Clase Liliópsida = Monocotiledoneas (3) Subclase Lilidae

Total Page:16

File Type:pdf, Size:1020Kb

Clase Liliópsida = Monocotiledoneas (3) Subclase Lilidae Clase Liliópsida = Monocotiledoneas (3) Subclase Lilidae Clase Liliópsida = Monocotiledoneas 4. Zingiberidae 5. Lilidae 3. Commelinidae 2. Arecidae 1. Alismatidae Clase Liliópsida = Monocotiledoneas Alismatales Alismatidae Hydrocharitales Acuáticas o palustres, G 3-infinito Limnobium sp Sagittaria sp Clase Liliópsida = Monocotiledoneas Arecales Arecidae Lemnaceae Arales Espata, fruto carnoso Araceae Butia yatay “yatay” Lemna minor Zantedeschia aethiopica “cala” Clase Liliópsida = Monocotiledoneas Commelinales Commelinidae Cyperaceae Cyperales K y C P ausente Poaceae = Juncales Gramineas Typhales Chusquea culeou Tradescantia sp “Colihue” Typha minima “totora” Cyperus papyrus Clase Liliópsida = Monocotiledoneas Musaceae Bromeliales A 5 Zingiberidae Strelitziaceae Zingiberales Zingiberaceae K y C, G ínfero A 1 Androceo 1-6 Cannaceae Canna indica estigma petaloideo estaminodios Musa paradisíaca petaloideos Ananas comosus “ananá” “banano” Clase Liliópsida = Monocotiledoneas Perigonio corolino 3+3 , G súpero o 4. Zingiberidae ínfero, endosperma duro 5. Lilidae K y C, G ínfero, endosperma amiláceo, hojas pinati-paralelinervadas 3. Commelinidae K y C Perianto ausente 2. Arecidae Espata, fruto carnoso 1. Alismatidae Acuáticas, G dialicarpelar Clase Liliópsida = Monocotiledoneas Dioscoreaceae Dioscoreales Smilacaceae Lilidae Aloaceae = Asphodelaceae Asparagales Agavaceae Perigonio corolino 3+3 , Alliaceae G súpero o ínfero, Asparagaceae endosperma duro Hyacynthaceae Pontederiaceae Liliales Liliaceae Iridaceae Orquidales K 3 y C 3, G ínfero, sin endosperma LILIDAE: Dioscoreales, Hojas con lámina y peciolo, palmatinervadas Flores masculinas Smilax glauca Smilax aristolochiifolia Smilax officinalis Frutos Smilacaceae: plantas con zarcillos LILIDAE: Dioscoreales, Hojas con lámina y peciolo, palmatinervadas Dioscorea japónica Flores Dioscorea elephantipes Tubérculos Dioscorea batata “ñame” Dioscoraceae: plantas con tubérculos LILIDAE: Asparagales, plantas con semillas negras Agave sisalana “sisal” Agave americana “pita” Agavaceae: Plantas c/ crecimiento secundario, A 3+3 LILIDAE: Asparagales, plantas con semillas negras Aloe vera Aloaceae: Plantas c/ crecimiento secundario, A 3+3 LILIDAE: Asparagales, plantas con semillas negras Narcissus Amarilys Clivia Amarilidaceae: Plantas herbáceas, gineceo ínfero, A 3+3 LILIDAE: Asparagales, plantas con semillas negras Allium sativum Allium cepa Allium porrum “ajo” “cebolla” “puerro” Alliaceae: Plantas herbáceas con umbelas gineceo súpero, A 3+3 LILIDAE: Asparagales, plantas con semillas negras Aspáragus racemosus Aspáragus officinalis “espárrago” Aspáragus plumosus “helecho plumoso” Asparagaceae: Plantas con filocladios, gineceo súpero, A 3+3 LILIDAE: Asparagales, plantas con semillas negras Aspáragus racemosus Hiacynthus orientalis “jacinto” Hiacynthaceae: Plantas herbáceas, flores en racimos, gineceo súpero, A 3+3 LILIDAE: Liliales Pontedelia cordata “camalote” EichorniaEichornia “camalote”crassipes “camalote” Ponteriaceae: Plantas acuáticas, endosperma amiláceo. LILIDAE: Liliales Lilium candidum “azucena” Tulipa gesneriana “tulipán” Liliaceae: Plantas herbáceas, gineceo súpero, A 3+3 LILIDAE: Liliales Crocus sativus “azafrán” Iridaceae: Plantas herbáceas, gineceo ínfero, A 3 LILIDAE: Liliales Iris germánica “lirio” Freesia sp “fresia” Iridaceae: Plantas herbáceas, gineceo ínfero, A 3 LILIDAE: Orquidales. Orquideas: K, C, ginostemo, A 1-3, polen en polinias. LILIDAE: Orquidales Orquidea cattleya Oncidium sprucei Orquidea dactylorhiza Orquideas: K, C, ginostemo, A 1-3, polen en polinias. LILIDAE: Orquidales Vanilla sp Orquideas: K, C, ginostemo, A 1-3, polen en polinias. Clase Liliópsida = Monocotiledoneas Alismataceae, Araceae, Alismatales Hydrocharitales Dioscoreales Liliales Liaceae, Smilacaceae Asparagaceae, Asparagales Agavaceae, Hyacinthaceae, Iridaceae, Orchidaceae Arecales Poaceae, Bromeliaceae Angiosperm Phylogenetic Group Poales Cyperaceae, Juncaceae, 2009 APG III Typhaceae vs. Sistema de Cronquist 1988 Commelinales Commelinaceae, Pontederiaceae Zingiberales LILIOPSIDAS: Lilidae 1.- En el siguiente esquema indique, donde corresponda, los caracteres diagnósticos de cada subclase (acuáticas – hojas pinati-paralelas – K y C – espata – fruto carnosos – gineceo ínfero – gineceo ínfero o súpero – perigonio corolino – endosperma amiláceo – endosperma duro – gineceo dialicarpelar – perianto ausente). 2.- Diferencie las subclases Zingiberidae y Lilidae por el perianto y el tipo de endosperma. 3.- Indique la familia de la SC Lilidae, correspondiente a los siguientes caracteres: .- Plantas con zarcillos, hojas palmati-nervadas con pecíolos ….. ………………… .- Plantas con tubérculos, hojas palmati-nervadas con pecíolos ………………………… .- Plantas herbáceas, gineceo ínfero, 6 estambres …………………………………….. .- Plantas herbáceas, gineceo ínfero, 3 estambres ……………………………….. .- Plantas herbáceas, flores en umbelas ……………………………………………….. .- Plantas herbáceas, flores en racimo ………………………………………………… .- . Plantas con filocladios ………………………………………………….. .- Plantas acuáticas, gineceo súpero, 6 estambres ……………………………¿Qué tipo de endosperma presentan? …………………………….. 6.- SC Lilidae: Indique el género y familia en los siguientes esquemas. ¿ Cuált iene crecimiento secundario?¿Cuál es acuática? LILIOPSIDAS: Lilidae 4.- ¿Cuáles son las dos familias de la SC Lilidae con crecimiento secundario? 5.- SC Lilidae: Indique el género y familia en los siguientes esquemas. ¿Cuál presenta crecimiento secundario?¿Cuál tiene filocladios? 6.- SC Lilidae: Indique el género y familia en los siguientes esquemas. ¿ Cuált iene crecimiento secundario?¿Cuál es acuática? LILIOPSIDAS: Lilidae 7.- A qué familia de la SC Lilidae corresponde el siguiente diagrama floral. ¿Cuántas piezas tiene cada ciclo del perianto? Cuántos estambres? ¿Cúantos fértiles?¿Qué característica tiene el gineceo y el androceo? Señale el labelo 8.- Señale las características de las Orquídeas: actinomorfas – cigomorfas – polinias – perigonio corolino – látex – labelo – ginostemo – cápsula –G ínfero -velamen 9.- Indique para la familia Orquídeas los siguientes caracteres: hábitat, fruto y posición del G. Cómo se llama el pétalo central más desarrollado? 10.- Realice una clave dicotómica para separar las familias Iridáceas, Liliáceas y Amarilidáceas., por medio del perigonio, número de estambres y posición del gineceo. 11.-Qué número de estambres tienen las Liliáceas y Amarilidáceas? Diferéncielas por la posición del gineceo. 12.- Qué número de estambres y posición del gineceo presentan las Iridáceas. Cite dos ejemplos (N.C. y N.V). 13.- Qué tipo de perigonio, número de estambres y posición del gineceo presentan las Liliáceas. Cite dos ejemplos de importancia hortícola y dos ornamentales (N.C. y N.V). 14.- Indique N.C. y familia de las siguientes plantas: “azucena”, “pita”, “azafrán”, “cebolla”, “espárrago”, 15.- Indique N.C. y familia de las siguientes plantas: “gladiolo”, “ajo”, “aloe”, “jacinto”, “helecho plumoso”. .
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Download the Full Report Pdf, 2.9 MB
    VKM Report 2016:50 Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2016:50 Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food Safety 01.11.2016 ISBN: 00000-00000 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2016). Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants. Scientific Opinion on the on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety ISBN: 978-82-8259-240-6, Oslo, Norway. VKM Report 2016:50 Title: Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Authors preparing the draft opinion Hugo de Boer (chair), Maria G. Asmyhr (VKM staff), Hanne H. Grundt, Inga Kjersti Sjøtun, Hans K. Stenøien, Iris Stiers. Assessed and approved The opinion has been assessed and approved by Panel on Alien organisms and Trade in Endangered Species (CITES). Members of the panel are: Vigdis Vandvik (chair), Hugo de Boer, Jan Ove Gjershaug, Kjetil Hindar, Lawrence Kirkendall, Nina Elisabeth Nagy, Anders Nielsen, Eli K.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • The Herbivorous Insect Fauna of a Submersed Weed, Hydrilla Verticillata (Alismatales: Hydrocharitaceae)
    SESSION 5 Weeds of Aquatic Systems and Wetlands Proceedings of the X International Symposium on Biological Control of Weeds 307 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 307-313 (2000) The Herbivorous Insect Fauna of a Submersed Weed, Hydrilla verticillata (Alismatales: Hydrocharitaceae) C. A. BENNETT1 and G. R. BUCKINGHAM2 1 Department of Entomology and Nematology, University of Florida, and 2 USDA-ARS 1,2 Florida Biological Control Laboratory, P.O. Box 147100, Gainesville, Florida 32614-7100, USA Abstract Although relatively few insects have been reported to feed on submersed aquatic plants, field surveys on Hydrilla verticillata (L. F.) Royle for biological control agents have demonstrated that insect herbivores should be expected when surveying submersed aquatic plants in the native ranges. Beetles, or Coleoptera, especially the weevils (Curculionidae), are important herbivores. Weevils attack submersed plant species both when water is present and when water is absent during dry periods which leave the plants exposed. Pupal success appears to be the major determinant of weevil life cycle strategies. Donaciine leaf beetles (Chrysomelidae) attack the roots or crowns of submersed species, but their feeding and damage is difficult to determine. Leaf-mining Hydrellia flies (Diptera: Ephydridae) are diverse and common on submersed species. Other flies, the midges (Chironomidae), are also common on submersed species, but many utilize the plants only for shelter. However, midge larvae ate the apical meristems on the tips of hydrilla stems. Aquatic caterpillars (Lepidoptera: Pyralidae) are the herbivores most eas- ily observed on submersed species because of their large size and conspicuous damage, but their host ranges might be too broad for use as biological control agents.
    [Show full text]
  • BM CC EB What Can We Learn from a Tree?
    Introduction to Comparative Methods BM CC EB What can we learn from a tree? Net diversification (r) Relative extinction (ε) Peridiscaceae Peridiscaceae yllaceae yllaceae h h atop atop Proteaceae Proteaceae r r Ce Ce Tr oc T ho r M M o de c y y H H C C h r r e e a D D a o o nd o e e G G a a m m t t a a d r P r P h h e e u u c c p A p A r e a a e e a a a c a c n n a i B i B h h n d m d l m a l a m m e a e a e e t t n n c u u n n i i d i i e e e e o n o n p n p n a e a S e e S e e n n x x i i r c c a a n o n o p p h g e h g ae e l r a l r a a a a a a i i a a a e a e i b i b h y d c h d c i y i c a a c x c x c c G I a G I a n c n c c c y l y l t a a t a a e e e e e i l c i l c m l m l e c e c f a e a a f a e a a l r r l c c a i i r l e t e t a a r l a a e e u u u u o a o a a a c a c a a l a l e e e b b a a a a e e c e e c a a s c s c c e l c e l e e g e g e a a a a e e n n s e e s e e e e a a a P a P e e N N u u u S u S a e a e a a e e c c l n a l n e e a e e a e a e a e a e r a r a c c C i C i R R a e a e a e a e r c r c A A a d a a d a e i e i phanopetalaceae s r e ph s r e a a s e c s e c e e u u b a a b a e e P P r r l l e n e a a a a m m entho e e e Ha a H o a c r e c r e nt B B e p e e e c e e c a c c h e a p a a p a lo lo l l a a e s o t e s i a r a i a r r r r r a n e a n e a b a l b t a t gaceae e g e ceae a c a s c s a z e z M i a e M i a c a d e a d e ae e ae r e r a e a e a a a c c ce r e r L L i i ac a Vitaceae Vi r r C C e e ta v e v e a a c a a e ea p e ap c a c a e a P P e e l l e Ge G e e ae a t t e e p p r r ce c an u an
    [Show full text]
  • Early Cretaceous Lineages of Monocot Flowering Plants
    Early Cretaceous lineages of monocot flowering plants Kåre Bremer* Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyva¨gen 18D, SE-752 36 Uppsala, Sweden Edited by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, and approved February 14, 2000 (received for review October 1, 1999) The phylogeny of flowering plants is now rapidly being disclosed tionally complex and not feasible for dating large trees with by analysis of DNA sequence data, and currently, many Cretaceous several reference fossils. fossils of flowering plants are being described. Combining molec- Herein, the focus is on divergence times for the basal nodes of ular phylogenies with reference fossils of known minimum age the monocot phylogeny, and any precision in dating the upper makes it possible to date the nodes of the phylogenetic tree. The nodes of the tree is not attempted. To this end, mean branch dating may be done by counting inferred changes in sequenced lengths from the terminals to the basal nodes of the tree are genes along the branches of the phylogeny and calculating change calculated. Unequal rates in different lineages are manifested as rates by using the reference fossils. Plastid DNA rbcL sequences and unequal branch lengths counting from the root to the terminals eight reference fossils indicate that Ϸ14 of the extant monocot in phylogenetic trees, and the procedure of calculating mean lineages may have diverged from each other during the Early branch lengths reduces the problem of unequal rates toward the Cretaceous >100 million years B.P. The lineages are very different base of the tree.
    [Show full text]
  • Diversity and Evolution of Monocots
    Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . palms, spiderworts, bananas, and – petaloid • Commelinids pineapples . – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinids • largest group of monocots ranging from palms to grasses Dasypogonaceae • strongly monophyletic! • bound ferulic acid in cell walls (fluoresce under UV with ammonium hydroxide added) • this feature allowed placement of Dasypogonaceae 4 genera - W Australia Commelinids *Arecaceae - palms • theme: reduction of flower, loss of • the order has one family - also nectar, loss of zoophily, evolution of called Palmae bracts • 190 genera and 2400 species of trees and shrubs • tropics, subtropics, deserts, grass Mediterranean biomes pickeral weed rapatead bromeliad *Arecaceae - palms *Arecaceae - palms Malaysia • greatest center of diversity in • Rattan palms - a plant group that honors the Wallace Malay archipelago, then Biogeographic Line Amazonia • Asian distribution with few species passing through Sulawesi • depauperate in Africa, but or New Guinea diverse in Madagascar Rattan palm & generic distributions Madagascar *Arecaceae - palms *Arecaceae - palms Great morphological diversity: in stature Great morphological diversity: largest seed of seed plants Syagrus - lilliput palm of Paraguay Jubaea - Chilean wine palm Lodoicea maldivica - Seychelles palm or double nut This genus of 1 species endemic to the Seychelles has generated interest in having the largest seed, and in that the shape of the *Arecaceae - palms seed has suggested the devil's work or aphrodisiacal properties. Great morphological diversity: largest leaf What is unusual about how this species was first discovered? Corypha Raffia - rattan Lodoicea maldivica - Seychelles palm or double nut .
    [Show full text]
  • Biosystematic Studies on Commelinaceae (Commelinales) I
    ISSN 1346-7565 Acta Phytotax. Geobot. 68 (3): 193–198 (2017) doi: 10.18942/apg.201710 Biosystematic Studies on Commelinaceae (Commelinales) I. Phylogenetic Analysis of Commelina in Eastern and Southeastern Asia * CHUNG-KUN LEE , SHIZUKA FUSE AND MINORU N. TAMURA Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. *[email protected] (author for correspondence) Commelina, the pantropical and largest genus in Commelinaceae, consists of ca. 205 species with char- acteristic conduplicate involucral bracts. Previous phylogenetic studies of Commelina, which mainly used African and North American species, suggested that the ancestral character state of the margins of the involucral bracts of Commelina was free and that free to fused occurred only once. To test this evo- lutionary scenario, we performed parsimony and likelihood analyses with partial matK sequences using 25 individuals from 11 species of Commelina, primarily from eastern and southeastern Asia, with An- eilema and Pollia as outgroups. Results showed that Commelina comprises two major clades, one con- sisting of four species, and the other consisting of seven species. Species with free margins of the invo- lucral bracts were in both major clades: C. suffruticosa in the first clade and C. coelestis, C. communis, C. diffusa, C. purpurea and C. sikkimensis in the latter. The phylogenetic trees suggested that the number of shifts is fewer when the ancestral state was fused and that there were two parallel evolutionary trends toward free. Key words: Commelina, Commelina maculata, Commelina paludosa, Commelina suffruticosa, Com- melinaceae, involucral bracts, matK, maximum likelihood, maximum parsimony, phylogeny Commelina L., the largest genus of Com- na to be sister to a clade of Pollia Thunb., Poly- melinaceae Mirb.
    [Show full text]