Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice

Total Page:16

File Type:pdf, Size:1020Kb

Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2006 Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice Yesim Aydin Son University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Son, Yesim Aydin, "Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1636 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yesim Aydin Son entitled "Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Edward J. Michaud, Major Professor We have read this dissertation and recommend its acceptance: Cymbeline T. Culiat, Mitchel J. Doktycz, Mary Ann Handel, Jay R. Snoddy Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Yesim Aydin Son entitled “Differential Expression of Skin Cancer and Hair-Follicle Cycle Regulated Genes in Tumor Susceptible K14-Agouti Mice.” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Edward J. Michaud _________________________________ Major Professor We have read this dissertation and recommend its acceptance: Cymbeline T. Culiat _________________________ Mitchel J. Doktycz _________________________ Mary Ann Handel _________________________ Jay R. Snoddy _________________________ Accepted for the Council: Anne Mayhew ______________________________ Vice Chancellor and Dean of Graduate Studies (Original signatures are on file with official student records.) DIFFERENTIAL EXPRESSION OF SKIN CANCER AND HAIR-FOLLICLE CYCLE REGULATED GENES IN TUMOR SUSCEPTIBLE K14-AGOUTI MICE A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Yeşim AYDIN SON August, 2006 Copyright © 2006 by Yeşim AYDIN SON All rights reserved. ii DEDICATION This dissertation is dedicated to my family, my father, DR. YUSUF AYDIN, and my husband, DR. ÇAĞDAŞ D. SON, for their endless love and support. iii ACKNOWLEDGMENTS Foremost, I would like to acknowledge my advisor Dr. Edward J. Michaud. Besides introducing me to the world of mouse genetics, I am deeply thankful to him for his guidance, encouragement, positive attitude, always providing constructive criticism, and all the time and energy he put into my project. As members of my doctoral committee I would like to thank to Dr. Cymbeline T. Culiat, Dr. Mitchel J. Doktycz, Dr. Mary Ann Handel, and Dr. Jay R. Snoddy for their invaluable input, advice and support. Also I would like to thank to Dr. Jeffrey M. Becker, former director of Graduate School of Genome Science and Technology Program, for his help, support, and advice on countless occasions. I would like to thank to Dr. Brian O’Nuallain, Dr. Brynn J. Voy, Dr. Peter R. Hoyt, Dr. Erich Baker, and Dr. Roz Miltenberger for their insights, and feedback during my rotations, and research, and all the members of the “Oak Ridge Mouse House” for their technical assistance. My lab partners and friends Sujata Agarwal, Ann Wymore, and Carmen Foster, many thanks to you, for your help and company, which you never hesitated to share, and for your support all through this journey. Also, I would like to thank Michael J. Miller, my former student, for his excellent assistance with the real time qRT-PCR experiments. It was a great pleasure working with you all. Additionally I would like to thank to all my friends in Knoxville and in other cities, for always being there for us. My baby boy Adal, thank you for bringing all the joy to our family, and filling our hearts with love. Last but not least, I would like to thank all my family, and friends in Turkey. Even though you were so far away from us thank you for all your efforts to make us feel that we are always close to home. iv ABSTRACT The mouse agouti protein is transiently expressed in the skin and signals through the melanocortin 1 receptor to switch pigment production of hair-follicle melanocytes from black to yellow. Ubiquitous over-expression of agouti protein in mice carrying the spontaneous dominant mutations Ay and Avy causes a pleiotropic syndrome characterized by solid yellow hair color, obesity, diabetes, and increased susceptibility to carcinogenesis in a wide variety of tissues, including the skin. Over-expression of agouti in the skin of keratin 14 (K14)- Agouti transgenic mice promotes skin carcinogenesis, even in the absence of obesity and diabetes. In this study cDNA microarray and qRT-PCR analyses are used to identify molecular changes in the skin of K14-Agouti mice associated with the promotion stage of carcinogenesis. Histological analysis of the skin revealed that there were no differences in gross morphology or in timing of hair- follicle stages between transgenic and control mice. However, cDNA microarray analysis identified 181 genes with significantly altered expression levels in the skin of transgenic mice. Additionally, qRT-PCR analysis demonstrated that the levels and temporal patterns of expression of 10 genes previously associated with skin and/or other epithelial cancers were significantly altered in the skin of K14- Agouti transgenic mice. Agouti-induced over-expression of these proto- oncogenes in the skin of K14-Agouti mice is proposed to be associated with the increased susceptibility to skin carcinogenesis. A hypothetical model is presented to explain the mechanism of action of the agouti protein as a tumor promoter in skin carcinogenesis. Additionally, strategies for future follow-on experiments to further investigate the role of agouti in tumor promotion and to test aspects of the proposed hypothetical model are discussed. v TABLE OF CONTENTS Chapter Page I. BACKGROUND AND SIGNIFICANCE ………………………………………...1 The Mouse Nonagouti Locus ……………………………………………………….2 Molecular Characterization of the Agouti Gene …………………………….4 Agouti Gene Structure …………………………………………………4 Agouti Protein Structure and Action …………………………………7 Agouti Mutants ………………………………………………………………..11 Dominant Regulatory Mutations of Agouti ………………………...12 Regulation of Pigmentation by Agouti Signaling …………………………..14 Molecular Mechanisms of Obesity and Diabetes in Yellow Mice ………..15 Agouti Signaling in Tumor Promotion …………………………………………...18 Two-Stage Model of Skin Carcinogenesis …………………………………..18 Tumor Susceptibility in Mouse Skin ………………………………………...22 Hair-Follicle Cycle and Tumor Susceptibility ………………………………23 Agouti is a Tumor Promoter …………………………………………………29 II. DIFFERENTIAL EXPRESSION OF SKIN CANCER AND HAIR-FOLLICLE CYCLE REGULATED GENES IN TUMOR SUSCEPTIBLE K14-AGOUTI MICE ……………………………………………………………………………………38 Introduction …………………………………………………………………………39 Material and Methods………………………………………………………………..41 Mice ……………………………………………………………………………..41 RNA Isolation and cDNA Preparation ……………………………………...41 Microarray Analysis …………………………………………………………..42 Statistical Analysis ……………………………………………………………..42 Real-Time qRT-PCR …………………………………………………………43 Synchronization of Hair-Follicle Cycle ……………………………………...43 Histology ……………………………………………………………………….44 Results ……………………………………………………………………………….44 Microarray Analysis of Gene Expression in the Skin of Adult K14-Agouti and Control Mice ……………………………………………….44 qRT-PCR Analysis of the Temporal Expression Profiles of 10 Genes in the Skin of K14-Agouti and Control Mice ……………………….45 Examining Gene Expression Profiles in K14-Agouti Skin at Precisely Determined Stages of the Hair-Follicle Cycle …………………...56 Discussion …………………………………………………………………………...67 vi III. CONCLUSIONS AND FUTURE PERSPECTIVES ………………………….74 Model Signal Transduction Pathways for Agouti-Induced Cellular Proliferation …………………………………………………………………………76 Signal Transducer and Activator of Transcription (STAT) Pathway …….77 Mitogen-Activated Protein Kinase (MAPK) Pathway …………………….82 Protein Kinase C (PKC) Pathway …………………………………………….83 Regulation of Gene Expression through Protein Kinase C ………………..87 Future Perspectives …………………………………………………………………89 LIST OF REFERENCES ………………………………………………………………98 APPENDIX …………………………………………………………………………...116 VITA………………………………………………………………………………...…123 vii LIST OF TABLES Table Page 1. List of 40 genes with known biological functions that are significantly up-regulated in the skin of K14-Agouti mice ………………..47 2. List of 29 genes with known biological functions that are significantly down-regulated in the skin of K14-Agouti mice …………...48 3. Summary of known functions of 10 genes with altered temporal expression
Recommended publications
  • Astrin-SKAP Complex Reconstitution Reveals Its Kinetochore
    RESEARCH ARTICLE Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80 David M Kern1,2, Julie K Monda1,2†, Kuan-Chung Su1†, Elizabeth M Wilson-Kubalek3, Iain M Cheeseman1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Cell Biology, The Scripps Research Institute, La Jolla, United States Abstract Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions. *For correspondence: DOI: https://doi.org/10.7554/eLife.26866.001 [email protected] †These authors contributed equally to this work Introduction Competing interests: The The macromolecular kinetochore complex links chromosomes to dynamic microtubule polymers and authors declare that no harnesses the forces generated by microtubule growth and depolymerization to facilitate accurate competing interests exist.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic MYCBP monoclonal antibody (M13), clone 1B12 Catalog # : H00026292-M13 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Transfected lysate) Description: MYCBP. Immunogen: MYCBP (NP_036465.2, 34 a.a. ~ 103 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: LYEEPEKPNSALDFLKHHLGAATPENPEIELLRLELAEMKEKYEAIVEENK KLKAKLAQYEPPQEEKRAE enlarge Host: Mouse Western Blot (Recombinant protein) Reactivity: Human Sandwich ELISA (Recombinant Isotype: IgG2a Kappa protein) Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge ELISA Western Blot detection against Immunogen (33.44 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Transfected lysate) Page 1 of 3 2016/5/23 Western Blot analysis of MYCBP expression in transfected 293T cell line by MYCBP monoclonal antibody (M13), clone 1B12. Lane 1: MYCBP transfected lysate(12 KDa). Lane 2: Non-transfected lysate. Protocol Download Western Blot (Recombinant protein) Protocol Download Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged MYCBP is 0.1 ng/ml as a capture antibody.
    [Show full text]
  • “The Impact of ART on Genome‐Wide Oxidation of 5‐Methylcytosine and the Transcriptome During Early Mouse Development”
    “The impact of ART on genome‐wide oxidation of 5‐methylcytosine and the transcriptome during early mouse development” Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Elif Diken geb. Söğütcü geb. am 22.07.1987 in Giresun-TURKEY Mainz 2016 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: Summary Summary The use of assisted reproductive technologies (ART) has been increasing over the past three decades due to the elevated frequency of infertility problems. Other factors such as easier access to medical aid than in the past and its coverage by health insurance companies in many developed countries also contributed to this growing interest. Nevertheless, a negative impact of ART on transcriptome and methylation reprogramming is heavily discussed. Methylation reprogramming directly after fertilization manifests itself as genome-wide DNA demethylation associated with the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the pronuclei of mouse zygotes. To investigate the possible impact of ART particularly on this process and the transcriptome in general, pronuclear stage mouse embryos obtained upon spontaneous ovulation or superovulation through hormone stimulation representing ART were subjected to various epigenetic analyses. A whole- transcriptome RNA-Seq analysis of pronuclear stage embryos from spontaneous and superovulated matings demonstrated altered expression of the Bbs12 gene known to be linked to Bardet-Biedl syndrome (BBS) as well as the Dhx16 gene whose zebrafish ortholog was reported to be a maternal effect gene. Immunofluorescence staining with antibodies against 5mC and 5hmC showed that pronuclear stage embryos obtained by superovulation have an increased incidence of abnormal methylation and hydroxymethylation patterns in both maternal and paternal pronuclear DNA compared to their spontaneously ovulated counterparts.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Structural Capacitance in Protein Evolution and Human Diseases
    Structural Capacitance in Protein Evolution and Human Diseases Adrian Woolfson, Ashley Buckle, Natalie Borg, Geoffrey Webb, Itamar Kass, Malcolm Buckle, Jiangning Song, Chen Li, Liah Clark, Rory Zhang, et al. To cite this version: Adrian Woolfson, Ashley Buckle, Natalie Borg, Geoffrey Webb, Itamar Kass, et al.. Structural Ca- pacitance in Protein Evolution and Human Diseases. Journal of Molecular Biology, Elsevier, 2018, 10.1016/j.jmb.2018.06.051. hal-02368321 HAL Id: hal-02368321 https://hal.archives-ouvertes.fr/hal-02368321 Submitted on 20 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Structural Capacitance in Protein Evolution and Human Diseases Chen Li, Liah Clark, Rory Zhang, Benjamin Porebski, Julia Mccoey, Natalie Borg, Geoffrey Webb, Itamar Kass, Malcolm Buckle, Jiangning Song, etal. To cite this version: Chen Li, Liah Clark, Rory Zhang, Benjamin Porebski, Julia Mccoey, et al.. Structural Capaci- tance in Protein Evolution and Human Diseases. Journal of Molecular Biology, Elsevier, 2018, 10.1016/j.jmb.2018.06.051. hal-02368321 HAL Id: hal-02368321 https://hal.archives-ouvertes.fr/hal-02368321 Submitted on 20 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not.
    [Show full text]
  • Lncrna LUNAR1 Accelerates Colorectal Cancer Progression by Targeting the Mir‑495‑3P/MYCBP Axis
    INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1157-1168, 2020 lncRNA LUNAR1 accelerates colorectal cancer progression by targeting the miR‑495‑3p/MYCBP axis JIAJIE QIAN1, ALOK GARG2, FUQIANG LI3, QIANYUN SHEN1 and KE XIAO4 1Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China; 2Department of Surgery, City Hospital Braunschweig, D-38118 Braunschweig, Germany; 3Department of Thyroid Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China; 4Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, D-30625 Hannover, Lower Saxony, Germany Received April 16, 2020; Accepted September 14, 2020 DOI: 10.3892/ijo.2020.5128 Abstract. Colorectal cancer (CRC) is a tumor type and functional research showed that LUNAR1 accelerated characterized by high patient morbidity and mortality. It has CRC progression via the miR-495-3p/MYCBP axis. In been reported that long non-coding (lncRNA) LUNAR1 conclusion, LUNAR1 accelerates CRC progression via the (LUNAR1) participates in the regulation of tumor progression, miR-495-3p/MYCBP axis, indicating that LUNAR1 may such as diffuse large B-cell lymphoma. However, its role and serve as a prognostic biomarker for CRC patients. underlying mechanisms in CRC progression have not been elucidated. The present study was designed to investigate Introduction the underlying mechanisms by which LUNAR1 regulates CRC progression. RT-qPCR and Pearson's correlation Colorectal cancer (CRC) is a tumor type characterized by analysis revealed that LUNAR1 was highly expressed and high patient morbidity and mortality (1). At present, surgery, was negatively associated with the overall survival of CRC radiotherapy and chemotherapy are the primary strategies for patients.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Activation of NF-Κb Signaling Promotes Prostate Cancer Progression in the Mouse and Predicts Poor Progression and Death in Pati
    SUPPLEMENTARY DATA: Supplementary Figure 1. NF-B signaling is continuously activated in the prostate of - mouse. In order to determine the NF- '- mouse, we crossed the '- mice with NGL, a NF-B reporter mouse. NGL transgenic mice are engineered to express a GFP/luciferase fusion protein under the control of a promoter containing multiple NF-B consensus binding sites (1). Since the NF-'- NGL mouse is activated in the whole body, the relatively high level of background activation does not allow detection of NF- prostate. Therefore, in order to determine the NF-the '- mouse, we grafted the prostates from 'o the kidney capsule of male nude mice using a tissue rescue technique. NF-B activity was measured at 7 weeks after grafting. The bioluminescence imaging shows NF-B signaling is activated (green) in the kidney, where the grafted prostate from ' use resides (B). In panel (A), the control mouse (grafted with the prostate from NGL mouse) has no bioluminescence, illustrating that in the absence of '-, there is not activation of NF- B. The circles indicate kidney areas. 1 Supplementary Figure 2. NF-B signaling activated in the prostate of Myc/IB bigenic mouse. The prostates from Myc alone (Myc) and bigenic (Myc/IB) mice were harvested at 6 months of age. Activation of NF-B signaling in the prostate was determined by IHC staining of p65-pho antibody. 2 Supplementary Figure 3. Continuous activation of NF-B signaling promotes PCa progression in the Hi-Myc transgenic mouse. The prostates from Myc alone (Myc) and bigeneic (Myc/IB) mice were harvested at 6 months of age.
    [Show full text]
  • Novel Gene Discovery in Primary Ciliary Dyskinesia
    Novel Gene Discovery in Primary Ciliary Dyskinesia Mahmoud Raafat Fassad Genetics and Genomic Medicine Programme Great Ormond Street Institute of Child Health University College London A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy University College London 1 Declaration I, Mahmoud Raafat Fassad, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Primary Ciliary Dyskinesia (PCD) is one of the ‘ciliopathies’, genetic disorders affecting either cilia structure or function. PCD is a rare recessive disease caused by defective motile cilia. Affected individuals manifest with neonatal respiratory distress, chronic wet cough, upper respiratory tract problems, progressive lung disease resulting in bronchiectasis, laterality problems including heart defects and adult infertility. Early diagnosis and management are essential for better respiratory disease prognosis. PCD is a highly genetically heterogeneous disorder with causal mutations identified in 36 genes that account for the disease in about 70% of PCD cases, suggesting that additional genes remain to be discovered. Targeted next generation sequencing was used for genetic screening of a cohort of patients with confirmed or suggestive PCD diagnosis. The use of multi-gene panel sequencing yielded a high diagnostic output (> 70%) with mutations identified in known PCD genes. Over half of these mutations were novel alleles, expanding the mutation spectrum in PCD genes. The inclusion of patients from various ethnic backgrounds revealed a striking impact of ethnicity on the composition of disease alleles uncovering a significant genetic stratification of PCD in different populations.
    [Show full text]
  • ALK Is a Critical Regulator of the MYC-Signaling Axis in ALK Positive Lung Cancer
    Henry Ford Health System Henry Ford Health System Scholarly Commons Hematology Oncology Articles Hematology-Oncology 2-6-2018 ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer Amanda B. Pilling Henry Ford Health System, [email protected] Jihye Kim Adriana Estrada-Bernal Qiong Zhou Anh T. Le See next page for additional authors Follow this and additional works at: https://scholarlycommons.henryford.com/ hematologyoncology_articles Recommended Citation Pilling AB, Kim J, Estrada-Bernal A, Zhou Q, Le AT, Singleton KR, Heasley LE, Tan AC, DeGregori J, and Doebele RC. ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget 2018; 9(10):8823-8835. This Article is brought to you for free and open access by the Hematology-Oncology at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Hematology Oncology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons. Authors Amanda B. Pilling, Jihye Kim, Adriana Estrada-Bernal, Qiong Zhou, Anh T. Le, Katherine R. Singleton, Lynn E. Heasley, Aik C. Tan, James DeGregori, and Robert C. Doebele This article is available at Henry Ford Health System Scholarly Commons: https://scholarlycommons.henryford.com/ hematologyoncology_articles/14 www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 10), pp: 8823-8835 Priority Research Paper ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer Amanda B. Pilling1,2, Jihye Kim1, Adriana Estrada-Bernal1, Qiong Zhou1, Anh T. Le1, Katherine R. Singleton1, Lynn E. Heasley1, Aik Choon Tan1, James DeGregori1 and Robert C.
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]