The 8Th MAFF International Workshop on Genetic Resources: Integration of Biodiversity and Genome Technology for Crop Improvement

Total Page:16

File Type:pdf, Size:1020Kb

The 8Th MAFF International Workshop on Genetic Resources: Integration of Biodiversity and Genome Technology for Crop Improvement Integration of Biodiversity and GenomeTechnology for Crop Improvement Edited by K. Oono, T. Komatsuda, K. Kadowaki and D. Vaughan Integration of Biodiversity and Genome Technology for Crop Improvement Proceedings of the Joint International Workshop 2000 International Workshop Molecular Plant Breeding and Utilization of Genetic Resources sponsored by Science and Technology Agency (STA) and Japan International Science and Technology Exchange Center (JISTEC) & 8th MAFF International Workshop on Genetic Resources sponsored by Ministry of Agriculture, Forestry and Fisheries (MAFF) November 28 - December 1, 2000 Tsukuba, Japan Printed in Japan by Sato Printing Co., Ltd , Tsukuba Published by National Institute of Agrobiological Resources, Tsukuba, Japan ISBN 4-93151 1-04-X November 28, 2000 PREFACE Crop improvement using conventional varieties or wild species as genetic resources has successfully brought increases to agricultural production worldwide. To respond to the demand for increased agricultural production research efforts have focused on development of efficient breeding methods and finding new gene sources in conserved genetic resources. Recent rapid developments in biotechnology are changing both breeding methods and the concept of genetic resources. All the functional genes of organisms are potential genetic resources for crop improvement by direct gene introduction. The developments in genome technology and the accumulation of genome information are so rapid that the complete genome sequences of 150 organisms - microorganisms, higher plants, animals and manwill have been elucidated within two years. Conservation and use of biodiversity are fundamental to sustaining agriculture and the environment. The application of genome technology to the analysis and use of biodiversity is most useful for the development of new breeding methods and identifying new gene sources for crop breeding. Using comparative genomics to understand variation in biological function, morphological characteristics and physiological responses to stresses will enable newplateaus to crop improvement to be reached. Research into the genetic components of species and populations, genetic variation and genetic differentiation between crops and their wild relatives and evolutionary processes and relationships among plants will support crop improvement. Enhanced linkages between plant breeding, biotechnology and biodiversity scientists are to be encouraged. Research on organisms and their environments based on new perspectives at the gene, genome, individual, population level will require specialists to integrate the results for practical use. I hope this workshop will promote such integration by bringing together scientists with expertise in biodiversity and biotechnology. I hope such integration will facilitate development of more efficient plant breeding in the 21 st century. Kiyoharu OONO Organizing Committee Organizing Committee Kiyoharu Oono, Chairperson Koh-ichi Kadowaki, Secretary Duncan Vaughan, Secretary Takao Komatsuda Norihiko Tomooka Masao Iwamoto Toshiyuki Wako Advisory Board Ronald L. Phillips, USA Gerhard Wenzel, Germany Masaru Iwanaga, Japan Shoji Miyazaki, Japan Hiromi Kobayashi, Japan Ill CONTENTS Pre fac e i Organizing Committees ii Proceedings of oral presentations Comparative genetic and physical mapping in the Oryzeae R. Phillips, S. A. Jackson, P. Imle, W.C. Kennard and R. A. Porter Retrotransposons as a tool for functional analysis of plant genes H.Hirochika Genomics as a tool for an efficient utilization of genetic resources using potato and wheat as examples G. Wenzel, A. Lossl, U. Frei, V. Mohler, £ L K. Hsam,X Q. Huang, F. Thummler andF. J. Zeller Tracking alien introgression into the rice genome through molecular approaches D. S. Brar, F. M.Abbasi, J. Talag, E. Enriquez, Z Li, M.Jones and G. S. Khush Genetic architecture and complexity as revealed at the molecular levels in wild and cultivated rices Y. Sano The introgression of QTL from Oryza rufipogon to IR64 MSugiono, E. M.Septiningsih and S. R. McCouch Evolutionary relationships among Oryza species inferred from transposable elements associated with the catalase gene CatA M.Iwamoto The construction and identification of plant BAC library B. Wang Rice centromere structure with repetitive sequences and construction of rice artificial chromosome (RAC) N.Kurata DNA marker-based estimates of coancestry and parental contributions in rice D. A. A. Tabanao, A, L. Carpena, R. N. Bernardo andL. S. Sebastian Genetic analysis and breeding improvement of a single tiller mutant (stl) in rice Q. Qian, X. Li, D. Zeng, J. Ouyang, S. Teng and J. Li IV Evaluation and utilization of genetic resources: A case study for salt tolerance in barley K. Takeda Sourcing, evaluating and utilizing biodiversity in crop genomes P. Heslop-Harrison and T. Schwarzacher Genomeanalysis in barley and its impact on the utilization of genetic resources A. Graner, D. Smilde, A. Drescher, K.-P.Pleissner, K Ordon and W.Michalek Molecular diversity and evolution in the genus Hordeum T. Komatsuda Preservation, evaluation and utilization of economically valuable plant germplasm in Bulgaria -present and future prospects /. Atanassov and A. Atanassov 57 Germplasm diversity in its evolutionary context: U.S. maize as a case study J. Labate, S. Kresovich andK. R. Lamkey 59 Diversity of Garcinia spp. and interspecific relationships by DNA analyses S. Te-Chato, M.Lim and M.Masahiro 63 Population diversity analyses using different molecular techniques to determine strategies for in-situ conservation - examples from the genera Glycine, Oryza and Vigna D. Vaughan, N. Tomooka, A. Kaga, A. Shcherban, R. Q. Xu, Y.Jinno, K. Doi andK. Kashiwaba 69 Howto control biodiversity of crops by means of biotechnology? Some approaches to overcoming breeding barriers T. Adachi, L Chen, S.-H Woo,J. Alt andM. Nagano 73 Genomics and biodiversity management: opportunities and challenges A Karp 77 RNA editing in plant mitochondria, cytoplasmic male sterility and plant breeding S. Litvak, A. Mouras andA. Araya 81 Mitochondrial genome diversity among plant species: is the gene encoded by mitochondrial genome or nuclear genome? K.Kadowaki 85 Genetic diversity of endosperm storage mutants in rice H Sato 89 Problems of genetic and molecular approaches to the hereditary improvement of the qualitative characters of crops V.A. Dragavtsev 93 Integration of genomics and biodiversity research at the Wheat Genetic Resources Center B. S. Gill, G. Brown-Guedira and W.John Raupp 96 Expansion of available genetic resources for wheat improvement by super-wide hybridization K Tsujimoto 100 Development of novel wheat starches by the use of germplasm diversity M.Yamamori 103 Rapid and simple method for purity test in radish hybrid seeds using RAPD marker S. T. Kwon andS. M. Oh 107 The molecular biology of the oil palm flowering H.Kulaveerasingam, Z Rahmat, T. S. Hee, L C. Ching, C. M.Chooi, L Y.PingandS. R. S. Alwee 1 1 1 On the synteny among grass genomes Y.Nagamura 1 15 SNP, genetic diversity and genepools for germplasm enhancement K Watanabe 1 18 Diversity of plant genomes revealed by analysis of gene sequences and microsatellites R. Henry 122 Genomefusion for crop improvement, a new style of breeding D.Shibata 126 Proceedings of poster presentations In alphabetical order of author Genetic diversity and phylogenetic relationships in East Asia and South Asian melons based on isozyme and microsatellite polymorphisms Y Akashi, T. Wako, M.Masudaand K.Kato 129 DNA sequence data and phylogeny: The genus Vigna subgenus Ceratotropis a case study K. Doh A. Kaga, N. Tomooka andD. A. Vaughan 131 Phylogenetic analysis of the genus Zoysia for improvement of indigenous grazing grassland MEbina, A. Abe, M.Kobayashi, S. Kasugu, H. Araya andK Nakagawa 133 Screening of allelopathic activity from rice cultivars Y. Fujii andD. R. Gealy 135 VI Structural variation of waxy gene and differentiation in foxtail millet, Setaria italica (L.) P. Beauv. K.Fukunaga, M.Kawase and K. Kato 137 Core collections, DNA markers and bio-informatics: new tools for "mining" plant genetic resources held in gene banks - Sorghum as an example C. GrenLr, P. J. Bramel, P. Hamon, J. Chantereau, M Deu, M.Noirot, V. G. Reddy, S. Kresovich, K E. Prasada Rao, V.Mahalakshmi, J. H. Crouch andR. Ortiz 139 Application of heavy-ion bombardment to mutate wheat and barley 7. Honda, M.Wada,T. Abe, T. Asami andS. Yoshida 141 Development of DNA marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). E. Inoue, K. Amano, M.Kasumi, F. Sakuma, K Hara and T. Tsukihashi 143 Intra-specific genetic differentiation in East Asian Vigna species (subgenus Ceratotropis) revealed by AFLP markers. A. Kaga, K.Doi, M.S. Yoon,N. TomookaandR A. Vaughan 145 Morphological and biochemical variations in radiation mutants of rice H.Kajiwara, T. Kaneko and M.Nishimura 147 The search for and analysis of new sources of resistance to legume storage pests K. Kashiwaba, N. Tomooka, A. Kaga andD. A. Vaughan 149 Molecular analysis of genetic diversity in East Asian wheat landraces and its possible association with adaptation to abiotic stresses K Kato andK Matsumoto 151 Molecular cloning and structural characterization of a receptor-like protein kinase gene from rice {Oryza sativa L.) MKawata, T. Oikawa, Y.Matsumura, F. Fukumoto, S. Kawasaki, F. Takaiwa andS. Kuroda 153 Gene organization of sugar beet mitochondrial genome T. Kubo, S. Nishizawa, A. Sugawara, K Itchoda, A. Estiati and T. Mikami 155 The relationship between intron splicing
Recommended publications
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Characterization of a Type 3 Metallothionein Isolated from Porteresia Coarctata
    BIOLOGIA PLANTARUM 55 (1): 119-124, 2011 Characterization of a type 3 metallothionein isolated from Porteresia coarctata B. USHA, N.S. KEERAN, M. HARIKRISHNAN, K. KAVITHA and A. PARIDA* Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Taramani, Chennai-600113, India Abstract Metallothioneins are involved in detoxification of heavy metals. A cDNA encoding type 3 metallothionein (PcMT3) was isolated from the salt stressed leaf cDNA library of Porteresia coarctata (Roxb.) Tateoka (wild rice) that grows well in the heavy metal laden estuarine soils. The PcMT3 cDNA (581 bp) encodes a protein of 64 amino acids. PcMT3 is highly homologous (82 %) to OsMT-I-3a of rice, but is unique from other type 3 plant MTs due to the presence of an additional glycine residue in the C-terminal domain. Analysis of the 5′ upstream region of PcMT3 showed the presence of cis-acting elements like the CG box and STRE previously reported to be involved in gene expression under heavy metal stress. Southern analysis suggested the presence of more than one copy of PcMT3-like sequences in the P. coarctata genome. Analysis of genomic clone of PcMT3 revealed the presence of two introns. A comparison of the genomic sequence of PcMT3 with closely similar type 3 MTs from rice and mangrove species revealed conservation in the number and position of introns. Transcript profiling for PcMT3 in P. coarctata leaves in the presence of Cd, Cu and Zn showed an increase in transcript accumulation. Additional key words: cis-acting elements, heavy metals, salt stress, wild rice. Introduction Plants acquire heavy metal tolerance through various reported in plants like rice, hybrid poplar, oil palm and mechanisms like compartmentalization, sequestration, lichens (Abdullah et al.
    [Show full text]
  • Allopolyploidy and Root Nodule Symbiosis in Glycine
    TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adrian Federico Powell January 2017 © 2017 Adrian Federico Powell TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE Adrian Federico Powell, Ph.D. Cornell University 2017 Polyploidy (or whole genome duplication) and root nodule symbioses with bacteria (termed ‘rhizobia’) have both been important phenomena in the evolutionary history of the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the development or refinement of nodulation. Given the varied potential impacts of polyploidy, effects on biotic interactions are plausible. However, direct studies of the interactions between these phenomena in symbiotic, nodule-forming species are lacking. In this dissertation, using a complex of recently formed allopolyploids in Glycine subgenus Glycine, the perennial relatives of soybean, we examined (1) the root metabolites and symbiotic signaling capacity of multiple allopolyploid species relative to the diploid progenitor species that hybridized to form each allopolyploid, (2) the nodulation-related responses of allopolyploids and diploid progenitors to rhizobia and (3) the transcriptome-level responses to inoculation in allopolyploid G. dolichocarpa (T2) and its diploid progenitors. These objectives were pursued using a variety of approaches including root metabolite profiling, inoculation trials, and RNA sequencing. We found that, while there were no common transgressive patterns in the root metabolite profiles of allopolyploids in the complex, one of the progenitors of T2 had distinctive root metabolite and exudate profiles; profiles of symbiotic signaling metabolites were also altered in the allopolyploid.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Asia Regional Synthesis for the State of the World?
    REGIONAL SYNTHESIS REPORTS ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2019 Required citation: FAO. 2019. Asia Regional Synthesis for The State of the World’s Biodiversity for Food and Agriculture. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132041-9 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services.
    [Show full text]
  • Enhancing Climate Resilience of India's Coastal Communities
    Annex II – Feasibility Study GREEN CLIMATE FUND FUNDING PROPOSAL I Enhancing climate resilience of India’s coastal communities Feasibility Study February 2017 ENHANCING CLIMATE RESILIENCE OF INDIA’S COASTAL COMMUNITIES Table of contents Acronym and abbreviations list ................................................................................................................................ 1 Foreword ................................................................................................................................................................. 4 Executive summary ................................................................................................................................................. 6 1. Introduction ............................................................................................................................................... 13 2. Climate risk profile of India ....................................................................................................................... 14 2.1. Country background ............................................................................................................................. 14 2.2. Incomes and poverty ............................................................................................................................ 15 2.3. Climate of India .................................................................................................................................... 16 2.4. Water resources, forests, agriculture
    [Show full text]
  • Confirmation of Shared and Divergent Genomes in the Glycine Tabacina Polyploid Complex (Leguminosae) Using Histone H3-D Sequences Author(S): Jeff J
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/237086211 Confirmation of Shared and Divergent Genomes in the Glycine tabacina Polyploid Complex (Leguminosae) Using Histone H3-D Sequences Article in Systematic Botany · July 2000 DOI: 10.2307/2666688 CITATIONS READS 43 32 4 authors, including: Anthony H. D. Brown Bernard E Pfeil CSIRO National Facilities and Collections University of Gothenburg 242 PUBLICATIONS 16,790 CITATIONS 129 PUBLICATIONS 2,471 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Evolutionary history of Antirrhinum genus View project Phylogeny of Acanthophyllum and allied genera View project All content following this page was uploaded by Anthony H. D. Brown on 09 September 2016. The user has requested enhancement of the downloaded file. Confirmation of Shared and Divergent Genomes in the Glycine tabacina Polyploid Complex (Leguminosae) using Histone H3-D Sequences Author(s): Jeff J. Doyle, Jane L. Doyle, A. H D. Brown, and Bernard E. Pfeil Source: Systematic Botany, 25(3):437-448. Published By: The American Society of Plant Taxonomists DOI: http://dx.doi.org/10.2307/2666688 URL: http://www.bioone.org/doi/full/10.2307/2666688 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation.
    [Show full text]
  • Rbcl and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C
    rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C. Donovan Bailey; Jeff J. Doyle Systematic Botany, Vol. 26, No. 3. (Jul. - Sep., 2001), pp. 515-536. Stable URL: http://links.jstor.org/sici?sici=0363-6445%28200107%2F09%2926%3A3%3C515%3ARALPWP%3E2.0.CO%3B2-C Systematic Botany is currently published by American Society of Plant Taxonomists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aspt.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Micropropagation Through Somatic Embryogenesis and Cotyledonary Nodal Culture in Sea Oats
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.) Diptimayee Sahoo Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Sahoo, Diptimayee, "Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.)" (2008). LSU Master's Theses. 1026. https://digitalcommons.lsu.edu/gradschool_theses/1026 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MICROPROPAGATION THROUGH SOMATIC EMBRYOGENESIS AND COTYLEDONARY NODAL CULTURE IN SEA OATS ( UNIOLA PANICULATA L.) A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Plant, Environmental and Soil Sciences by Diptimayee Sahoo B.S., Orissa University of Agriculture and Technology, India, 2004 May 2008 ACKNOWLEDGMENTS I wish to express my profound gratitude to my major advisor Dr. Prasanta K. Subudhi and co-major advisor Dr. Stephen A. Harrison for their guidance for successful completion of my research project. I sincerely thank for their confidence and faith on me throughout my research. I would like to express my deep appreciation to my committee member Dr. Charlie Johnson for serving on my thesis committee, allowing me to use the tissue cultured equipment and for his valuable suggestions during the course of investigation.
    [Show full text]
  • Systematic Status of the Glycine Tomentella and G. Tabacina Species Complexes (Fabaceae) Based on ITS Sequences of Nuclear Ribosomal DNA
    J. Plant Res. 114: 435-442, 2001 Journal of Plant Research (C bv The Botanical Societv of Jaoan 1999 Systematic Status of the Glycine tomentella and G. tabacina Species Complexes (Fabaceae) Based on ITS Sequences of Nuclear Ribosomal DNA Yue-le C. Hsing’, Jaw-Shu Hsieh’, Ching-l Peng’, Chang-Hung Chou’ and Tzen-Yuh Chiang3* 1 Institute of Botany, Academia Sinica, Nankang, Taipei, Taiwan 115 Department of Agronomy, National Taiwan University, Taipei, Taiwan 107 3 Department of Biology, National Cheng-Kung University, Tainan, Taiwan 700 The phylogeny of the subgenus Glycine was reconstruct- studied extensively (Hymowitz and Newell 1978, Newell and ed based on nucleotide sequences of the internal tran- Hymowitz 1978,1980,Hymowitz and Singh 1987, Ohashi eta/. scribed spacer (ITS) region of the nuclear ribosomal DNA to 1991). Over the last two decades, the phylogeny of Glycine examine the systematic status of the G. fomentella and G. has also been elucidated based on isozyme data (Broue et fabacina species complexes. Rooted at the subgenus Soja a/. 1977), RFLP patterns of the chloroplast genome (Doyle et (2 species, 7 accessions), parsimony analysis was conduct- a/. 1990a),urease gene polymorphism (Menancio et a/. 1990), ed for 17 species (31 accessions) of the subgenus Glycine, and nuclear ribosomal DNA variation (Doyle and Beachy including 9 and 6 populations of G. fomentella s./. and G, 1985, Kollipara et a/. 1997, Singh et a/. 1998). tabacina s.l., respectively. The nrlTS phylogeny indicated Most Glycine species are diploid with a basic chromosome polyphyly of G. fomentella s.1. as well as G.
    [Show full text]