Crocin Suppresses Multidrug Resistance in MRP Overexpressing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protective Effect of Crocin Against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture
Protective Effect of Crocin against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture Aicha Laabich, Ganesh P. Vissvesvaran, Kuo L. Lieu, Kyoko Murata, Tim E. McGinn, Corinne C. Manmoto, John R. Sinclair, Ibrahim Karliga, David W. Leung, Ahmad Fawzi, and Ryo Kubota PURPOSE. The present study was performed to investigate the major blue light–absorbing fluorophores of lipofuscin in the effect of crocin on blue light– and white light–induced rod and RPE believed to be associated with AMD pathogenesis.7 Several cone death in primary retinal cell cultures. epidemiologic studies suggest that long-term history of expo- 8 METHODS. Primary retinal cell cultures were prepared from sure to light may have some impact on the incidence of AMD. Exposure to intense light causes photoreceptor death. Light- primate and bovine retinas. Fifteen-day-old cultures were ex- 9 posed to blue actinic light or to white fluorescent light for 24 induced photoreceptor death is mediated by rhodopsin, and the extent of its bleaching and its regeneration and visual hours. Cultures were treated by the addition of different con- 10,11 centrations of crocin for 24 hours before light exposure or for transduction proteins determine the degree of damage. Blue light– and white light–induced damage of retinal cells 8 hours after light exposure. Cultures kept in the dark were 12,13 used as controls. Green nucleic acid stain assay was used to have been widely used as in vivo models. Although the abnormality of the retinal pigment epithelium is thought to evaluate cell death. -
Carotene in Obesity Research: Technical Considerations and Current Status of the Field
nutrients Review β-carotene in Obesity Research: Technical Considerations and Current Status of the Field Johana Coronel 1, Ivan Pinos 2 and Jaume Amengual 1,2,* 1 Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; [email protected] 2 Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected] Received: 16 February 2019; Accepted: 6 April 2019; Published: 13 April 2019 Abstract: Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields. -
Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity
antioxidants Review Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity Kandi Sridhar , Baskaran Stephen Inbaraj and Bing-Huei Chen * Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] (K.S.); [email protected] or [email protected] (B.S.I.) * Correspondence: [email protected]; Tel.: +886-2-2905-3626 Abstract: Carotenoids are natural pigments widely used in food industries due to their health- promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, charac- terization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for Citation: Sridhar, K.; Inbaraj, B.S.; varied lengths of time, while the release behavior and bioaccessibility were determined by various Chen, B.-H. Recent Advances on in vitro digestion and absorption models as well as bioavailability through elucidating pharma- Nanoparticle Based Strategies for cokinetics in an animal model. -
Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin. -
Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: a Promising Bioactive Compound for Cancer Therapy
International Journal of Molecular Sciences Review Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: A Promising Bioactive Compound for Cancer Therapy Sarah Méresse 1,2,3, Mostefa Fodil 1 , Fabrice Fleury 2 and Benoît Chénais 1,* 1 EA 2160 Mer Molécules Santé, Le Mans Université, F-72085 Le Mans, France; [email protected] (S.M.); [email protected] (M.F.) 2 UMR 6286 CNRS Unité Fonctionnalité et Ingénierie des Protéines, Université de Nantes, F-44000 Nantes, France; [email protected] 3 UMR 7355 CNRS Immunologie et Neurogénétique Expérimentales et Moléculaires, F-45071 Orléans, France * Correspondence: [email protected]; Tel.: +33-243-833-251 Received: 23 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: Fucoxanthin is a well-known carotenoid of the xanthophyll family, mainly produced by marine organisms such as the macroalgae of the fucus genus or microalgae such as Phaeodactylum tricornutum. Fucoxanthin has antioxidant and anti-inflammatory properties but also several anticancer effects. Fucoxanthin induces cell growth arrest, apoptosis, and/or autophagy in several cancer cell lines as well as in animal models of cancer. Fucoxanthin treatment leads to the inhibition of metastasis-related migration, invasion, epithelial–mesenchymal transition, and angiogenesis. Fucoxanthin also affects the DNA repair pathways, which could be involved in the resistance phenotype of tumor cells. Moreover, combined treatments of fucoxanthin, or its metabolite fucoxanthinol, with usual anticancer treatments can support conventional therapeutic strategies by reducing drug resistance. This review focuses on the current knowledge of fucoxanthin with its potential anticancer properties, showing that fucoxanthin could be a promising compound for cancer therapy by acting on most of the classical hallmarks of tumor cells. -
Biologically Active Compounds in Seaweed Extracts Useful in Animal Diet
20 The Open Conference Proceedings Journal, 2012, 3, (Suppl 1-M4) 20-28 Open Access Biologically Active Compounds in Seaweed Extracts - the Prospects for the Application Katarzyna Chojnacka*, Agnieszka Saeid, Zuzanna Witkowska and Łukasz Tuhy Institute of Inorganic Technology and Mineral Fertilizers, Wroclaw University of Technology ul. Smoluchowskiego 25, 50-372 Wroclaw, Poland Abstract: The paper covers the latest developments in research on the utilitarian properties of algal extracts. Their appli- cation as the components of pharmaceuticals, feeds for animals and fertilizers was discussed. The classes of various bio- logically active compounds were characterized in terms of their role and the mechanism of action in an organism of hu- man, animal and plant. Recently, many papers have been published which discuss the methods of manufacture and the composition of algal ex- tracts. The general conclusion is that the composition of extracts strongly depends on the raw material (geographical loca- tion of harvested algae and algal species) as well as on the extraction method. The biologically active compounds which are transferred from the biomass of algae to the liquid phase include polysaccharides, proteins, polyunsaturated fatty ac- ids, pigments, polyphenols, minerals, plant growth hormones and other. They have well documented beneficial effect on humans, animals and plants, mainly by protection of an organism from biotic and abiotic stress (antibacterial activity, scavenging of free radicals, host defense activity etc.) and can be valuable components of pharmaceuticals, feed additives and fertilizers. Keywords: Algal extracts, feed additives, fertilizers, pharmaceuticals, biologically active compounds. 1. INTRODUCTION was paid to biologically active compounds, useful as the components of pharmaceuticals, feeds and fertilizers. -
A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae
Journal of Medicinal Plants A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae Irvani N (M.Sc.)1, Hajiaghaee R (Ph.D.)2, Zarekarizi A.R (M.Sc.)2* 1- Faculty of Biological Science and Technology, Shahid Beheshti University, Tehran, Iran 2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Institute of Medicinal Plants, ACECR, Karaj, Iran P.O.BOX (Mehr Vila): 31375-369 Tel: +98 - 26 – 34764010-18, Fax: +98 – 26- 34764021 E-mail: [email protected] Received: 28 June 2017 Accepted: 18 July 2018 Abstract Fucoxanthin, an allenic carotenoid, is abundant in macro and microalgae as a component of the light-harvesting complex for photosynthesis and photo protection. This carotenoid has shown important pharmaceutical bioactivity, exerting antioxidant, anti-cancer, anti-diabetic, anti- obesity, anti-photoaging, anti-angiogenic, and anti-metastatic effects on a variety of biological models. This carotenoid has been proven to be safe for animal consumption, opening up the opportunity of using this bioactive compound in the treatment of different pathologies. In this paper, an updated account of the research progress in biosynthetic pathway and health benefits of fucoxanthin is presented. Meanwhile, a review on the various methods of extraction of fucoxanthin in macro and microalgae is also revisited. According to these studies providing important background knowledge, fucoxanthin can be utilized into drugs and nutritional products. Keywords: Fucoxanthin, Carotenoids, Biosynthesis pathway, Extraction methods 6 Volume 17, No. 67, Summer 2018 … A Review on Biosynthesis Introduction million species [5]. Microalgae are important Consumer awareness of the importance of a primary producers in marine environments and healthy diet, protection of the environment, play a significant role in supporting aquatic resource sustainability and using all natural animals [6]. -
Chemical Cleavage of Fucoxanthin from Undaria Pinnatifida And
Food Chemistry 211 (2016) 365–373 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Chemical cleavage of fucoxanthin from Undaria pinnatifida and formation of apo-fucoxanthinones and apo-fucoxanthinals identified using LC-DAD-APCI-MS/MS ⇑ Junxiang Zhu a, Xiaowen Sun a, Xiaoli Chen a, Shuhui Wang b, Dongfeng Wang a, a College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People’s Republic of China b Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, People’s Republic of China article info abstract Article history: As the most abundant carotenoid in nature, fucoxanthin is susceptible to oxidation under some condi- Received 11 September 2015 tions, forming cleavage products that possibly exhibit both positive and negative health effects in vitro Received in revised form 5 May 2016 and in vivo. Thus, to produce relatively high amounts of cleavage products, chemical oxidation of fucox- Accepted 11 May 2016 anthin was performed. Kinetic models for oxidation were probed and reaction products were identified. Available online 11 May 2016 The results indicated that both potassium permanganate (KMnO4) and hypochlorous acid/hypochlorite (HClO/ClOÀ) treatment fitted a first-order kinetic model, while oxidation promoted by hydroxyl radical Chemical compounds studied in this article: Å (OH ) followed second-order kinetics. With the help of liquid chromatography–tandem mass spectrom- Fucoxanthin (PubChem CID: 5281239) etry, a total of 14 apo-fucoxanthins were detected as predominant cleavage products, with structural Keywords: and geometric isomers identified among them. Three apo-fucoxanthinones and eleven apo- Fucoxanthin fucoxanthinals, of which five were cis-apo-fucoxanthinals, were detected upon oxidation by the three À Å Apo-fucoxanthins oxidizing agents (KMnO4, HClO/ClO , and OH ). -
Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments
Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments Item Type Article Authors Demurtas, Olivia Costantina; Frusciante, Sarah; Ferrante, Paola; Diretto, Gianfranco; Azad, Noraddin Hosseinpour; Pietrella, Marco; Aprea, Giuseppe; Taddei, Anna Rita; Romano, Elena; Mi, Jianing; Al-Babili, Salim; Frigerio, Lorenzo; Giuliano, Giovanni Citation Demurtas OC, Frusciante S, Ferrante P, Diretto G, Azad NH, et al. (2018) Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiology: pp.01815.2017. Available: http://dx.doi.org/10.1104/pp.17.01815. Eprint version Post-print DOI 10.1104/pp.17.01815 Publisher American Society of Plant Biologists (ASPB) Journal Plant Physiology Rights Archived with thanks to Plant Physiology Download date 28/09/2021 10:07:42 Link to Item http://hdl.handle.net/10754/628006 Plant Physiology Preview. Published on May 29, 2018, as DOI:10.1104/pp.17.01815 1 Short title: Compartmentation of saffron crocin biosynthesis 2 3 Corresponding author: Giovanni Giuliano, ENEA, Italian National Agency for New 4 Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via 5 Anguillarese n° 301, 00123 Rome, Italy; Phone: +390630483192, E-mail: 6 [email protected] 7 8 Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular 9 compartments 10 11 Olivia Costantina Demurtas1, Sarah Frusciante1, Paola Ferrante1, Gianfranco Diretto1, Noraddin 12 Hosseinpour Azad2, Marco Pietrella1,3, Giuseppe Aprea1, Anna Rita Taddei4, Elena Romano5, 13 Jianing Mi6, Salim Al-Babili6, Lorenzo Frigerio7, Giovanni Giuliano1* 14 15 1Italian National Agency for New Technologies, Energy and Sustainable Economic 16 Development (ENEA), Casaccia Res. -
Photochemical Degradation of Antioxidants: Kinetics and Molecular End Products
Photochemical degradation of antioxidants: kinetics and molecular end products Sofia Semitsoglou Tsiapou 2020 Americas Conference IUVA [email protected] 03/11/2020 Global carbon cycle and turnover of DOC 750 Atmospheric CO2 Surface Dissolved Inorganic C 610 1,020 Dissolved Terrestrial Organic Biosphere Carbon 662 Deep Dissolved 38,100 Inorganic C Gt C (1015 gC) Global carbon cycle and turnover of DOC DOC (mM) Stephens & Aluwihare ( unpublished) Buchan et al. 2014, Nature Reviews Microbiology Problem definition Enzymatic processes Bacteria Labile Recalcitrant Fungi Light Corganic Algae Corganic Radicals Carotenoids (∙OH, ROO∙) ➢ LC-MS ➢ GC-MS H2O-soluble products As Biomarkers for ➢ GC-IRMS Corg sources, fate and reactivity??? Hypotheses 1. Carotenoids in fungi neutralize free radicals and counteract oxidative stress and in marine environments are thought to serve as precursors for recalcitrant DOC 2. Carotenoid oxidation products can accumulate and their production and release can represent an important flux of recalcitrant DOC 3. Biological sources and diagenetic pathways of carotenoids are encoded into the fine-structure as well as isotopic composition of the degradation products FUNgal experiments Strains Culture cultivation - Unidentified - Potato Dextrose broth medium - Aspergillus candidus - Incubated 7 days - Aspergillus flavus - Aerobic conditions - Aspergillus terreus - Under natural light (28℃ ) - Penicillium sp. Biomass and Media Lyophilization extracts Bligh and Dyer method (for lipids analysis) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts ABTS assay: fungal antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 400 350 300 250 200 Medium 150 Biomass extracted] 100 50 0 TEAC [µmol of Trolox/mg of biomass of of[µmol Trolox/mg TEAC Unidentified Aspergillus Aspergillus Aspergillus Penicillium candidus flavus terreus sp. -
The Effect of Crocin Supplementation on Glycemic Control, Insulin
Behrouz et al. Diabetol Metab Syndr (2020) 12:59 https://doi.org/10.1186/s13098-020-00568-6 Diabetology & Metabolic Syndrome RESEARCH Open Access The efect of crocin supplementation on glycemic control, insulin resistance and active AMPK levels in patients with type 2 diabetes: a pilot study Vahideh Behrouz1, Ali Dastkhosh1, Mehdi Hedayati2, Meghdad Sedaghat3, Maryam Sharafkhah4 and Golbon Sohrab1* Abstract Background: Crocin as a carotenoid exerts anti-oxidant, anti-infammatory, anti-cancer, neuroprotective and car- dioprotective efects. Besides, the increasing prevalence of diabetes mellitus and its allied complications, and also patients’ desire to use natural products for treating their diseases, led to the design of this study to evaluate the ef- cacy of crocin on glycemic control, insulin resistance and active adenosine monophosphate-activated protein kinase (AMPK) levels in patients with type-2 diabetes (T2D). Methods: In this clinical trial with a parallel-group design, 50 patients with T2D received either 15-mg crocin or placebo, twice daily, for 12 weeks. Anthropometric measurements, dietary intake, physical activity, blood pressure, glucose homeostasis parameters, active form of AMPK were assessed at the beginning and at the end of the study. Results: Compared with the placebo group, crocin improved fasting glucose level (P 0.015), hemoglobin A1c (P 0.045), plasma insulin level (P 0.046), insulin resistance (P 0.001), and insulin sensitivity= (P 0.001). Based on the= within group analysis, crocin led= to signifcant improvement= in plasma levels of glucose, insulin,= hemoglobin A1c, systolic blood pressure, insulin resistance and insulin sensitivity. The active form of AMPK did not change within and between groups after intervention. -
Chemistry and Molecular Docking Analysis
International Journal of Molecular Sciences Article Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis 1, 2, 3,4,5 Johant Lakey-Beitia y , Jagadeesh Kumar D. y , Muralidhar L. Hegde and K.S. Rao 6,* 1 Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge 0843-01103, Panama; [email protected] 2 Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Bangalore 562157, India; [email protected] 3 Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; [email protected] 4 Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist, Houston, Texas 77030, USA 5 Weill Medical College of Cornell University, New York, NY 10065, USA 6 Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge 0843-01103, Panama * Correspondence: [email protected]; Tel.: +(507)517-0704 These authors contribute equally to this work. y Received: 23 October 2019; Accepted: 4 November 2019; Published: 7 November 2019 Abstract: Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder that affects the aging population worldwide. Endogenous and exogenous factors are involved in triggering this complex and multifactorial disease, whose hallmark is Amyloid-β (Aβ), formed by cleavage of amyloid precursor protein by β- and γ-secretase. While there is no definitive cure for AD to date, many neuroprotective natural products, such as polyphenol and carotenoid compounds, have shown promising preventive activity, as well as helping in slowing down disease progression. In this article, we focus on the chemistry as well as structure of carotenoid compounds and their neuroprotective activity against Aβ aggregation using molecular docking analysis.