Maestra En Ciencias Biológicas

Total Page:16

File Type:pdf, Size:1020Kb

Maestra En Ciencias Biológicas UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA Programa institucional de Maestría en Ciencias Biológicas “Identificación de genes asociados a la síntesis de magnetita en la tortuga negra Chelonia agassizii.” TESIS QUE PARA OBTENER EL GRADO DE: Maestra en Ciencias Biológicas PRESENTA: Biol. María Guadalupe Rodríguez Jiménez Directora de Tesis: Dra. Alma Lilia Fuentes Farías Co-director: Dr. Jesús Campos García Morelia, Michoacán. Marzo del 2014 1 AGRADECIMIENTOS A Dios por darme la dicha de tener una hermosa familia, a mis padres y hermanos por todo el apoyo incondicional durante todos estos años y por haber compartido conmigo momentos inolvidables. A la Dra. Alma Lilia Fuentes Farías y al Dr. Gabriel Gutiérrez Ospina por darme el espacio y la oportunidad de integrarme a su equipo de trabajo, por todo el apoyo brindado y el esfuerzo dedicado al proyecto durante todo este tiempo. Al Dr. Jesús Campos García por recibirme en su Laboratorio de Biotecnología Microbiana en el IIQB, por las horas incansables de trabajo y esfuerzo dedicado al proyecto. Al Dr. Alejandro Bravo Patiño y a la Dra. Esperanza Meléndez Herrera, por sus valiosos comentarios y sugerencias que sin duda enriquecieron de manera sustancial al trabajo. A la M.C. Alma Laura Díaz Pérez, por el apoyo brindado, sus valiosas aportaciones y sugerencias durante la fase experimental. Al Dr. Jesús Ramírez Santos, por las sugerencias y el apoyo técnico brindado durante el proyecto. Al Dr. Irvin Jácome y al Dr. Víctor Meza por el apoyo brindado en la fase de expresión de genes en el trabajo. A todos mis amigos, compañeros de laboratorio por su apoyo y compañía. ¡A TODOS MIL GRACIAS! 2 CONTENIDO LISTA DE FIGURAS .......................................................................................... 7 LISTA DE TABLAS ......................................................................................... 10 CAPITULO I. AMPLIFICACIÓN Y EXPRESIÓN DE GENES HOMOLOGOS DE LA BACTERIA, Magnetospirullum magneticum AMB-1 EN LA TORTUGA NEGRA Chelonia agassizii ............................................................................ 12 I. RESUMEN GENERAL ................................................................................. 12 II. SUMMARY ................................................................................................... 13 III. INTRODUCCIÓN GENERAL ...................................................................... 14 3.1. Transducción de la información magnética ambiental ............................... 14 3.2. Sintesis de magnetita ................................................................................ 20 IV. HIPÓTESIS DE INVESTIGACIÓN .............................................................. 25 V. OBJETIVOS ............................................................................................... 25 VI. MATERIALES Y METODOS ..................................................................... 26 6.1. Colecta de muestras ................................................................................. 26 6.2. Selección in silico de los genes candidatos a amplificar por PCR ............. 26 6.3. Diseño de oligonucleótidos degenerados .................................................. 28 6.4. Amplificación de los fragmentos de ADN por PCR .................................... 29 6.5. Electroforesis en gel de agarosa ............................................................... 29 3 6.6. Aislamiento y purificación de los productos de PCR ................................. 29 6.7. Ligación de los fragmentos de PCR y transformación de células de E. coli (JM101) ............................................................................................................ 29 6.8. Aislamiento de DNA plasmidico de bacterias ............................................ 30 6.9. Secuenciación de los fragmentos de PCR ................................................ 30 6.10. Análisis de las secuencias parciales obtenidas ....................................... 30 6.11. Análisis de similitud de las diferentes secuencias proteicas homólogas a los genes mam de bacteria, en la tortuga negra C. agassizii ................................. 31 6.12. Colecta de muestras de diferentes tejidos tortuga negra ........................ 32 6.13. Extracción y cuantificación de RNA mensajero ....................................... 32 6.14. Tratamiento de las muestras de RNAm con DNAsa I ............................. 32 6.15. Electroforesis en gel de agarosa ............................................................. 33 6.16. Ensayos de PCR en tiempo real cuantitativa (RT-qPCR)........................ 33 VII. RESULTADOS Y DISCUSIÓN .................................................................. 36 7.1. Amplificación de secuencias parciales en C. agassizii .............................. 36 A. Gen mamB ........................................................................................ 36 B. Gen mamK ........................................................................................ 40 C. Gen mamN ........................................................................................ 43 D. Gen mamO ........................................................................................ 47 E. Gen mamA ........................................................................................ 51 7.2. Análisis de similitud de genes mam de M. magneticum AMB-1, con el genoma de C. agassizii .................................................................................................. 55 4 A. Gen mamB ........................................................................................ 56 B. Gen mamK ........................................................................................ 57 C. Gen mamN ........................................................................................ 59 D. Gen mamO ........................................................................................ 60 E. Gen mamH ........................................................................................ 62 F. Gen mamM ........................................................................................ 63 G. Gen mamA ........................................................................................ 64 7.3. Expresión de genes por RT-qPCR ............................................................ 65 VIII. CONCLUSIONES ..................................................................................... 67 IX. PERSPECTIVAS ........................................................................................ 67 X. LITERATURA CITADA ................................................................................ 68 5 IX. ANEXOS ..................................................................................................... 72 ANEXO 1. mamB. Blastp de la secuencia obtenida para C. agassizii con la bacteria M. magneticum AMB-1 ............................................................. 72 ANEXO 2. mamB. Blastp de la secuencia obtenida para C. agassizii con el genoma de la tortuga C. mydas ............................................................. 74 ANEXO 3. mamK. Blastp de la secuencia obtenida para C. agassizii con la bacteria M. magneticum AMB-1 ............................................................. 80 ANEXO 4. mamK. Blastp de la secuencia obtenida para C. agassizii con el genoma de la tortuga C. mydas ............................................................. 86 ANEXO 5. mamN. Blastp de la secuencia obtenida para C. agassizii con la bacteria M. magneticum AMB-1 ............................................................. 87 ANEXO 6. mamN. Blastp de la secuencia obtenida para C. agassizii con el genoma de la tortuga C. mydas ............................................................. 89 ANEXO 7. MamO. Blastp de la secuencia obtenida para C. agassizii con la bacteria M. magneticum AMB-1 ............................................................. 95 ANEXO 8. MamO. Blastp de la secuencia obtenida para C. agassizii con el genoma de la tortuga C. mydas ............................................................. 96 ANEXO 9. MamA. Blastp de la secuencia obtenida para C. agassizii con el genoma de la tortuga C. mydas ........................................................... 102 ANEXO 10. Secuencias empleadas para el análisis de similitud de cada uno de los 7 genes mam de c. agassizii .............................................. 107 6 LISTA DE FIGURAS Figura 1. Esquemas de las rutas recorridas por las crías de tortuga Chelonia agassizii de cada uno de los grupos experimentales ....................................... 18 Figura 2. Diferentes áreas del cerebro responsivas a estímulos magnéticos mediante el uso de c-fos .................................................................................. 19 Figura 3. Respuestas electrofisiológicas evocadas ......................................... 19 Figura 4. Respuestas electromiográficas evocadas ........................................ 20 Figura 5. Identificación de cristales de magnetita biogénica en C. agassizii .. 20 Figura 6. Amplificación de los fragmentos obtenidos por PCR para el gen mamB de C. agassizii .................................................................................................. 37 Figura 7. Representación gráfica de la secuencia nucleotídica para el homólogo a mamB en C. agassizii ....................................................................................... 38 Figura 8. Representación gráfica de la secuencia en aminoácidos
Recommended publications
  • Interactions of Zinc with the Intestinal Epithelium - Effects On
    Aus dem Institut für Veterinär-Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Interactions of zinc with the intestinal epithelium - effects on transport properties and zinc homeostasis Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien U niversität Berlin vorgelegt von Eva-Maria Näser, geb. Gefeller Tierärztin aus Kassel Berlin 2015 Journal-Nr.: 3813 Gefördert durch die Deutsche Forschungsgemeinschaft und die H.W. Schaumann Stiftung Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Jörg Rudolf Aschenbach Zweiter Gutachter: Prof. Dr. Holger Martens Dritter Gutachter: Prof. Dr. Robert Klopfleisch Deskriptoren (nach CAB-Thesaurus): pigs, weaning, zinc, intestines, epithelium, jejunum, ion transport Tag der Promotion: 15.09.2015 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-656-2 Zugl.: Berlin, Freie Univ., Diss., 2015 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law.
    [Show full text]
  • ( 12 ) United States Patent
    US007459539B2 ( 12) United States Patent ( 10 ) Patent No. : US 7 , 459 ,539 B2 Challita - Eid et al. (45 ) Date of Patent: Dec. 2 , 2008 ( 54 ) ANTIBODY THAT BINDS ZINC WO WO 03050236 6 / 2003 TRANSPORTER PROTEIN 108P5H8 ( 75 ) Inventors : Pia M . Challita - Eid , Encino , CA (US ) ; OTHER PUBLICATIONS Mary Faris , Los Angeles , CA (US ) ; Murgia et al . Cloning, expression , and vesicular localization of zinc Daniel E . H . Afar , Brisbane , CA (US ) ; transporter Dri 27 /ZnT4 in intestinal tissue and cells . Am J Physiol Rene S . Hubert , Los Angeles , CA (US ) ; 277 (Gastrointest Liver Physiol 40 ) : G1231 -61239 , 1999 . * Steve Chappell Mitchell, Gurnee , IL Kaufman et al. Blood 9 : 3178 -3184 , 1999 . * (US ) ; Elana Levin , Los Angeles, CA Wang et al . Rapid analysis of gene expression (RAGE ) facilitates (US ) ; Karen Jane Meyrick Morrison , universal expression profiling . Nucleic Acids Res 27 (23 ) : 4609 4618 , 1999 . * Santa Monica , CA (US ) ; Arthur B . Campbell et al. Totipotency of multipotentiality of cultured cells : Raitano , Los Angeles , CA (US ) ; Aya applications and progress . Theriogenology 47 : 63 -72 , 1997 . * Jakobovits , Beverly Hills , CA (US ) Moore , G . Genetically engineered antibodies. Clin Chem 35 ( 9 ) : 1849 - 1853 , 1989 . * (73 ) Assignee : Agensys, Inc ., Santa Monica , CA (US ) Dillman et al .Monoclonal antibodies in the treatment ofmalignancy : basic concepts and recent developments . Cancer Invest 19 ( 8 ) : 833 ( * ) Notice: Subject to any disclaimer, the term of this 841, 2001. * patent is extended or adjusted under 35 Skolnick et al. From genes to protein structure and function : novel U . S . C . 154 ( b ) by 1273 days . applications of computational approaches in the genomic era .
    [Show full text]
  • Clinical Study Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex
    Neuron, Vol. 28, 53±67, October, 2000, Copyright 2000 by Cell Press Molecular Characterization of Clinical Study Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex Ka roly Mirnics,*³§ Frank A. Middleton,* pus, superior temporal gyrus, and thalamus, appear to Adriana Marquez,* David A. Lewis,² be disturbed in this disorder (Harrison, 1999; McCarley and Pat Levitt*³ et al., 1999). In particular, a convergence of observations *Department of Neurobiology from clinical, neuroimaging, and postmortem studies ² Departments of Psychiatry and Neuroscience have implicated the dorsal prefrontal cortex (PFC) as a ³ PittArray major locus of dysfunction in schizophrenia (Weinberger University of Pittsburgh School of Medicine et al., 1986; Selemon et al., 1995; Andreasen et al., 1997; Pittsburgh, Pennsylvania 15261 Bertolino et al., 2000). Abnormal PFC function probably contributes to many of the cognitive disturbances in schizophrenia and appears to be related to altered syn- aptic structure and/or function in this cortical region. Summary For example, in subjects with schizophrenia, reductions in gray matter volume in the dorsal PFC have been ob- Microarray expression profiling of prefrontal cortex served in neuroimaging studies (Goldstein et al., 1999; from matched pairs of schizophrenic and control sub- Sanfilipo et al., 2000), and these volumetric changes jects and hierarchical data analysis revealed that tran- are associated with an increase in cell packing density scripts encoding proteins involved in the regulation (Selemon et al., 1995, 1998; Lewis and Lieberman, 2000) of presynaptic function (PSYN) were decreased in all but no change in total neuron number in the PFC (Pak- subjects with schizophrenia. Genes of the PSYN group kenberg, 1993).
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]
  • List & Label Preview File
    L I N A R I S I n f o r m a t i o n B I O L O G I S C H E P R O D U K T E PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. Mouse Anti-Cardiolipin Ig's -ve control for ELISA 1 ml ADI-5502 IgG Mouse 0,5 mg ADI-AMPT11-M-500 Anti-Cardiolipin Ig's +ve control for ELISA polyclonal Mouse 1 ml ADI-5503 CD27 PE (Armenian Hamster IgG1) Hamster 50 tests ADI-MCD027-PE Monoclonal Anti-VSV-G-Cy conjugate for Mouse 0,1 mg ADI-VSV11-Cy Immunofluorescence Interleukin-4 IgG Mouse 0,1 mg ADI-AB-10710 Anti-Myelin Oligodendrocyte Glycoprotein IgG Mouse 0,1 mg ADI-AB-19910 CD160 mAb, PE, , (mouse IgG2bk) Mouse 50 tests ADI-MCD160-PE CD81, Purified (mouse IgG1) Mouse 0,1 mg ADI-MCD081-UL Interleukin-2 receptor IgG Rat 0,1 mg ADI-AB-10310 Interleukin-2 IgG Rat 0,1 mg ADI-AB-10510 Interleukin-4 IgG Rat 0,1 mg ADI-AB-10810 Interleukin-10 IgG Rat 0,1 mg ADI-AB-11310 Interleukin-12p40 IgG Rat 0,1 mg ADI-AB-11410 CTLA-4 IgG Rat 0,1 mg ADI-AB-11610 CD80 IgG Rat 0,1 mg ADI-AB-13310 CD11a IgG Rat 0,1 mg ADI-AB-13510 CD11b-FITC IgG Rat 0,1 mg ADI-AB-13610 B220 IgG Rat 0,1 mg ADI-AB-13910 CD90 Thy-1.1 IgG Rat 0,1 mg ADI-AB-14010 CD90 Thy-1.2 IgG Rat 0,1 mg ADI-AB-14110 CD90 Thy-1 IgG Rat 0,1 mg ADI-AB-14210 CD4 IgG Rat 0,1 mg ADI-AB-16510 IFN-gamma IgG Rat 0,1 mg ADI-AB-16610 CD3 IgG Rat 0,1 mg ADI-AB-17510 Interleukin-12p75 IgG Rat 0,1 mg ADI-AB-20910 CD8b , PE-Cy5 (Clone CT-CD8b) (rat IgG2a) Rat 50 tests
    [Show full text]
  • Roles of the Plant Cell Wall in Powdery Mildew Disease
    Roles of the plant cell wall in powdery mildew disease resistance in Arabidopsis thaliana: PMR5 (POWDERY MILDEW RESISTANT 5) affects the acetylation of cell wall pectin By Candice Cherk Lim A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Shauna Somerville, Chair Professor Patricia Zambryski Associate Professor Mary Wildermuth Professor James Berger Spring 2013 Abstract Roles of the plant cell wall in powdery mildew disease resistance in Arabidopsis thaliana: PMR5 (POWDERY MILDEW RESISTANT 5) affects the acetylation of cell wall pectin by Candice Cherk Lim Doctor of Philosophy in Plant Biology University of California, Berkeley Professor Shauna Somerville, Chair The pmr5 (powdery mildew resistant 5) mutant was found in a screen for genes involved in susceptibility to Golovinomyces cichoracearum, a biotrophic pathogen that infects Arabidopsis. PMR5 is a member of the TBL (TRICHOME BIREFRINGENCE LIKE) family, which is composed of 46 functionally uncharacterized plant-specific proteins. Initial characterization of this mutant showed that pmr5-mediated disease resistance acts independently of the salicylic acid, jasmonic acid, and ethylene signal transduction pathways, and that there are changes in the pmr5 cell wall that may be linked to the gain of resistance in the mutant. Specifically, PMR5 may be affecting cell wall pectin by acetylation. Characterization of the pmr5 cell wall has revealed changes in pectin composition and a decrease in acetylation. This is corroborated by the ability of heterologously expressed PMR5 protein to bind to pectin, with decreased binding affinity to acetylated pectin.
    [Show full text]
  • SLC39A14 Gene Solute Carrier Family 39 Member 14
    SLC39A14 gene solute carrier family 39 member 14 Normal Function The SLC39A14 gene provides instructions for making a protein that transports the element manganese across cell membranes. Manganese is important for many cellular functions, but large amounts are toxic, particularly to brain cells. The SLC39A14 protein is found in the membranes surrounding several types of cells, as well as in the membranes of structures within these cells. The protein is thought to transport excess manganese from the blood into liver cells so that it can be removed from the body through bile. Bile is a substance produced by the liver that is important for digestion and the removal of waste products. The SLC39A14 protein may also transport other elements, including zinc, iron, and cadmium, across cell membranes. The importance of this transport in the body is not well understood. Health Conditions Related to Genetic Changes Hypermanganesemia with dystonia At least five SLC39A14 gene mutations have been found to cause hypermanganesemia with dystonia 2, a condition that begins in early childhood and is characterized by high levels of manganese in the blood and brain (hypermanganesemia), involuntary tensing of the muscles (dystonia), and other movement problems. These mutations impair the transport of manganese into liver cells. As a result, the element cannot be removed from the body through bile. The excess manganese builds up in the blood and subsequently in brain cells, particularly cells in a region of the brain that helps control movement. High levels
    [Show full text]
  • Functional Characterisation of the Barley ZIP7 Zinc Transporter
    Functional characterisation of the barley ZIP7 zinc transporter Jingwen Tiong B. Science (Hons), The University of Adelaide A thesis submitted for the degree of Doctor of Philosophy The University of Adelaide Faculty of Sciences School of Agriculture, Food & Wine Waite Campus February 2012 I Contents List of figures ......................................................................................................................... VI List of tables ......................................................................................................................... VII Abstract ............................................................................................................................... VIII Declaration .............................................................................................................................. X Acknowledgements ............................................................................................................... XI Glossary of abbreviations .................................................................................................. XIII Chapter 1: Literature Review ................................................................................................. 1 1.1 Introduction ...................................................................................................................... 1 1.2 Improvement of plant Zn nutrition and biofortification .................................................. 3 1.2.1 Application of Zn fertilisers as an agronomic
    [Show full text]
  • Mirnas Documented to Play a Role in Hematopoietic Cell Lineage. Our
    Table S1: miRNAs documented to play a role in hematopoietic cell lineage. Our review of the literature summarizing miRNAs known to be involved in the development and proliferation of the hematopoietic lineage cells. miRNA Expression/function/target/regulator References miR-150 Elevated during developmental stages of B and T cell maturation. 16-19 Controls B cell differentiation, present in mature, resting T and B cells but decreased upon activation of naïve T or B cells. Plays a role in establishing lymphocyte identity. Very little is known about function in T cells. Regulators: Foxp3 Target: C-Myb miR-146a/b Upregulated in macropgahe inflammatory response. Differentially 17, 20 upregulated in murine Th1 subset but abolished in Th2 subset. Upregulated in response to TCRs stimulation, as well as by IL-1 and TNF. Highly expressed in murine T-regs and could play a role in establishing lymphocyte identity. Modulates activation induced cell death in activated T cells. Negative regulator of TLR and cytokine signaling pathway. Endotoxin tolerance. Antiviral role. Targets: IRAK1, IRAK2, TRAF6, FAF1 miR-16-1 Promote apoptosis by targeting Bcl2 expression, act as tumor 22 cluster suppressor RNAs. May block differentiation of later stage hematopoietic progenitor cells to mature cells. Downregulated in CLL. Target: BCL2. miR-155 Regulator of T and B cell maturation and innate immune response. 23-29 Expressed in primary mediastinal B-cell lymphoma, T and B cells, macrophages and DCs. Upregulated during B cell activation. Involved in T cell differentiation and indicated as a positive regulator of cytokine production. Activated by stimulating TLR3 and INFab receptors in bone derived macrophages (regulation of antimicrobial defense).
    [Show full text]
  • Differential Expression of Intestinal Membrane Transporters in Cholera
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 581 (2007) 3183–3188 Differential expression of intestinal membrane transporters in cholera patients Carl-Fredrik Flacha,*, Firdausi Qadrib, Taufiqur R. Bhuiyanb, Nur H. Alamb, Eva Jennischec, Jan Holmgrena, Ivar Lo¨nnrothd a Institute of Biomedicine, Department of Microbiology and Immunology, and Go¨teborg University Vaccine Research Institute (GUVAX), Go¨teborg University, Box 435, 40530 Go¨teborg, Sweden b International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Centre for Health and Population Research, Dhaka, Bangladesh c Institute of Biomedicine, Department of Anatomy and Cell Biology, Go¨teborg University, Go¨teborg, Sweden d Institute of Biomedicine, Department of Clinical Bacteriology, Go¨teborg University, Go¨teborg, Sweden Received 10 April 2007; revised 28 May 2007; accepted 1 June 2007 Available online 12 June 2007 Edited by Takashi Gojobori The patients are given an electrolyte solution intravenously fol- Abstract Vibrio cholerae causes the cholera disease through secretion of cholera toxin (CT), resulting in severe diarrhoea lowed by an oral rehydration solution (ORS). The ORS is sup- by modulation of membrane transporters in the intestinal epithe- plemented with carbohydrates for more effective reabsorption lium. Genes encoding membrane-spanning transporters identified of electrolytes, as it is known that sugars are cotransported with as being differentially expressed during cholera disease in a Na+ over the apical membrane of the enterocytes [2]. microarray screening were studied by real-time PCR, immuno- The major virulence factor responsible for the dehydrating histochemistry and in a CaCo-2 cell model.
    [Show full text]
  • A Comprehensive Set of Transcript Sequences of the Heavy Metal Hyperaccumulator Noccaea Caerulescens
    Plant Physiology A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens YA-FEN LIN, Edouard Severing, Bas te_Lintel_Hekkert, Elio Schijlen and Mark G.M. Aarts Journal Name: Frontiers in Plant Science ISSN: 1664-462X Article type: Original Research Article Received on: 11 Dec 2013 Accepted on: 21 May 2014 Provisional PDF published on: 21 May 2014 www.frontiersin.org: www.frontiersin.org Citation: Lin Y, Severing E, Te_lintel_hekkert B, Schijlen E and Aarts MG(2014) A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. Front. Plant Sci. 5:261. doi:10.3389/fpls.2014.00261 /Journal/Abstract.aspx?s=907& /Journal/Abstract.aspx?s=907&name=plant%20physiology& name=plant%20physiology& ART_DOI=10.3389/fpls.2014.00261 ART_DOI=10.3389 /fpls.2014.00261: (If clicking on the link doesn't work, try copying and pasting it into your browser.) Copyright statement: © 2014 Lin, Severing, Te_lintel_hekkert, Schijlen and Aarts. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon. 1 A comprehensive set of transcript sequences of the heavy metal 2 hyperaccumulator Noccaea caerulescens 1# 1,2,# 3 3 1* 3 Ya-Fen Lin , Edouard Severing , Bas te Lintel Hekkert , Elio Schijlen , and Mark G.M.
    [Show full text]
  • The Influence of Root-Zone Bicarbonate and Carbon Dioxide Enrichment on Lettuce, Pepper and Tomato Growth
    The influence of root-zone bicarbonate and carbon dioxide enrichment on lettuce, pepper and tomato growth Estibaliz Leibar-Porcel B.Sc Biology, University of Vigo, Spain M.Sc Molecular Biotechnology, University of Barcelona, Spain This thesis is submitted to Lancaster University in partial fulfilment of the requirements for the degree of doctor of philosophy Declaration Except where reference is made to other sources, I declare that the contents in this thesis are my own work and have not been previously submitted, in part or in full, for the award of a higher degree elsewhere. Estibaliz Leibar-Porcel Lancaster University July 2019 i Publications arising from this thesis Leibar-Porcel, E., McAinsh, M.R., Dodd, I.C. Root-zone CO2 enrichment increases biomass accumulation in lettuce and pepper grown hydroponically and aeroponically. Acta Horticulturae. In Press. (Reproduced as Appendix 1) Oral/Poster presentations from this work Conferences: Leibar-Porcel, E. Increasing crop yield and resource efficiency via root-zone CO2 enrichment. The Great British Tomato Conference. Chesford Grange Hotel. 28-29th September 2016. Leibar-Porcel, E. Increasing crop yield and resource efficiency via root-zone CO2 enrichment. Plant & Crop Science Postgraduate Conference, Lancaster University, 4th October 2016. Leibar-Porcel, E. Increasing crop yield and resource efficiency via root-zone CO2 enrichment. AHDB Studentship Conference. Stratford Manor. 6-7th November 2017. Leibar-Porcel, E. Root-zone CO2 enrichment increases biomass accumulation in lettuce and pepper grown hydroponically and aeroponically. Oral presentation at the XXX. International Horticultural Congress. Istanbul, Turkey. 12-16th August 2018. Posters: Leibar-Porcel, E. Increasing crop yield and resource efficiency via root-zone CO2 enrichment.
    [Show full text]