Genetic Variation of Traits Related to Salt Stress Response in Wheat (Triticum Aestivum L.)

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variation of Traits Related to Salt Stress Response in Wheat (Triticum Aestivum L.) Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Genetic variation of traits related to salt stress response in Wheat (Triticum aestivum L.) Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oyiga Benedict Chijioke aus Enugu-Ezike, Nigeria Bonn 2017 Referent: Prof. Dr. Jens Léon Plant Breeding, INRES, University of Bonn Korreferent: Prof. Dr. Heiner Goldbach Plant Nutrition, INRES, University of Bonn Tag der Mündlichen Prüfung: 14.12. 2016 This research work was financially supported by the “Bundesministerium fur wirtschaftliche Zusammenarbeit und Entwicklung (BMZ)” in collaboration with the German Agency for International Cooperation (GIZ), Germany (Project number: 09.7860.1-001.00), the International Centre for Research in Dryland Agriculture (ICARDA) and the Center for Development Research (ZEF), Friedrich-Wilhelms-University, Bonn, Germany. Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn ii GENERAL SUMMARY (English) Salinity is one of the most severe abiotic stresses perceived by plants, and is continuously increasing due to climatic change and poor irrigation management practices. It is currently affecting ~800 million hectares of land worldwide, including over 20% of the world’s irrigated arable land. Salinity causes significant growth reduction and crop yield losses. With the predicted geometric increase in the global population, improving the salt tolerance (ST) of crops has become an important challenge and target for plant breeders. Several approaches have been exhaustively exploited to ameliorate the impact of salinity on crop plants, but because of the complex nature of ST in crop plant, these approaches have not been optimally translated into the desired results. It is well known that ST is difficult to breed due to its interaction with many physiological processes that are controlled by many genes, plant growth stage and are influenced by environmental factors. Wheat is moderately salt tolerant which means that the grain yield is significantly affected under soil saline condition of ~10 dS m-1. Therefore, improving wheat adaptation under high salinity is seen as the most efficient and economical approach to address the salinity problem and increase its grain yield especially in the poor resource wheat producing countries that are prone to soil salinity. This thesis applies several morphological and physiological evaluations, genetic and molecular approaches to elucidate the genetic and physiological mechanisms underlying natural variation for ST in wheat and to find ways to explore the inherent genetic variation, with the ultimate aim of finding new candidate genes that can be used to improve ST in wheat. The performance of 150 genetically diverse wheat genotypes were evaluated under different salinity conditions at germination, seedling and adult plant field growth stages, to identify heritable variation for salt tolerance in the measured traits. In addition, the amount of Na+, K+ and K+/Na+ ratio in the different shoot parts such as third leaves, stem and remaining leaf parts were determined for each genotypes after 24 days of stress under 150 mM/L NaCl. Results revealed genotype and salt treatment effects across all the growth stages, and the salt stress applied caused 33%, 51% and 82% reductions in germination vigour, seedling biomass and grain yield, respectively. The ability of wheat to conserve water in both root and shoot tissues was positively correlated with the K+ uptake under exposure to salinity. The wide-spectrum of responses to salt stress observed among the genotypes was exploited to identify genotypes with most consistent ST status across growth stages. Among the outstanding genotypes identified, four genotypes including Altay2000, 14IWWYTIR-19 and UZ- 11CWA-8 (tolerant) and Bobur (sensitive) showed consistent ST status across the three growth stages iii including germination, seedling and adult-plant field growth stages. Further evaluation of the identified genotypes using several physiological parameters showed that the tolerant genotypes possess better adaptation characteristics than the sensitive ones (Bobur and UZ-11CWA-24) which allowed them to sustain growth and reproduce under high salinity. A high density molecular map with ~18,000 SNPs (average distance between markers of 0.49 cM cM) and all the morpho-physiological and seed quality data collected were used to map QTLs for ST in the studied population. The LD decayed moderately fast (10 cM, 11 cM and 14 cM (r2 > 0.1) for the A, B and D-genome, respectively). By applying mixed linear modeling (MLM) while correcting for the effects of population structure and the kinship resulted in the detection of 302 SNPs (representing 50 distinct QTL regions) that were significantly associated with various ST traits. They explained between 2.00 and 63.45 % of the genetic variance. Most of the associated SNPs/loci showed pleiotropic effect on several traits and/or were detected across several independent experiments/growth stages. For instance, a single locus (at 90.04 cM) on 6AL was found to be strongly associated with ABS/RC, DIo/RC and shoot Na+ traits. An important (about 1.8 cM interval) region on 2BL was also found to strongly contribute to the variation in ST in various salt stress related traits (ST_DRW, shoot Na+, Fv/Fm, grain yield and seed crude protein). Five novel ST QTL regions were also detected on 1BS, 1DL, 5BS, 6AL and 5BL genomic regions. All the identified QTL have been discussed in this thesis. By analyzing sequences of the associated SNPs, several key genes involved in salt and abiotic stress tolerance were identified. Among the categories of genes identified (Chapter 3 and 4), the genes involved in the stress response (24%), antiporter and transmembrane (18%), transcription and translation (14%), and redox homeostasis and detoxification (11%) related activities occurred predominantly. The transcriptome and RT-PCR expression analyses performed with the genes linked to the significant MTAs revealed differential expressions between the contrasting ST wheat genotypes. Moreover, the amino acid sequence analyses of the putative genes uncovered many sites of non-synonymous/missense mutation that may have contributed to the observed variable salt stress responses in the contrasting wheat genotypes. This study provides new insights towards understanding the traits and mechanisms related to ST. Thus, the underlying genetic and molecular response as presented in this thesis can be directly exploited by the breeders and scientists to improve salt tolerance in wheat. iv ALLGEMEINE ZUSAMMENFASSUNG Die Versalzung des Bodens zählt zu den größten abiotischen Stressfaktoren für Pflanzen, und steigt durch den Klimawandel und ein schlechtes Wassermanagement kontinuierlich. Zur Zeit sind etwa 800 Millionen Hektar weltweit und 20 % der künstlich bewässerten Flächen von Versalzung betroffen. Diese führt zu einer signifikanten Reduktion des Pflanzenwachstums und ist mitverantwortlich für Ertragseinbußen. Durch das weltweite Bevölkerungswachstum wird die Erhöhung der Salztoleranz (ST) von Nutzpflanzen eine immer wichtigere Aufgabe und ein anzustrebendes Ziel für die Pflanzenzüchtung. Verschiedene Forschungsansätze wurden verfolgt, um die Salztoleranz von Pflanzen zu verbessern, jedoch führten viele dieser Ansätze aufgrund der komplexen Natur der ST nicht zu verwertbaren Ergebnissen. Es ist bekannt, dass ST aufgrund der Interaktion zwischen vielen physiologischen Prozessen, den unterschiedliche Genen und der Umwelt, schwierig in die Züchtung zu integrieren ist. Weizen gilt als mäßig salztolerant und der Ertrag wird ab einem Bodensalzgehalt von ~10 dS m-1 signifikant beeinflusst. Gerade die landwirtschaftlich schwächer entwickelten Regionen sind für Bodenversalzung anfällig und eine Erhöhung der Salztoleranz wäre ein probates wirtschaftliches Mittel um den Weizenertrag zu steigern. Diese Dissertation nutzt mehrere morphologische und physiologische Auswertungen, genetische und molekulare Ansätze, um die genetischen und physiologischen Mechanismen zu erklären, die der ST des Weizens zugrunde liegen. Dabei soll die eigene genetische Variation des Weizens erklärt und schlussendlich neue Kandidatengene gefunden werden, welche die ST des Kulturweizens erhöhen. Die Leistung von 150 genetisch verschiedenen Weizengenotypen wurde während der Keimung, dem Sämlingsstadium und an der adulten Pflanze unter unterschiedlichen Salzbedingungen geprüft, um die erbliche Variation des ST in unterschiedlichen Merkmalen oder Wachstumsstadien zu identifizieren. Nach 24 Stunden unter Stressbedingungen mit 150 mM/L NaCl wurde der Na+-, K+- Gehalt und des K+/Na+ - Verhältnis in verschiedenen Sprossteilen, wie dem dritten Blatt, dem Stängel und den übrigen Blättern für alle Genotypen bestimmt. Die Ergebnisse zeigten Interaktionen der Genotypen und der Salzbehandlung in allen Wachstumsstadien. Die Salzapplikation verursachte einen Rückgang von 33% bei der Keimfähigkeit, von 51 % der Sämlingsbiomasse und von 82% beim Kornertrag. Die Eigenschaft des Weizens, Wasser in Wurzel- und Sprossteilen zu speichern war positiv mit der K+ -Aufnahme unter Stressbedingungen korreliert. Das beobachtete breite Spektrum der Pflanzenreaktionen auf die Salzstressapplikation wurde genutzt um die beständigsten, v beziehungsweise die salztolerantesten Genotypen über alle Wachstumsstadien zu identifizieren. Es wurden vier extreme
Recommended publications
  • Characterization of a Type 3 Metallothionein Isolated from Porteresia Coarctata
    BIOLOGIA PLANTARUM 55 (1): 119-124, 2011 Characterization of a type 3 metallothionein isolated from Porteresia coarctata B. USHA, N.S. KEERAN, M. HARIKRISHNAN, K. KAVITHA and A. PARIDA* Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Taramani, Chennai-600113, India Abstract Metallothioneins are involved in detoxification of heavy metals. A cDNA encoding type 3 metallothionein (PcMT3) was isolated from the salt stressed leaf cDNA library of Porteresia coarctata (Roxb.) Tateoka (wild rice) that grows well in the heavy metal laden estuarine soils. The PcMT3 cDNA (581 bp) encodes a protein of 64 amino acids. PcMT3 is highly homologous (82 %) to OsMT-I-3a of rice, but is unique from other type 3 plant MTs due to the presence of an additional glycine residue in the C-terminal domain. Analysis of the 5′ upstream region of PcMT3 showed the presence of cis-acting elements like the CG box and STRE previously reported to be involved in gene expression under heavy metal stress. Southern analysis suggested the presence of more than one copy of PcMT3-like sequences in the P. coarctata genome. Analysis of genomic clone of PcMT3 revealed the presence of two introns. A comparison of the genomic sequence of PcMT3 with closely similar type 3 MTs from rice and mangrove species revealed conservation in the number and position of introns. Transcript profiling for PcMT3 in P. coarctata leaves in the presence of Cd, Cu and Zn showed an increase in transcript accumulation. Additional key words: cis-acting elements, heavy metals, salt stress, wild rice. Introduction Plants acquire heavy metal tolerance through various reported in plants like rice, hybrid poplar, oil palm and mechanisms like compartmentalization, sequestration, lichens (Abdullah et al.
    [Show full text]
  • Asia Regional Synthesis for the State of the World?
    REGIONAL SYNTHESIS REPORTS ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2019 Required citation: FAO. 2019. Asia Regional Synthesis for The State of the World’s Biodiversity for Food and Agriculture. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132041-9 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services.
    [Show full text]
  • Enhancing Climate Resilience of India's Coastal Communities
    Annex II – Feasibility Study GREEN CLIMATE FUND FUNDING PROPOSAL I Enhancing climate resilience of India’s coastal communities Feasibility Study February 2017 ENHANCING CLIMATE RESILIENCE OF INDIA’S COASTAL COMMUNITIES Table of contents Acronym and abbreviations list ................................................................................................................................ 1 Foreword ................................................................................................................................................................. 4 Executive summary ................................................................................................................................................. 6 1. Introduction ............................................................................................................................................... 13 2. Climate risk profile of India ....................................................................................................................... 14 2.1. Country background ............................................................................................................................. 14 2.2. Incomes and poverty ............................................................................................................................ 15 2.3. Climate of India .................................................................................................................................... 16 2.4. Water resources, forests, agriculture
    [Show full text]
  • List & Label Preview File
    L I N A R I S I n f o r m a t i o n B I O L O G I S C H E P R O D U K T E PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. Mouse Anti-Cardiolipin Ig's -ve control for ELISA 1 ml ADI-5502 IgG Mouse 0,5 mg ADI-AMPT11-M-500 Anti-Cardiolipin Ig's +ve control for ELISA polyclonal Mouse 1 ml ADI-5503 CD27 PE (Armenian Hamster IgG1) Hamster 50 tests ADI-MCD027-PE Monoclonal Anti-VSV-G-Cy conjugate for Mouse 0,1 mg ADI-VSV11-Cy Immunofluorescence Interleukin-4 IgG Mouse 0,1 mg ADI-AB-10710 Anti-Myelin Oligodendrocyte Glycoprotein IgG Mouse 0,1 mg ADI-AB-19910 CD160 mAb, PE, , (mouse IgG2bk) Mouse 50 tests ADI-MCD160-PE CD81, Purified (mouse IgG1) Mouse 0,1 mg ADI-MCD081-UL Interleukin-2 receptor IgG Rat 0,1 mg ADI-AB-10310 Interleukin-2 IgG Rat 0,1 mg ADI-AB-10510 Interleukin-4 IgG Rat 0,1 mg ADI-AB-10810 Interleukin-10 IgG Rat 0,1 mg ADI-AB-11310 Interleukin-12p40 IgG Rat 0,1 mg ADI-AB-11410 CTLA-4 IgG Rat 0,1 mg ADI-AB-11610 CD80 IgG Rat 0,1 mg ADI-AB-13310 CD11a IgG Rat 0,1 mg ADI-AB-13510 CD11b-FITC IgG Rat 0,1 mg ADI-AB-13610 B220 IgG Rat 0,1 mg ADI-AB-13910 CD90 Thy-1.1 IgG Rat 0,1 mg ADI-AB-14010 CD90 Thy-1.2 IgG Rat 0,1 mg ADI-AB-14110 CD90 Thy-1 IgG Rat 0,1 mg ADI-AB-14210 CD4 IgG Rat 0,1 mg ADI-AB-16510 IFN-gamma IgG Rat 0,1 mg ADI-AB-16610 CD3 IgG Rat 0,1 mg ADI-AB-17510 Interleukin-12p75 IgG Rat 0,1 mg ADI-AB-20910 CD8b , PE-Cy5 (Clone CT-CD8b) (rat IgG2a) Rat 50 tests
    [Show full text]
  • Micropropagation Through Somatic Embryogenesis and Cotyledonary Nodal Culture in Sea Oats
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.) Diptimayee Sahoo Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Sahoo, Diptimayee, "Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.)" (2008). LSU Master's Theses. 1026. https://digitalcommons.lsu.edu/gradschool_theses/1026 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MICROPROPAGATION THROUGH SOMATIC EMBRYOGENESIS AND COTYLEDONARY NODAL CULTURE IN SEA OATS ( UNIOLA PANICULATA L.) A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Plant, Environmental and Soil Sciences by Diptimayee Sahoo B.S., Orissa University of Agriculture and Technology, India, 2004 May 2008 ACKNOWLEDGMENTS I wish to express my profound gratitude to my major advisor Dr. Prasanta K. Subudhi and co-major advisor Dr. Stephen A. Harrison for their guidance for successful completion of my research project. I sincerely thank for their confidence and faith on me throughout my research. I would like to express my deep appreciation to my committee member Dr. Charlie Johnson for serving on my thesis committee, allowing me to use the tissue cultured equipment and for his valuable suggestions during the course of investigation.
    [Show full text]
  • Monoacylglycerol As a Metabolic Coupling Factor in Glucose-Stimulated Insulin Secretion
    Université de Montréal Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion par Shangang Zhao Département de Biochimie Faculté de Médecine Mémoire présentée à la Faculté des Etudes Supérieures en vue de l’obtention du grade de maître ès sciences en Biochimie Décembre 2010 © Shangang Zhao, 2010 Université de Montréal Faculté des études supérieures Ce mémoire intitulée : Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion Présenté par : Shangang Zhao a été évaluée par un jury composé des personnes suivantes: Dr Tony Antakly, président-rapporteur Dr Marc Prentki, directeur de recherche Dr Ashok K. Srivastava, membre du jury i Résumé Les cellules beta pancréatiques sécrètent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrôlé par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminés (leucine et glutamine) ou les acides gras potentialisent la sécrétion d’insuline. Une sécrétion d’insuline insuffisante au besoin du corps déclanche le diabète. Le rôle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sécrétion d’insuline est bien connu. Bien que le mécanisme exact de la potentialisation de la sécrétion d’insuline par les lipides est inconnu, le cycle Glycérolipides/Acides gras (GL/FFA) et son segment lipolytique ont été reconnu comme un composant essentiel de la potentialisation lipidique de la sécrétion d’insuline. Le diacylglycérol, provenant de la lipolyse, a été proposé comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycérides et des diacylglycérides a été démontrée essentielle pour la sécrétion d’insuline stimulée par le glucose, en suggérant un rôle du monoacylglycérol (MAG) dans ce processus.
    [Show full text]
  • Supplemental Data
    Article TCF7L2 is a master regulator of insulin production and processing ZHOU, Yuedan, et al. Abstract Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of [...] Reference ZHOU, Yuedan, et al. TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, vol. 23, no. 24, p. 6419-6431 DOI : 10.1093/hmg/ddu359 PMID : 25015099 Available at: http://archive-ouverte.unige.ch/unige:45177 Disclaimer: layout of this document may differ from the published
    [Show full text]
  • Plant Genetic Resources Newsletter No. 124, December 2000
    ISSN 1020-3362 Plant Genetic Resources Newsletter Bulletin de Ressources Phytogénétiques Noticiario de Recursos Fitogenéticos No. 124, 2000 Food and Agriculture Organization of the United Nations and the International Plant Genetic Resources Institute Organisation des Nations Unies pour l'alimentation et l'agriculture et l'institut international des ressources phytogénétiques Organización de las Naciones Unidas para la Agricultura y la Alimentación y el Instituto Internacional de Recursos Fitogenéticos Editorial Bureau de Oficina de Office rédaction Redacción Managing Editor Plant Genetic Resources Newsletter IPGRI Via delle Sette Chiese 142 00145 Rome, Italy Tel.: +39-0651892233 Email: [email protected] Fax: +39-065750309 Web: http://www.ipgri.cgiar.org The designations employed, and the Les appellations employées dans Las denominaciones empleadas, y presentation of material in the period- cette publication et la présentation la forma en que aparecen presenta- ical, and in maps which appear here- des données et cartes qui y figurent dos los datos en esta publicación, in, do not imply the expression of any n’impliquent de la part de l’IPGRI et no implican, de parte del IPGRI o la opinion whatsoever on the part of de la FAO aucune prise de position FAO, juicio alguno sobre la condi- IPGRI or FAO concerning the legal quant au statut juridique des pays, ción jurídica de países, territorios, status of any country, territory, city territoires, villes ou zones, ou de ciudades o zonas, o de sus autori- or area or its authorities, or concern- leurs autorités, ni quant au tracé de dades, ni respecto de la delimitación ing the delimitation of its frontiers or leurs frontières ou limites.
    [Show full text]
  • ANALYSIS of GENE PATHWAYS INVOLVED in DCIS PROGRESSION in RESPONSE to ACIDIC EXTRACELLULAR Ph Neha Aggarwal1, Jennifer Rothberg2, Robert J
    ANALYSIS OF GENE PATHWAYS INVOLVED IN DCIS PROGRESSION IN RESPONSE TO ACIDIC EXTRACELLULAR pH Neha Aggarwal1, Jennifer Rothberg2, Robert J. Gillies3 and Bonnie F. Sloane4 & Douglas Yingst 1Department of Physiology, 2Cancer Biology Program, and 4Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201; 3H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602 Breast cancer is the most commonly diagnosed cancer in women in USA and has a high mortality rate, second only to lung cancer. About 85% of total 63300 new cases of breast cancer are predicted to be ductal carcinoma in situ (DCIS) in 2012. We are interested in identifying markers that are predictive of changes that occur in the breast microenvironment as a result of the presence of premalignant lesions such as DCIS that are poised to develop into breast cancer. A critical barrier to cancer progression is its ability to survive in the acidic microenvironment characteristic of breast cancer. As the breast is comprised of different cell types, we performed gene expression analysis using Affymetrix gene chip HG U133 plus 2.0 array of 3 DCIS cell lines grown in 3D at neutral and acidic pH. We then computed the significantly changed genes at acidic pH for three DCIS cell lines and found 6 common and 121 similar genes. IPA core analysis of these genes revealed the interferon-signaling (IFN) pathway to be significantly altered. STAT1 was one key transcription factor that was upregulated and that might be driving downstream signaling as a response to acidic microenvironment. We are validating some of the downstream targets of the IFN pathway using qPCR.
    [Show full text]
  • A Regional Synthesis of Results and Lessons From
    A Regional Synthesis of Results and Lessons from Mangroves for the Future Small Grant Projects: 2009–11 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of Mangroves for the Future or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of Mangroves for the Future or IUCN. This publication has been made possible by funding from Norad and Sida Published by: IUCN, Gland, Switzerland with Mangroves for the Future, Bangkok Thailand Copyright: © 2012 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is author- ized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Mangroves for the Future (2012). A Regional Synthesis of Results and Les- sons from Mangroves for the Future Small Grant Projects: 2009–11. Bang- kok, Thailand: Mangroves for the Future and Gland, Switzerland: IUCN. ISBN: 978-2-8317-1518-6 Available from: IUCN Mangroves for the Future Publications Services Asia Regional Office Rue Mauverney 28 IUCN (International Union for Conservation 1196 Gland,
    [Show full text]
  • BANGLADESH: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig 1996)
    BANGLADESH: COUNTRY REPORT TO THE FAO INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES (Leipzig 1996) Prepared by: M. Sujayef Ullah Chowdhury Dhaka, April 1995 BANGLADESH country report 2 Note by FAO This Country Report has been prepared by the national authorities in the context of the preparatory process for the FAO International Technical Conference on Plant Genetic Resources, Leipzig, Germany, 17-23 June 1996. The Report is being made available by FAO as requested by the International Technical Conference. However, the report is solely the responsibility of the national authorities. The information in this report has not been verified by FAO, and the opinions expressed do not necessarily represent the views or policy of FAO. The designations employed and the presentation of the material and maps in this document do not imply the expression of any option whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. BANGLADESH country report 3 Table of contents FOREWORD 5 PREFACE 7 CHAPTER 1 INTRODUCTION TO BANGLADESH AND ITS AGRICULTURE 10 CHAPTER 2 INDIGENOUS PLANT GENETIC RESOURCES 19 2.1 FOREST GENETIC RESOURCES 19 2.2 MEDICINAL PLANTS 22 2.3 OTHER WILD SPECIES AND WILD RELATIVES OF CROP PLANTS 22 2.4 LANDRACES (“FARMERS’ VARIETIES”) AND OLD CULTIVARS 22 CHAPTER 3 NATIONAL CONSERVATION ACTIVITIES 29 3.1 IN SITU CONSERVATION ACTIVITIES 30 3.2 EX SITU COLLECTIONS
    [Show full text]
  • Plant Resources of South-East Asia Is a Multivolume Handbook That Aims
    Plant Resources of South-East Asia is a multivolume handbook that aims to summarize knowledge about useful plants for workers in education, research, extension and industry. The following institutions are responsible for the coor­ dination ofth e Prosea Programme and the Handbook: - Forest Research Institute of Malaysia (FRIM), Karung Berkunci 201, Jalan FRIM Kepong, 52109 Kuala Lumpur, Malaysia - Indonesian Institute of Sciences (LIPI), Sasana Widya Sarwono, Jalan Gatot Subroto 10, Jakarta 12710, Indonesia - Institute of Ecology and Biological Resources (IEBR), Nghia Do, Tu Liem, Hanoi, Vietnam - Papua New Guinea University of Technology (UNITECH), Private Mail Bag, Lae, Papua New Guinea - Philippine Council for Agriculture, Forestry and Natural Resources Re­ search and Development (PCARRD), Los Banos, Laguna, the Philippines - Thailand Institute of Scientific and Technological Research (TISTR), 196 Phahonyothin Road, Chatuchak, Bangkok 10900, Thailand - Wageningen Agricultural University (WAU), Costerweg 50, 6701 BH Wa­ geningen, the Netherlands In addition to the financial support of the above-mentioned coordinating insti­ tutes, this book has been made possible through the general financial support to Prosea by: - the Finnish International Development Agency (FINNIDA) - the Netherlands Ministry ofAgriculture , Nature Management and Fisheries - the Netherlands Ministry of Foreign Affairs, Directorate-General for Inter­ national Cooperation (DGIS) - Tayasan Sarana Wanajaya', Indonesia Correct citation ofthi s publication: Grubben, G.J.H. & Soetjipto Partohardjono (Editors), 1996. Plant Resources of South-East Asia No 10. Cereals. Backhuys Publishers, Leiden. 199 pp. Correct citation ofarticle s from this publication: Author name, initials, 1996. Title of article. In: Grubben, G.J.H. & Soetjipto Partohardjono (Editors): Plant Resources of South-East Asia No 10.
    [Show full text]