Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin. CCD7 and CCD8 act sequentially in the strigolactone CCD, and is able to cleave zeaxanthin, the presumed precursor of pathway, leading to strigolactone precursor carlactone (10). saffron apocarotenoids, both in Escherichia coli and in maize en- Enzymes of the CCD1 family cleave a wide spectrum of dif- dosperm. The cleavage products, identified through high-resolu- ferent carotenoids at several different positions (9,10; 9,10,9′,10′; tion mass spectrometry and comigration with authentic standards, 5,6,5′,6′; or 7,8,7′,8′) (11, 12). CCD4 enzymes cleave carotenoids are crocetin dialdehyde and crocetin, respectively. In vitro assays at the 9′,10′ or the 7′,8′ positions and determine the level of show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double pigmentation in plant tissues, including Chrysanthemum petals bonds adjacent to a 3-OH-β-ionone ring and that the conversion (13), peach flesh (14), potato tubers (15), Citrus peel (16, 17), of zeaxanthin to crocetin dialdehyde proceeds via the C30 interme- and Arabidopsis seeds (18). diate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage Structurally, all CCDs are characterized by a rigid, seven- + dioxygenase (ZCD), an enzyme previously claimed to mediate cro- bladed β-propeller structure, at the axis of which a Fe2 atom is cetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-caro- located (19). The propeller is covered by a less-conserved dome + tenal in the test systems used. Sequence comparison and structure formed by a series of loops. The reaction is catalyzed by the Fe2 prediction suggest that ZCD is an N-truncated CCD4 form, lacking atom via the introduction of oxygen (20). one blade of the β-propeller structure conserved in all CCDs. These To date, conflicting data have been reported about the identity results constitute strong evidence that CCD2 catalyzes the first of the enzyme catalyzing the cleavage reaction in saffron. A dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has zeaxanthin cleavage dioxygenase (ZCD) was reported to cleave a cytoplasmic localization, suggesting that it may cleave carote- zeaxanthin symmetrically at the 7,8/7′,8′ positions, yielding the noids localized in the chromoplast outer envelope. crocin precursor crocetin dialdehyde (4). However, later work has suggested that ZCD is a truncated form of a plastoglobule- β-citraurin | symmetric carotenoid cleavage localized CCD4 enzyme, devoid of cleavage activity, and that the he plant Crocus sativus L. (Iridaceae) is a perennial, sterile, Significance T vegetatively propagated triploid widely cultivated in a tem- perate belt extending from Spain to Kashmir (1). Albeit its site of Saffron is a triploid, sterile species whose red stigmas consti- domestication is uncertain, the earliest archaeological evidence tute the most expensive spice on Earth. The color, the taste, of its cultivation is provided by Minoan frescoes dated 1,700– and the aroma of the spice are owed to the crocus-specific 1,500 B.C. Its dried red stigmas (Fig. 1A) constitute the saffron apocarotenoid accumulation of crocetin/crocins, picrocrocin, spice, which is commonly considered the most expensive spice on and safranal. Through deep transcriptome analysis, we identi- Earth, with retail prices ranging between 2,000 and 7,000 V/kg. fied a novel carotenoid cleavage dioxygenase (CCD) whose expression profile parallels the production of crocetin. Using in These high prices are due to the labor associated with its har- bacterio, in vitro, and in planta functional assays, we demon- vesting: because one stigma of saffron weighs about 2 mg, 1 kg of strate that CCD2 is the dioxygenase catalyzing the first dedi- dry saffron requires the manual harvest of stigmas from around cated step in saffron crocetin biosynthesis starting from the 110,000–170,000 flowers (www.europeansaffron.eu) (1). carotenoid zeaxanthin. Saffron stigmas accumulate large amounts (up to 8% on dry weight) of the apocarotenoids crocetin (and its glycosylated Author contributions: S.A.-B. and G.G. designed research; S.F., G.D., and P.F. performed forms, crocins), responsible for the red pigmentation of the research; P.B., L.G.-G., M.B., M.P., A.P.-C., and A.R.-M. contributed new reagents/analytic tools; S.F. and G.D. analyzed data; and G.G. wrote the paper. stigmas; picrocrocin, responsible for their bitter flavor; and The authors declare no conflict of interest. safranal, responsible for the pungent aroma of saffron (Fig. 1A) This article is a PNAS Direct Submission. (2). The proposed biosynthetic pathway (3, 4) starts through the Freely available online through the PNAS open access option. symmetric cleavage of zeaxanthin at the 7,8/7′,8′ positions by Data deposition: The sequence of CCD2 reported in this paper has been deposited in the a nonheme iron carotenoid cleavage dioxygenase (CCD) (Fig. GenBank database (accession no. KJ541749). β 1B). The two cleavage products, 3-OH- -cyclocitral and crocetin 1To whom correspondence should be addressed. Email: [email protected]. dialdehyde, are dehydrogenated and glycosylated to yield pic- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. rocrocin and crocins, respectively. Putative glucosyl transferases 1073/pnas.1404629111/-/DCSupplemental. 12246–12251 | PNAS | August 19, 2014 | vol. 111 | no. 33 www.pnas.org/cgi/doi/10.1073/pnas.1404629111 Downloaded by guest on September 25, 2021 A using Newbler, and the contigs were searched for similarity to known CCD enzymes using BLAST. The search resulted in seven CCDs, including CCD1, CCD7, three allelic forms of CCD4,and a novel transcript, which we called CCD2 due to its evolutionary relation with CCD1 (see below). The identified CCDs differ in their temporal pattern of expression during stigma development (Table S1). In particular, CCD2 expression peaks early, at the Ostage(Fig.2A) coincident with crocetin and crocin accu- mulation (22), whereas ZCD and CCD4 are expressed late Zeaxanthin during stigma development. B 7 A phylogenetic analysis of CCD protein sequences from sev- eral plants was inferred using the neighbor-joining method using 8 Synechocystis apocarotenoid cleavage oxygenase (ACO) as an CCD outgroup (Fig. 2B). The results suggested that Crocus CCD2 is 3-OH- a member of a clade closely related to, but distinct from, an- 7 giosperm CCD1 enzymes. A lettuce enzyme labeled as CCD2 (23) clustered with CCD1 enzymes, whereas an enzyme known to 8 cut zeaxanthin at the 7,8 position, Citrus CCD4b1 (16), clustered CCD with CCD4 enzymes (Fig. 2B). ZCD appeared to be a member of 3-OH- -Cyclocitral Crocetin dialdehyde the CCD4 family (Fig. 2B), truncated at the N terminus (Fig. S1). Because the ZCD cDNA was originally isolated by rapid am- plification of cDNA ends (RACE) (4, 24) that can lead to the ′ ALDH cloning of truncated transcripts, we carried out a 5 -RACE UGT analysis of CCD4 transcripts. Next to a 950-base full-length Picrocrocin Crocetin transcript, whose length is compatible with a full-length CCD4 protein, a series of abundant 5′-truncated transcripts are de- tectable, the longest of which is compatible with the length of the UGTs ZCD protein, which is encoded starting from an internal ATG ? codon (Fig. S2A). It is therefore likely that the original ZCD Crocin clone (4) corresponds to a truncated CCD4 transcript. This Safranal cannot be either CCD4a or CCD4b (25), which are only 98% identical to ZCD at the nucleotide level. To further address this point, we cloned the 400- to 350-bp RACE products shown in Fig. S2A, containing the internal ATG codon, and sequenced Fig. 1. The saffron apocarotenoid pathway. Crocus sativus flower at an- multiple clones. The sequence of eight of the clones corresponds thesis. The yellow arrowheads point at the three stigmas (A). Proposed to CCD4a, of one to CCD4b, of five to ZCD (4), and of four saffron apocarotenoid biosynthesis pathway (B). Zeaxanthin is cleaved at the to a yet-unidentified CCD4. All of them contain the internal ′ ′ 7,8 and 7 ,8 positions by a CCD activity. The C20 cleavage product, crocetin ATG codon. dialdehyde, is converted to crocetin by an aldehyde dehydrogenase, and We modeled the CCD2, ZCD, and CCD4a structures using then to crocins by at least two UDPG-glucosyltransferases.
Recommended publications
  • Protective Effect of Crocin Against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture
    Protective Effect of Crocin against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture Aicha Laabich, Ganesh P. Vissvesvaran, Kuo L. Lieu, Kyoko Murata, Tim E. McGinn, Corinne C. Manmoto, John R. Sinclair, Ibrahim Karliga, David W. Leung, Ahmad Fawzi, and Ryo Kubota PURPOSE. The present study was performed to investigate the major blue light–absorbing fluorophores of lipofuscin in the effect of crocin on blue light– and white light–induced rod and RPE believed to be associated with AMD pathogenesis.7 Several cone death in primary retinal cell cultures. epidemiologic studies suggest that long-term history of expo- 8 METHODS. Primary retinal cell cultures were prepared from sure to light may have some impact on the incidence of AMD. Exposure to intense light causes photoreceptor death. Light- primate and bovine retinas. Fifteen-day-old cultures were ex- 9 posed to blue actinic light or to white fluorescent light for 24 induced photoreceptor death is mediated by rhodopsin, and the extent of its bleaching and its regeneration and visual hours. Cultures were treated by the addition of different con- 10,11 centrations of crocin for 24 hours before light exposure or for transduction proteins determine the degree of damage. Blue light– and white light–induced damage of retinal cells 8 hours after light exposure. Cultures kept in the dark were 12,13 used as controls. Green nucleic acid stain assay was used to have been widely used as in vivo models. Although the abnormality of the retinal pigment epithelium is thought to evaluate cell death.
    [Show full text]
  • Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic
    Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats This article was published in the following Dove Press journal: Drug Design, Development and Therapy Yanshuang Liu, 1,2,* Purpose: Arsenic trioxide (ATO) has been shown to induce hepatic injury. Crocetin is Yingran Liang,3,* a primary constituent of saffron, which has been verified to have antioxidant and anti- Bin Zheng,3 Li Chu,3 inflammatory effects. In the current experiment, we evaluated the efficacy of crocetin against Donglai Ma, 3 ATO-induced hepatic injury and explored the potential molecular mechanisms in rats. Hongfang Wang,3 Xi Chu,4 Methods: Rats were pretreated with 25 or 50 mg/kg crocetin 6 h prior to treating with 5 mg/ kg ATO to induce hepatic injury daily for 7 days. Jianping Zhang2,5 Results: Treatment with crocetin attenuated ATO-induced body weight loss, decreases in 1 Department of Diagnostics, School of food and water consumption, and improved ATO-induced hepatic pathological damage. Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Crocetin significantly inhibited ATO-induced alanine aminotransferase (ALT), aspartate ’ Shijiazhuang, Hebei, 050200, People s aminotransferase (AST), and alkaline phosphatase (ALP) increases. Crocetin prevented Republic of China; 2Hebei Key Laboratory of Integrative Medicine on Liver-Kidney ATO-induced liver malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Patterns, Shijiazhuang 050200, Hebei, People’s Republic of China; 3Department of Crocetin abrogated the ATO-induced decrease of catalase (CAT) and superoxide dismutase Pharmaceutics, School of Pharmacy, Hebei (SOD) activity.
    [Show full text]
  • Association of Crocus Sativus with Cognitive Dysfunctions and Alzheimer’S Disease: a Systematic Review
    Review Volume 11, Issue 1, 2021, 7468 - 7492 https://doi.org/10.33263/BRIAC111.74687492 Association of Crocus sativus with Cognitive Dysfunctions and Alzheimer’s Disease: A Systematic Review 1 2 3,* Marjan Talebi , Mohsen Talebi , Saeed Samarghandian 1 Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; [email protected]; 2 Food Safety Net Services, San Antonio, Texas 78216, USA; [email protected]; 3 Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; [email protected]; * Correspondence: [email protected]; Scopus Author ID 6507632790 Received: 8.05.2020; Revised: 10.06.2020; Accepted: 13.06.2020; Published: 17.06.2020 Abstract: Alzheimer’s disease (AD) is known as a principle basis of cognitive impairment in the elderly population. Current available therapeutic approaches are not applicable enough for the reason of intolerable side effects, low patients’ compliance due to the short half-life, and biopharmaceutical limitations. Therefore discovery alternative and multi-targeted therapeutic approaches are sought. Crocus sativus is a distinguished medicinal plant with a wide range of biological and pharmacological belongings, exclusively antioxidant and anti-inflammatory possessions. Following PRISMA guidelines, a systematic review was conducted by search in Electronic databases comprising Scopus, PubMed, Web of Science, and Embase using the keywords cognitive OR cognition OR memory OR nootropic OR Alzheimer OR amnesia OR dementia AND “Crocus sativus” OR saffron OR crocin OR crocetin OR safranal until 21st February 2020. The results display that saffron and its major constituents are capable of having remarkable properties on memory and cognitive deficiency.
    [Show full text]
  • Saffron: Chemical Composition and Neuroprotective Activity
    molecules Article Saffron: Chemical Composition and Neuroprotective Activity Maria Anna Maggi 1,2,*, Silvia Bisti 3,4 and Cristiana Picco 4,5 1 Hortus Novus srl, via Campo Sportivo 2, 67050 Canistro, Italy 2 Department of Phyisical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy 3 Department of Biotecnology and Applied Clinical Sciences, DISCAB, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy; [email protected] 4 National Institute of Biostructure and Biosystem (INBB), V. le Medaglie D’Oro 305, 00136 Roma, Italy; [email protected] 5 Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy * Correspondence: [email protected] Academic Editors: Nikolaos Pitsikas and Konstantinos Dimas Received: 14 October 2020; Accepted: 25 November 2020; Published: 29 November 2020 Abstract: Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron’s ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components.
    [Show full text]
  • Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
    Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A).
    [Show full text]
  • Upregulation of TIPE2 Attenuates Macrophage Activation and Neuroinfammation After Intracerebral Hemorrhage in Mice
    Upregulation of TIPE2 attenuates macrophage activation and neuroinammation after intracerebral hemorrhage in mice Shudong Liu Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Jie Wang Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Wenyan Li Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Hui Shi Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Changlong Zhou Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Ge Tang neurology Jiangwei Zhang Institut National de Neurologie Mongi-Ben Hamida zhao yang ( [email protected] ) Universitatsklinikum Zentrum fur Neurologie Research Keywords: TIPE2, macrophage, neuroinammation, ICH Posted Date: August 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-54788/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Intracerebral hemorrhage (ICH) is a serious disease with high mortality and morbidity, and effective treatment is limited. A large amount of evidence suggests that the inammatory response contributes to secondary brain damage following ICH. TIPE2 is an essential negative regulator of both innate and adaptive immunity, and depletion of TIPE2 causes inammatory disease. However, the possible role of TIPE2 following ICH has not been reported. Methods: In this study, we investigated TIPE2 levels and inammation in macrophages treated with erythrocyte lysate in vitro, and we observed proinammatory cytokine production, BBB disruption, cerebral water content and neurological damage in ICH mice in vivo. Results: We found that TIPE2 levels were signicantly decreased in erythrocyte lysate-treated macrophages compared to control macrophages. Upregulation of TIPE2 decreased macrophage activation and cytokine production and accelerated brain damage in ICH mice.
    [Show full text]
  • Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity
    antioxidants Review Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity Kandi Sridhar , Baskaran Stephen Inbaraj and Bing-Huei Chen * Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] (K.S.); [email protected] or [email protected] (B.S.I.) * Correspondence: [email protected]; Tel.: +886-2-2905-3626 Abstract: Carotenoids are natural pigments widely used in food industries due to their health- promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, charac- terization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for Citation: Sridhar, K.; Inbaraj, B.S.; varied lengths of time, while the release behavior and bioaccessibility were determined by various Chen, B.-H. Recent Advances on in vitro digestion and absorption models as well as bioavailability through elucidating pharma- Nanoparticle Based Strategies for cokinetics in an animal model.
    [Show full text]
  • Rotenone-Induced Inner Retinal Degeneration Via Presynaptic
    www.nature.com/scientificreports OPEN Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats Masaaki Sasaoka, Takashi Ota & Masaaki Kageyama* Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone- induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neuroflament light-chain gene (Nf) as a retinal ganglion cell (RGC) marker. This efect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nf downregulation, whereas none of these agents modifed NMDA-induced Nf downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels. Rotenone is a naturally occurring and broad-spectrum pesticide that inhibits the activity of NADH dehydroge- nase in the mitochondrial respiratory chain complex I1. Because of this unique biological activity, rotenone has been used as a versatile tool to study involvement of mitochondrial functions and oxidative stress in neuronal cell death.
    [Show full text]
  • Namenverzeichnis. Index of Names. Index Des Auteurs
    Namenverzeichnis. Index of Names. Index des Auteurs. ABE, S. Il6. ANTIA, N. J. 160, 17I. ABRAMS, G. J. v. 399, 417. ApPLEGATE, f[. G. 403, 417. ACHER, R. I04, 107. ApPLING, J. W. 5 14, 536. ACKER, L. 515, 529. ARCHIBALD, W. J. 450, 495· ACKERMANN, D. 89, 100, 101, 106-108, AR1S0N, B. f[. 416, 417. Il3· ARMBRUST, K. I06, Il5. ADAMS, J. 5°9, 5 Il, 5 12, 515, 5 18, 53I. ARMSTRONG, M. D. 95, 110. ADLER, N. 393, 426. ARR1GONI, O. 404, 426. AHMAD, B. 332, 334. ASANO, N. Il6. AHMAD, R. 249, 316, 322, 334. ASCHAFFENBURG, R. 461, 484, 495. AHMED, Z. F. 514, 529. ASEEVA, 1. V. 351, 424. AHRENS, R. 253, 329, 330, 339· ASERO, B. 60, 78. AlSENBERG, A. C. 512, 53!. Aso, K. 352, 356-358, 361, 432, 433. AITKEN, R. A. 515, 529. ASPINALL, G. O. 510, 5I1, 514, 515, 521, AKAMATSU, S. 108. 529, 536 . AKELEY, D. F. 460, 495. ASPREY, G. F. 411, 417. AKHTAR, M. 275, 3°1, 334. ASTWOOD, E. B. 141, 151, 163, 169, 17I. ALBERTI, C. G. 60, 78. AUDIA, \V. V. 41 I, 426. ALBERTY, R. A. 460, 482, 495. AURET, B. J. 5 Il, 529. ALCORN, J. W. S. 405, 421. AUSTIN, M. J. 514, 532. ALCORN, S. M. 410, 417. AVERY, O. T. 504, 5IO-513, 516, 529-531. ALDAG, f[. J. 253, 260, 261,275, 3°5, 338 . AYTOUN, R. S. C. 414, 417. ALEXANDER, H. E. 518, 536. ALLAN, J. D. 106, 108. BABERs, F. f[. 512, 516, 529, 530.
    [Show full text]
  • Organic Seminar Abstracts
    1 I B R.AR.Y OF THE UN IVER.SITY Of 1LLI NOIS 547 l938/39 : aanc\ D ssariSSSK" University^in»^^ Lir.i mi SEMINAR TOPICS I Semester 1938-39 Page Structure of Gossypol 1 Roger Adams Some New Synthetic Methods 6 William S. Emerson The Mechanism of Substitution at a Saturated Carbon Atom 8 C. C. Price Diene Syntheses of Polycyclic Compounds 10 T. A. Geissman and C. K. Bradsher Structure of the Triterpenes 14 L. N. Whitehill and E. H. Riddle The Associating Effect of the Hydrogen Atom 23 L. Dankert Splitting of FUrans with Aromatic Amines 25 C. R. Lee Tautomerism of Pyridine Homologs, Pyridine Series Syntheses 28 E. C. Horning Reactivities of Substituted ^A -Chloro Ketones and the ^echanism of 31 Certain Reactions E. H. ^obratz Synthesis of Polyenes from Acetylene and Diacetylene 36 R. V. Lindsey, Jr. Eydrobenzoinic Rearrangements with Replacement of One or Two Aryl Groups 40 by Other Radicals S. L. Scott Anesthetic Effectlof 2-Alkoxy Quinolines 45 B. R. Baker Polyazobenzenes 50 J. W. Shackleton The Reduction of Organic Compounds on the Dropping Mercury Cathode 52 H. M. teeter A New Rearrangement and Its Use in the Preparation of Esters of 55 Amino Alcohols Hugh W. Stewart . )? Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi38391univ . 6U? s 2 I*? Paee The Friedel-Crafts Reaction 59 Joseph Dec and ^. S. L ng Vitamin D2 67 D Burney The Chemical Substances Responsible for the Copulation of the ^ex 72 Cells of the Chlamydomonas ^ugametos in Light W.
    [Show full text]
  • Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments
    Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments Item Type Article Authors Demurtas, Olivia Costantina; Frusciante, Sarah; Ferrante, Paola; Diretto, Gianfranco; Azad, Noraddin Hosseinpour; Pietrella, Marco; Aprea, Giuseppe; Taddei, Anna Rita; Romano, Elena; Mi, Jianing; Al-Babili, Salim; Frigerio, Lorenzo; Giuliano, Giovanni Citation Demurtas OC, Frusciante S, Ferrante P, Diretto G, Azad NH, et al. (2018) Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiology: pp.01815.2017. Available: http://dx.doi.org/10.1104/pp.17.01815. Eprint version Post-print DOI 10.1104/pp.17.01815 Publisher American Society of Plant Biologists (ASPB) Journal Plant Physiology Rights Archived with thanks to Plant Physiology Download date 28/09/2021 10:07:42 Link to Item http://hdl.handle.net/10754/628006 Plant Physiology Preview. Published on May 29, 2018, as DOI:10.1104/pp.17.01815 1 Short title: Compartmentation of saffron crocin biosynthesis 2 3 Corresponding author: Giovanni Giuliano, ENEA, Italian National Agency for New 4 Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via 5 Anguillarese n° 301, 00123 Rome, Italy; Phone: +390630483192, E-mail: 6 [email protected] 7 8 Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular 9 compartments 10 11 Olivia Costantina Demurtas1, Sarah Frusciante1, Paola Ferrante1, Gianfranco Diretto1, Noraddin 12 Hosseinpour Azad2, Marco Pietrella1,3, Giuseppe Aprea1, Anna Rita Taddei4, Elena Romano5, 13 Jianing Mi6, Salim Al-Babili6, Lorenzo Frigerio7, Giovanni Giuliano1* 14 15 1Italian National Agency for New Technologies, Energy and Sustainable Economic 16 Development (ENEA), Casaccia Res.
    [Show full text]
  • Carotenoids Support Normal Embryonic Development During Vitamin A
    www.nature.com/scientificreports OPEN β-apo-10′-carotenoids support normal embryonic development during vitamin A defciency Received: 29 December 2017 Elizabeth Spiegler1, Youn-Kyung Kim1, Beatrice Hoyos2, Sureshbabu Narayanasamy3,4, Accepted: 24 May 2018 Hongfeng Jiang5, Nicole Savio1, Robert W. Curley Jr.3, Earl H. Harrison4, Ulrich Hammerling1,2 Published: xx xx xxxx & Loredana Quadro 1 Vitamin A defciency is still a public health concern afecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15′-oxygenase (BCO1). Another cleavage enzyme, β-carotene 9′,10′-oxygenase (BCO2), asymmetrically cleaves β-carotene in adult tissues to prevent its mitochondrial toxicity, generating β-apo-10′-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A defciency-susceptible genetic background (Rbp4−/−) generated severely malformed vitamin A-defcient embryos. Maternal β-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2−/−Rbp4−/− mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents β-carotene toxicity during embryogenesis under severe vitamin A defciency. In contrast, β-apo-10′-carotenal dose-dependently restored normal embryonic development in Bco2−/−Rbp4−/− but not Bco1−/−Bco2−/−Rbp4−/− mice, suggesting that β-apo-10′-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation.
    [Show full text]