 100 tests ADI-MCD045RB-PE CD45RC, Biotin (rat IgG1) Rat 100 tests ADI-MCD045RC-B CD45RC, FITC (rat IgG1) Rat 100 tests ADI-MCD045RC-F CD45RC, PE (rat IgG1) Rat 100 tests ADI-MCD045RC-PE LINARIS Biologische Produkte GmbH · Frankenweg 18 · D-69221 Dossenheim Telefon: ++ 49 (0) 621 / 400677-0 · Telefax: ++ 49 (0) 621 / 400677-19 Page 2 Bank: Volksbank Kraichgau eG, BLZ 672 922 00, Konto 333 633 03 · E-Mail: [email protected] · Internet: http://www.linaris.de Amtsgericht Mannheim, HRB-Nr. 711070 · Geschäftsführer/CEO Dr. Peter HARBARTH, Dr. Steffen ROTH L I N A R I S I n f o r m a t i o n B I O L O G I S C H E P R O D U K T E PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. CD45R , FITC (Clone RA3-6B2) (rat IgG2a) Rat 100 tests ADI-MCD045R-F CD45R , PE (Clone RA3-6B2) (rat IgG2a) Rat 100 tests ADI-MCD045R-PE CD62L, Biotin (rat IgG2a) Rat 100 tests ADI-MCD062L-B CD62L, FITC (rat IgG2a) Rat 100 tests ADI-MCD062L-F CD62L, PE (rat IgG2a) Rat 100 tests ADI-MCD062L-PE CD80 , PE (rat IgG2a) Rat 100 tests ADI-MCD080-PE CD86, PE (rat IgG2a) Rat 100 tests ADI-MCD086-PE CD90, Biotin (rat IgG1) Rat 100 tests ADI-MCD0902-B CD90, FITC (rat IgG1) Rat 100 tests ADI-MCD0902-F CD90, PE (rat IgG1) Rat 100 tests ADI-MCD0902-PE CD117 , Biotin (rat IgG2a) Rat 100 tests ADI-MCD117-B CD117 , FITC (rat IgG2a) Rat 100 tests ADI-MCD117-F CD117 , PE (rat IgG2a) Rat 100 tests ADI-MCD117-PE CD120a , PE (Clone HM104) (rat IgG2a) Rat 100 tests ADI-MCD120A-PE CD134, Biotin (rat IgG1) Rat 100 tests ADI-MCD134-B CD134, FITC (rat IgG1) Rat 100 tests ADI-MCD134-F CD134L/OX40L, Biotin (rat IgG1) Rat 100 tests ADI-MCD134L-B CD134, PE (rat IgG1) Rat 100 tests ADI-MCD134-PE CD147, Biotin (rat IgG1) Rat 100 tests ADI-MCD147-B CD200, Biotin (rat IgG2a) Rat 100 tests ADI-MCD200-B CD200R, Biotin (rat IgG2a) Rat 100 tests ADI-MCD200R-B CD8a Biotin (Clone CT-CD8a) (rat IgG2a) Rat 100 tests ADI-MCD008A-B CD8a FITC (Clone CT-CD8a) (rat IgG2a) Rat 100 tests ADI-MCD008A-F CD49d, Biotin (rat IgG2b) Rat 100 tests ADI-MCD049D-B CD49d, FITC (rat IgG2b) Rat 100 tests ADI-MCD049D-F CD49d, PE (rat IgG2b) Rat 100 tests ADI-MCD049D-PE CD4 Pur. Low Endotoxin (rat IgG2b) Rat 0,1 mg ADI-MCD004-ML CD25 , Pur. Low Endotoxin (rat IgG1) Rat 0,1 mg ADI-MCD025-ML CD4 APC (rat IgG2a) Rat 50 tests ADI-MCD004-APC CD8b , APC (Clone CT-CD8b) (rat IgG2a) Rat 50 tests ADI-MCD008B-APC CD94, FITC, (clone Rat 50 tests ADI-MCD094-F CD134L/OX40L, FITC (rat IgG1) Rat 50 tests ADI-MCD134L-F CD147, FITC (rat IgG1) Rat 50 tests ADI-MCD147-F CD200, FITC (rat IgG2a) Rat 50 tests ADI-MCD200-F CD200R, FITC (rat IgG2a) Rat 50 tests ADI-MCD200R-F CD8a APC (Clone CT-CD8a) (rat IgG2a) Rat 50 tests ADI-MCD008A-APC CD226, FITC, (clone Rat 50 tests ADI-MCD226-F Checkpoint kinase 1 .
Recommended publications
  • Interactions of Zinc with the Intestinal Epithelium - Effects On
    Aus dem Institut für Veterinär-Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Interactions of zinc with the intestinal epithelium - effects on transport properties and zinc homeostasis Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien U niversität Berlin vorgelegt von Eva-Maria Näser, geb. Gefeller Tierärztin aus Kassel Berlin 2015 Journal-Nr.: 3813 Gefördert durch die Deutsche Forschungsgemeinschaft und die H.W. Schaumann Stiftung Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Jörg Rudolf Aschenbach Zweiter Gutachter: Prof. Dr. Holger Martens Dritter Gutachter: Prof. Dr. Robert Klopfleisch Deskriptoren (nach CAB-Thesaurus): pigs, weaning, zinc, intestines, epithelium, jejunum, ion transport Tag der Promotion: 15.09.2015 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-656-2 Zugl.: Berlin, Freie Univ., Diss., 2015 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law.
    [Show full text]
  • ( 12 ) United States Patent
    US007459539B2 ( 12) United States Patent ( 10 ) Patent No. : US 7 , 459 ,539 B2 Challita - Eid et al. (45 ) Date of Patent: Dec. 2 , 2008 ( 54 ) ANTIBODY THAT BINDS ZINC WO WO 03050236 6 / 2003 TRANSPORTER PROTEIN 108P5H8 ( 75 ) Inventors : Pia M . Challita - Eid , Encino , CA (US ) ; OTHER PUBLICATIONS Mary Faris , Los Angeles , CA (US ) ; Murgia et al . Cloning, expression , and vesicular localization of zinc Daniel E . H . Afar , Brisbane , CA (US ) ; transporter Dri 27 /ZnT4 in intestinal tissue and cells . Am J Physiol Rene S . Hubert , Los Angeles , CA (US ) ; 277 (Gastrointest Liver Physiol 40 ) : G1231 -61239 , 1999 . * Steve Chappell Mitchell, Gurnee , IL Kaufman et al. Blood 9 : 3178 -3184 , 1999 . * (US ) ; Elana Levin , Los Angeles, CA Wang et al . Rapid analysis of gene expression (RAGE ) facilitates (US ) ; Karen Jane Meyrick Morrison , universal expression profiling . Nucleic Acids Res 27 (23 ) : 4609 4618 , 1999 . * Santa Monica , CA (US ) ; Arthur B . Campbell et al. Totipotency of multipotentiality of cultured cells : Raitano , Los Angeles , CA (US ) ; Aya applications and progress . Theriogenology 47 : 63 -72 , 1997 . * Jakobovits , Beverly Hills , CA (US ) Moore , G . Genetically engineered antibodies. Clin Chem 35 ( 9 ) : 1849 - 1853 , 1989 . * (73 ) Assignee : Agensys, Inc ., Santa Monica , CA (US ) Dillman et al .Monoclonal antibodies in the treatment ofmalignancy : basic concepts and recent developments . Cancer Invest 19 ( 8 ) : 833 ( * ) Notice: Subject to any disclaimer, the term of this 841, 2001. * patent is extended or adjusted under 35 Skolnick et al. From genes to protein structure and function : novel U . S . C . 154 ( b ) by 1273 days . applications of computational approaches in the genomic era .
    [Show full text]
  • Clinical Study Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex
    Neuron, Vol. 28, 53±67, October, 2000, Copyright 2000 by Cell Press Molecular Characterization of Clinical Study Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex Ka roly Mirnics,*³§ Frank A. Middleton,* pus, superior temporal gyrus, and thalamus, appear to Adriana Marquez,* David A. Lewis,² be disturbed in this disorder (Harrison, 1999; McCarley and Pat Levitt*³ et al., 1999). In particular, a convergence of observations *Department of Neurobiology from clinical, neuroimaging, and postmortem studies ² Departments of Psychiatry and Neuroscience have implicated the dorsal prefrontal cortex (PFC) as a ³ PittArray major locus of dysfunction in schizophrenia (Weinberger University of Pittsburgh School of Medicine et al., 1986; Selemon et al., 1995; Andreasen et al., 1997; Pittsburgh, Pennsylvania 15261 Bertolino et al., 2000). Abnormal PFC function probably contributes to many of the cognitive disturbances in schizophrenia and appears to be related to altered syn- aptic structure and/or function in this cortical region. Summary For example, in subjects with schizophrenia, reductions in gray matter volume in the dorsal PFC have been ob- Microarray expression profiling of prefrontal cortex served in neuroimaging studies (Goldstein et al., 1999; from matched pairs of schizophrenic and control sub- Sanfilipo et al., 2000), and these volumetric changes jects and hierarchical data analysis revealed that tran- are associated with an increase in cell packing density scripts encoding proteins involved in the regulation (Selemon et al., 1995, 1998; Lewis and Lieberman, 2000) of presynaptic function (PSYN) were decreased in all but no change in total neuron number in the PFC (Pak- subjects with schizophrenia. Genes of the PSYN group kenberg, 1993).
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]
  • Monoacylglycerol As a Metabolic Coupling Factor in Glucose-Stimulated Insulin Secretion
    Université de Montréal Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion par Shangang Zhao Département de Biochimie Faculté de Médecine Mémoire présentée à la Faculté des Etudes Supérieures en vue de l’obtention du grade de maître ès sciences en Biochimie Décembre 2010 © Shangang Zhao, 2010 Université de Montréal Faculté des études supérieures Ce mémoire intitulée : Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion Présenté par : Shangang Zhao a été évaluée par un jury composé des personnes suivantes: Dr Tony Antakly, président-rapporteur Dr Marc Prentki, directeur de recherche Dr Ashok K. Srivastava, membre du jury i Résumé Les cellules beta pancréatiques sécrètent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrôlé par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminés (leucine et glutamine) ou les acides gras potentialisent la sécrétion d’insuline. Une sécrétion d’insuline insuffisante au besoin du corps déclanche le diabète. Le rôle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sécrétion d’insuline est bien connu. Bien que le mécanisme exact de la potentialisation de la sécrétion d’insuline par les lipides est inconnu, le cycle Glycérolipides/Acides gras (GL/FFA) et son segment lipolytique ont été reconnu comme un composant essentiel de la potentialisation lipidique de la sécrétion d’insuline. Le diacylglycérol, provenant de la lipolyse, a été proposé comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycérides et des diacylglycérides a été démontrée essentielle pour la sécrétion d’insuline stimulée par le glucose, en suggérant un rôle du monoacylglycérol (MAG) dans ce processus.
    [Show full text]
  • Maestra En Ciencias Biológicas
    UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA Programa institucional de Maestría en Ciencias Biológicas “Identificación de genes asociados a la síntesis de magnetita en la tortuga negra Chelonia agassizii.” TESIS QUE PARA OBTENER EL GRADO DE: Maestra en Ciencias Biológicas PRESENTA: Biol. María Guadalupe Rodríguez Jiménez Directora de Tesis: Dra. Alma Lilia Fuentes Farías Co-director: Dr. Jesús Campos García Morelia, Michoacán. Marzo del 2014 1 AGRADECIMIENTOS A Dios por darme la dicha de tener una hermosa familia, a mis padres y hermanos por todo el apoyo incondicional durante todos estos años y por haber compartido conmigo momentos inolvidables. A la Dra. Alma Lilia Fuentes Farías y al Dr. Gabriel Gutiérrez Ospina por darme el espacio y la oportunidad de integrarme a su equipo de trabajo, por todo el apoyo brindado y el esfuerzo dedicado al proyecto durante todo este tiempo. Al Dr. Jesús Campos García por recibirme en su Laboratorio de Biotecnología Microbiana en el IIQB, por las horas incansables de trabajo y esfuerzo dedicado al proyecto. Al Dr. Alejandro Bravo Patiño y a la Dra. Esperanza Meléndez Herrera, por sus valiosos comentarios y sugerencias que sin duda enriquecieron de manera sustancial al trabajo. A la M.C. Alma Laura Díaz Pérez, por el apoyo brindado, sus valiosas aportaciones y sugerencias durante la fase experimental. Al Dr. Jesús Ramírez Santos, por las sugerencias y el apoyo técnico brindado durante el proyecto. Al Dr. Irvin Jácome y al Dr. Víctor Meza por el apoyo brindado en la fase de expresión de genes en el trabajo. A todos mis amigos, compañeros de laboratorio por su apoyo y compañía.
    [Show full text]
  • Supplemental Data
    Article TCF7L2 is a master regulator of insulin production and processing ZHOU, Yuedan, et al. Abstract Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of [...] Reference ZHOU, Yuedan, et al. TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, vol. 23, no. 24, p. 6419-6431 DOI : 10.1093/hmg/ddu359 PMID : 25015099 Available at: http://archive-ouverte.unige.ch/unige:45177 Disclaimer: layout of this document may differ from the published
    [Show full text]
  • Roles of the Plant Cell Wall in Powdery Mildew Disease
    Roles of the plant cell wall in powdery mildew disease resistance in Arabidopsis thaliana: PMR5 (POWDERY MILDEW RESISTANT 5) affects the acetylation of cell wall pectin By Candice Cherk Lim A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Shauna Somerville, Chair Professor Patricia Zambryski Associate Professor Mary Wildermuth Professor James Berger Spring 2013 Abstract Roles of the plant cell wall in powdery mildew disease resistance in Arabidopsis thaliana: PMR5 (POWDERY MILDEW RESISTANT 5) affects the acetylation of cell wall pectin by Candice Cherk Lim Doctor of Philosophy in Plant Biology University of California, Berkeley Professor Shauna Somerville, Chair The pmr5 (powdery mildew resistant 5) mutant was found in a screen for genes involved in susceptibility to Golovinomyces cichoracearum, a biotrophic pathogen that infects Arabidopsis. PMR5 is a member of the TBL (TRICHOME BIREFRINGENCE LIKE) family, which is composed of 46 functionally uncharacterized plant-specific proteins. Initial characterization of this mutant showed that pmr5-mediated disease resistance acts independently of the salicylic acid, jasmonic acid, and ethylene signal transduction pathways, and that there are changes in the pmr5 cell wall that may be linked to the gain of resistance in the mutant. Specifically, PMR5 may be affecting cell wall pectin by acetylation. Characterization of the pmr5 cell wall has revealed changes in pectin composition and a decrease in acetylation. This is corroborated by the ability of heterologously expressed PMR5 protein to bind to pectin, with decreased binding affinity to acetylated pectin.
    [Show full text]
  • ANALYSIS of GENE PATHWAYS INVOLVED in DCIS PROGRESSION in RESPONSE to ACIDIC EXTRACELLULAR Ph Neha Aggarwal1, Jennifer Rothberg2, Robert J
    ANALYSIS OF GENE PATHWAYS INVOLVED IN DCIS PROGRESSION IN RESPONSE TO ACIDIC EXTRACELLULAR pH Neha Aggarwal1, Jennifer Rothberg2, Robert J. Gillies3 and Bonnie F. Sloane4 & Douglas Yingst 1Department of Physiology, 2Cancer Biology Program, and 4Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201; 3H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602 Breast cancer is the most commonly diagnosed cancer in women in USA and has a high mortality rate, second only to lung cancer. About 85% of total 63300 new cases of breast cancer are predicted to be ductal carcinoma in situ (DCIS) in 2012. We are interested in identifying markers that are predictive of changes that occur in the breast microenvironment as a result of the presence of premalignant lesions such as DCIS that are poised to develop into breast cancer. A critical barrier to cancer progression is its ability to survive in the acidic microenvironment characteristic of breast cancer. As the breast is comprised of different cell types, we performed gene expression analysis using Affymetrix gene chip HG U133 plus 2.0 array of 3 DCIS cell lines grown in 3D at neutral and acidic pH. We then computed the significantly changed genes at acidic pH for three DCIS cell lines and found 6 common and 121 similar genes. IPA core analysis of these genes revealed the interferon-signaling (IFN) pathway to be significantly altered. STAT1 was one key transcription factor that was upregulated and that might be driving downstream signaling as a response to acidic microenvironment. We are validating some of the downstream targets of the IFN pathway using qPCR.
    [Show full text]
  • SLC39A14 Gene Solute Carrier Family 39 Member 14
    SLC39A14 gene solute carrier family 39 member 14 Normal Function The SLC39A14 gene provides instructions for making a protein that transports the element manganese across cell membranes. Manganese is important for many cellular functions, but large amounts are toxic, particularly to brain cells. The SLC39A14 protein is found in the membranes surrounding several types of cells, as well as in the membranes of structures within these cells. The protein is thought to transport excess manganese from the blood into liver cells so that it can be removed from the body through bile. Bile is a substance produced by the liver that is important for digestion and the removal of waste products. The SLC39A14 protein may also transport other elements, including zinc, iron, and cadmium, across cell membranes. The importance of this transport in the body is not well understood. Health Conditions Related to Genetic Changes Hypermanganesemia with dystonia At least five SLC39A14 gene mutations have been found to cause hypermanganesemia with dystonia 2, a condition that begins in early childhood and is characterized by high levels of manganese in the blood and brain (hypermanganesemia), involuntary tensing of the muscles (dystonia), and other movement problems. These mutations impair the transport of manganese into liver cells. As a result, the element cannot be removed from the body through bile. The excess manganese builds up in the blood and subsequently in brain cells, particularly cells in a region of the brain that helps control movement. High levels
    [Show full text]
  • Alterations in the Intestinal Morphology, Gut Microbiota
    nutrients Article Alterations in the Intestinal Morphology, Gut Microbiota, and Trace Mineral Status Following Intra-Amniotic Administration (Gallus gallus) of Teff (Eragrostis tef) Seed Extracts Johnathon Carboni 1, Spenser Reed 2,3, Nikolai Kolba 2 , Adi Eshel 4, Omry Koren 4 and Elad Tako 2,* 1 Department of Biological Sciences, Cornell University, Ithaca, NY 14853, USA; [email protected] 2 Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853-7201, USA; [email protected] (S.R.); [email protected] (N.K.) 3 Department of Family Medicine, Kaiser Permanente Fontana Medical Centers, Fontana, CA 92335, USA 4 Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel; [email protected] (A.E.); [email protected] (O.K.) * Correspondence: [email protected]; Tel.: +1-607-255-0884 Received: 20 August 2020; Accepted: 30 September 2020; Published: 2 October 2020 Abstract: The consumption of teff (Eragrostis tef ), a gluten-free cereal grain, has increased due to its dense nutrient composition including complex carbohydrates, unsaturated fatty acids, trace minerals (especially Fe), and phytochemicals. This study utilized the clinically-validated Gallus gallus intra amniotic feeding model to assess the effects of intra-amniotic administration of teff extracts versus controls using seven groups: (1) non-injected; (2) 18W H2O injected; (3) 5% inulin; (4) teff extract 1%; (5) teff extract 2.5%; (6) teff extract 5%; and (7) teff extract 7.5%. The treatment groups were compared to each other and to controls. Our data demonstrated a significant improvement in hepatic iron (Fe) and zinc (Zn) concentration and LA:DGLA ratio without concomitant serum concentration changes, up-regulation of various Fe and Zn brush border membrane proteins, and beneficial morphological changes to duodenal villi and goblet cells.
    [Show full text]
  • Functional Characterisation of the Barley ZIP7 Zinc Transporter
    Functional characterisation of the barley ZIP7 zinc transporter Jingwen Tiong B. Science (Hons), The University of Adelaide A thesis submitted for the degree of Doctor of Philosophy The University of Adelaide Faculty of Sciences School of Agriculture, Food & Wine Waite Campus February 2012 I Contents List of figures ......................................................................................................................... VI List of tables ......................................................................................................................... VII Abstract ............................................................................................................................... VIII Declaration .............................................................................................................................. X Acknowledgements ............................................................................................................... XI Glossary of abbreviations .................................................................................................. XIII Chapter 1: Literature Review ................................................................................................. 1 1.1 Introduction ...................................................................................................................... 1 1.2 Improvement of plant Zn nutrition and biofortification .................................................. 3 1.2.1 Application of Zn fertilisers as an agronomic
    [Show full text]