Synthesis of Crocetin Derivatives and Their Potent Inhibition in Multiple

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Crocetin Derivatives and Their Potent Inhibition in Multiple Wang et al. BMC Complementary Medicine and Therapies (2020) 20:29 BMC Complementary https://doi.org/10.1186/s12906-020-2831-y Medicine and Therapies RESEARCH ARTICLE Open Access Synthesis of crocetin derivatives and their potent inhibition in multiple tumor cells proliferation and inflammatory property of macrophage Mao-Ze Wang1†, Jin Gao2,3,4†, Yang Chu1, Jie Niu1, Ming Chen2, Qiang Shang3,4, Li-Hua Peng1,2* and Zhi-Hong Jiang2* Abstract Background: Crocetin is a major active component of saffron, which has a wide range of pharmacological effects. However, due to its low solubility, the pharmacological effects of crocetin cannot be better utilized. Methods: In this study, we modified the chemical structure of crocetin by conjugating with ethylamine and 4- Fluorbenzylamine to enhance its solubility and biological activities. The solubility and the influence of synthesized derivatives on the proliferation of tumor cells and the inflammatory effect of macrophage were investigated. Results: It was shown that, compared with the crocetin, the synthesized derivatives have much higher solubility. Moreover, the inhibitory effect of the derivatives on varieties of tumor cells, including human ovarian carcinoma cell line, human lung cancer cell line, rat melanoma cell line was enhanced after the modification. Besides that, the derivatives were improved for the anti-inflammatory efficacy with the cytotoxicity decreased. Conclusions: The synthesized derivatives were shown for their good solubility and the great potential in tumor and inflammation treatment. Keywords: Solubility, Crocetin derivatives, Anti-tumor effect, Inflammation inhibition Background one of the main effective components [2], with polyunsat- Saffron, a spice and a food colorant derived from the urated conjugate oleic acid structure. Many studies have flower of Crocus sativus, is widely cultivated in Iran, shown that crocetin has widely pharmacological effects, Greece, Italy, Spain, India, China, Japan and other coun- which contains anti-oxidation [4], anti-cancer [5], hepato- triesasanherb[1]. After collection and dehydration, it protection [6, 7] However, consisting of a C-20 carbon can be used mainly as the medicinal parts [2]. The history chain with seven double bonds and a carboxylic acid of the Saffron application in clinic can be traced back to group at each terminal parts of the molecule, crocetin is about 2300 Before Christ [3]. Saffron contains a variety of insoluble in water. Solving this problem is the key to pro- ingredients, including carotenoids, glycosides, flavonoids, mote the medicinal application of this natural product. amino acids, trace elements, etc. Among them, crocetin is Currently, it has been reported that the use of biomaterials such as poly (lactic-co-glycolic acid) and dendrimers can improve the bioavailability of the crocetin. However, the * Correspondence: [email protected]; [email protected] †Mao-Ze Wang and Jin Gao contributed equally to this work. stability and production rates are still to be improved for 1Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang these biomaterials and nanotechnology based strategies [8, University, 866# Yuhangtang Road, Hangzhou 310058, People’s Republic of 9]. In our previous study [10], it has been demonstrated China 2State Key Laboratory of Quality Research in Chinese Medicine, Macau that the conjugation of organic compounds can help de- University of Science and Technology, Avenida Wai Long Taipa, Macau, rivatives to form stable hydrogen bond by lowing solvation People’s Republic of China energy [10, 11], which in turn increases the solubility of Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Wang et al. BMC Complementary Medicine and Therapies (2020) 20:29 Page 2 of 8 the compounds. In present study, by conjugating the cro- Synthesis of crocetin derivatives cetin with ethylamine and 4-Fluorobenzylamine, the solu- The synthesis route of crocetin derivatives was showed in bility and bioactivity of crocetin were expected to be Fig. 1. Briefly, HOBt (2 equiv) were added to EDCI (1.5 improved. We evaluated the solubility, anti-proliferation equiv) at 0 °C, and Et3N (1.5 equiv) and 4- activity and anti-inflammatory property of the synthesized fluorobenzylamine (1 equiv) were added subsequently. The derivatives. Results of this strategy is expected to provide mixture solution was proceed at 0 °C for about 6 h and then novel evidence for the property improvement and medi- at 25 °C for 12 h. After that, the mixture solution was di- cinal application of crocetin. luted with dichloromethane. And then the unreacted or- ganic compound in mixture was washed with 2.5% HCl and 7.5% NaHCO3 (15 mL, three times). The product of synthe- Methods sized crocetin derivatives were obtained by evaporated Materials under reduced pressure. Then, crocetin derivatives were 1-[3-(dimethylamino)-propyl]-3-ethylcarbodiimide hydro- purified by column chromatography. chloride (EDCI); petroleum ether (PE); 4-fluorobenzylamine, ethylamine; 1-hydroxybenzotrizole (HOBt); Dulbecco’s Solubility assays modified Eagle’s medium (DMEM); Et3N, trimethylamine; To determine the solubility of crocetin and the synthe- the fetal bovine serum (FBS) and trypsin were purchased sized derivatives in methanol, we established the stand- from the Gibco BRL (Gaithersberg,MD).BCAproteinassay ard curve by measuring its maximum absorbance with kit and Cell Counting Kit-8 were provided by Sangon Bio- ultraviolet spectrophotometer. First, dissolving the sam- tech (Shanghai) Co., Ltd. Nitric Oxide assay kit were pur- ples in water. And then the solution was ultrasounded chased from Beyotime Institute of Biotechnology, (Jiangsu, until the supersaturated solution was generated. After China). The mouse macrophage cell line and the cancer cell that, supersaturated solution was centrifugated at 12,000 lines were obtained from the Shanghai Institute for rpm for 15 min. The supernatant of the solution was col- Biological Sciences, CAS (Shanghai). Other chemicals and lected and freeze-dried, followed by using methanol to reagents were of analytical grade. re-dissolve for UV detection. The concentration of the Fig. 1 Synthesis and chemical structures of compounds A and B Wang et al. BMC Complementary Medicine and Therapies (2020) 20:29 Page 3 of 8 solution could be figured out by the standard curve. Result Upon that, we could obtain the solubility of the crocetin Solubility of the crocetin derivatives and its synthesized derivatives. The solubility of the synthesized derivatives was shown in Fig. 1. The results showed that the solubility in water Cell culture of crocetin was 1.238 μg/mL, while the solubility in The mouse macrophage cell line and the cancer cell water of compound A and B were 19.55, 12.28 times lines were cultured in the DMEM medium containing more than that of crocetin, respectively (Table 1). The 10% Fetal Bovine Serum (FBS) at 37 °C, in humidified at- significant increase in the solubility of these synthesized mosphere containing 5% CO2. The cell medium was re- derivatives indicated that the chemical modification of placed every two days. Once cells reached 70–80% these groups, which enhanced hydrophilicity and in- confluence, they could be used in the next experiments. creased hydrogen bond formation [12], is an effective strategy to increase solubility of crocetin. Anti-proliferation assay The anti-proliferation effects of compounds on tumor cells were calculated by CCK-8 assay using Cell Count- Anti-tumor effects of the crocetin derivatives ing Kit-8 (Sangon Biotech, Shanghai) according to man- The influence of these compounds in the viability of three ufacturer’s protocol. Cancer cell lines (SKOV3, A549 kinds of cancer cell lines was investigated. With different and B16F10 cells) were seeded in 96-well plates. 5 × 103 solubility, the highest concentration of the tested com- cancer cells were added to each well and incubated over- pounds in the mixture of water with 1% DMSO was tested night for proliferation. And then in test groups, they as 15.24 μg/mL, 60.98 μg/ml and 60.98 μg/mL. As shown were treated with different concentrations of synthesized in Fig. 2, we first investigated the effects of different con- derivatives, which are dissolved in DMSO and diluted by centrations of crocetin and synthesized derivatives on the cell medium. The group, whose cells were incubated proliferation of A549, a lung cancer cell [13]. After one without compounds, was regard as control group. After day of incubation of the compound with the cells, it was incubated for 24 h or 48 h, the cell medium was changed found that the cells viability was significantly de- by fresh medium (90 μl) and 10 μl of CCK-8 assay re- creased in contrast to that of solvent treated group. agent. The cells were incubated at 37 °C for 1 h. The OD The crocetin expressed the highest suppression per- values of each well were measured at 450 nm. centage at the 15.24 μg/mL, and the cells viability was decreased to 56%. While the maximum inhibitory effi- Evaluation of the anti-inflammatory effect in LPS- ciency of the compound A and B was expressed as stimulated macrophages 48.52 and 38.41%, at the 15.24 and 60.98 μg/mL, The anti-inflammatory effect was evaluated by using Ni- respectively. tric Oxide Assay kit. The RAW 264.7 cells with cell con- Then we investigated the influence of the compound centration 4 × 105 cells/ml were seeded in a 48-well on B16F10 cell proliferation.
Recommended publications
  • Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic
    Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats This article was published in the following Dove Press journal: Drug Design, Development and Therapy Yanshuang Liu, 1,2,* Purpose: Arsenic trioxide (ATO) has been shown to induce hepatic injury. Crocetin is Yingran Liang,3,* a primary constituent of saffron, which has been verified to have antioxidant and anti- Bin Zheng,3 Li Chu,3 inflammatory effects. In the current experiment, we evaluated the efficacy of crocetin against Donglai Ma, 3 ATO-induced hepatic injury and explored the potential molecular mechanisms in rats. Hongfang Wang,3 Xi Chu,4 Methods: Rats were pretreated with 25 or 50 mg/kg crocetin 6 h prior to treating with 5 mg/ kg ATO to induce hepatic injury daily for 7 days. Jianping Zhang2,5 Results: Treatment with crocetin attenuated ATO-induced body weight loss, decreases in 1 Department of Diagnostics, School of food and water consumption, and improved ATO-induced hepatic pathological damage. Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Crocetin significantly inhibited ATO-induced alanine aminotransferase (ALT), aspartate ’ Shijiazhuang, Hebei, 050200, People s aminotransferase (AST), and alkaline phosphatase (ALP) increases. Crocetin prevented Republic of China; 2Hebei Key Laboratory of Integrative Medicine on Liver-Kidney ATO-induced liver malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Patterns, Shijiazhuang 050200, Hebei, People’s Republic of China; 3Department of Crocetin abrogated the ATO-induced decrease of catalase (CAT) and superoxide dismutase Pharmaceutics, School of Pharmacy, Hebei (SOD) activity.
    [Show full text]
  • Association of Crocus Sativus with Cognitive Dysfunctions and Alzheimer’S Disease: a Systematic Review
    Review Volume 11, Issue 1, 2021, 7468 - 7492 https://doi.org/10.33263/BRIAC111.74687492 Association of Crocus sativus with Cognitive Dysfunctions and Alzheimer’s Disease: A Systematic Review 1 2 3,* Marjan Talebi , Mohsen Talebi , Saeed Samarghandian 1 Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; [email protected]; 2 Food Safety Net Services, San Antonio, Texas 78216, USA; [email protected]; 3 Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; [email protected]; * Correspondence: [email protected]; Scopus Author ID 6507632790 Received: 8.05.2020; Revised: 10.06.2020; Accepted: 13.06.2020; Published: 17.06.2020 Abstract: Alzheimer’s disease (AD) is known as a principle basis of cognitive impairment in the elderly population. Current available therapeutic approaches are not applicable enough for the reason of intolerable side effects, low patients’ compliance due to the short half-life, and biopharmaceutical limitations. Therefore discovery alternative and multi-targeted therapeutic approaches are sought. Crocus sativus is a distinguished medicinal plant with a wide range of biological and pharmacological belongings, exclusively antioxidant and anti-inflammatory possessions. Following PRISMA guidelines, a systematic review was conducted by search in Electronic databases comprising Scopus, PubMed, Web of Science, and Embase using the keywords cognitive OR cognition OR memory OR nootropic OR Alzheimer OR amnesia OR dementia AND “Crocus sativus” OR saffron OR crocin OR crocetin OR safranal until 21st February 2020. The results display that saffron and its major constituents are capable of having remarkable properties on memory and cognitive deficiency.
    [Show full text]
  • Saffron: Chemical Composition and Neuroprotective Activity
    molecules Article Saffron: Chemical Composition and Neuroprotective Activity Maria Anna Maggi 1,2,*, Silvia Bisti 3,4 and Cristiana Picco 4,5 1 Hortus Novus srl, via Campo Sportivo 2, 67050 Canistro, Italy 2 Department of Phyisical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy 3 Department of Biotecnology and Applied Clinical Sciences, DISCAB, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy; [email protected] 4 National Institute of Biostructure and Biosystem (INBB), V. le Medaglie D’Oro 305, 00136 Roma, Italy; [email protected] 5 Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy * Correspondence: [email protected] Academic Editors: Nikolaos Pitsikas and Konstantinos Dimas Received: 14 October 2020; Accepted: 25 November 2020; Published: 29 November 2020 Abstract: Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron’s ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components.
    [Show full text]
  • Upregulation of TIPE2 Attenuates Macrophage Activation and Neuroinfammation After Intracerebral Hemorrhage in Mice
    Upregulation of TIPE2 attenuates macrophage activation and neuroinammation after intracerebral hemorrhage in mice Shudong Liu Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Jie Wang Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Wenyan Li Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Hui Shi Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Changlong Zhou Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Ge Tang neurology Jiangwei Zhang Institut National de Neurologie Mongi-Ben Hamida zhao yang ( [email protected] ) Universitatsklinikum Zentrum fur Neurologie Research Keywords: TIPE2, macrophage, neuroinammation, ICH Posted Date: August 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-54788/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Intracerebral hemorrhage (ICH) is a serious disease with high mortality and morbidity, and effective treatment is limited. A large amount of evidence suggests that the inammatory response contributes to secondary brain damage following ICH. TIPE2 is an essential negative regulator of both innate and adaptive immunity, and depletion of TIPE2 causes inammatory disease. However, the possible role of TIPE2 following ICH has not been reported. Methods: In this study, we investigated TIPE2 levels and inammation in macrophages treated with erythrocyte lysate in vitro, and we observed proinammatory cytokine production, BBB disruption, cerebral water content and neurological damage in ICH mice in vivo. Results: We found that TIPE2 levels were signicantly decreased in erythrocyte lysate-treated macrophages compared to control macrophages. Upregulation of TIPE2 decreased macrophage activation and cytokine production and accelerated brain damage in ICH mice.
    [Show full text]
  • Rotenone-Induced Inner Retinal Degeneration Via Presynaptic
    www.nature.com/scientificreports OPEN Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats Masaaki Sasaoka, Takashi Ota & Masaaki Kageyama* Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone- induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neuroflament light-chain gene (Nf) as a retinal ganglion cell (RGC) marker. This efect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nf downregulation, whereas none of these agents modifed NMDA-induced Nf downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels. Rotenone is a naturally occurring and broad-spectrum pesticide that inhibits the activity of NADH dehydroge- nase in the mitochondrial respiratory chain complex I1. Because of this unique biological activity, rotenone has been used as a versatile tool to study involvement of mitochondrial functions and oxidative stress in neuronal cell death.
    [Show full text]
  • Namenverzeichnis. Index of Names. Index Des Auteurs
    Namenverzeichnis. Index of Names. Index des Auteurs. ABE, S. Il6. ANTIA, N. J. 160, 17I. ABRAMS, G. J. v. 399, 417. ApPLEGATE, f[. G. 403, 417. ACHER, R. I04, 107. ApPLING, J. W. 5 14, 536. ACKER, L. 515, 529. ARCHIBALD, W. J. 450, 495· ACKERMANN, D. 89, 100, 101, 106-108, AR1S0N, B. f[. 416, 417. Il3· ARMBRUST, K. I06, Il5. ADAMS, J. 5°9, 5 Il, 5 12, 515, 5 18, 53I. ARMSTRONG, M. D. 95, 110. ADLER, N. 393, 426. ARR1GONI, O. 404, 426. AHMAD, B. 332, 334. ASANO, N. Il6. AHMAD, R. 249, 316, 322, 334. ASCHAFFENBURG, R. 461, 484, 495. AHMED, Z. F. 514, 529. ASEEVA, 1. V. 351, 424. AHRENS, R. 253, 329, 330, 339· ASERO, B. 60, 78. AlSENBERG, A. C. 512, 53!. Aso, K. 352, 356-358, 361, 432, 433. AITKEN, R. A. 515, 529. ASPINALL, G. O. 510, 5I1, 514, 515, 521, AKAMATSU, S. 108. 529, 536 . AKELEY, D. F. 460, 495. ASPREY, G. F. 411, 417. AKHTAR, M. 275, 3°1, 334. ASTWOOD, E. B. 141, 151, 163, 169, 17I. ALBERTI, C. G. 60, 78. AUDIA, \V. V. 41 I, 426. ALBERTY, R. A. 460, 482, 495. AURET, B. J. 5 Il, 529. ALCORN, J. W. S. 405, 421. AUSTIN, M. J. 514, 532. ALCORN, S. M. 410, 417. AVERY, O. T. 504, 5IO-513, 516, 529-531. ALDAG, f[. J. 253, 260, 261,275, 3°5, 338 . AYTOUN, R. S. C. 414, 417. ALEXANDER, H. E. 518, 536. ALLAN, J. D. 106, 108. BABERs, F. f[. 512, 516, 529, 530.
    [Show full text]
  • Organic Seminar Abstracts
    1 I B R.AR.Y OF THE UN IVER.SITY Of 1LLI NOIS 547 l938/39 : aanc\ D ssariSSSK" University^in»^^ Lir.i mi SEMINAR TOPICS I Semester 1938-39 Page Structure of Gossypol 1 Roger Adams Some New Synthetic Methods 6 William S. Emerson The Mechanism of Substitution at a Saturated Carbon Atom 8 C. C. Price Diene Syntheses of Polycyclic Compounds 10 T. A. Geissman and C. K. Bradsher Structure of the Triterpenes 14 L. N. Whitehill and E. H. Riddle The Associating Effect of the Hydrogen Atom 23 L. Dankert Splitting of FUrans with Aromatic Amines 25 C. R. Lee Tautomerism of Pyridine Homologs, Pyridine Series Syntheses 28 E. C. Horning Reactivities of Substituted ^A -Chloro Ketones and the ^echanism of 31 Certain Reactions E. H. ^obratz Synthesis of Polyenes from Acetylene and Diacetylene 36 R. V. Lindsey, Jr. Eydrobenzoinic Rearrangements with Replacement of One or Two Aryl Groups 40 by Other Radicals S. L. Scott Anesthetic Effectlof 2-Alkoxy Quinolines 45 B. R. Baker Polyazobenzenes 50 J. W. Shackleton The Reduction of Organic Compounds on the Dropping Mercury Cathode 52 H. M. teeter A New Rearrangement and Its Use in the Preparation of Esters of 55 Amino Alcohols Hugh W. Stewart . )? Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi38391univ . 6U? s 2 I*? Paee The Friedel-Crafts Reaction 59 Joseph Dec and ^. S. L ng Vitamin D2 67 D Burney The Chemical Substances Responsible for the Copulation of the ^ex 72 Cells of the Chlamydomonas ^ugametos in Light W.
    [Show full text]
  • Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
    Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin.
    [Show full text]
  • Suppressor Capacity of Copper Nanoparticles Biosynthesized Using Crocus Sativus L. Leaf Aqueous Extract on Methadone-Induced
    www.nature.com/scientificreports OPEN Suppressor capacity of copper nanoparticles biosynthesized using Crocus sativus L. leaf aqueous extract on methadone‑induced cell death in adrenal TICLE phaeochromocytoma (PC12) cell line AR Peng Zhang1, Jian Cui2*, Shirin Mansooridara3, Atoosa Shahriyari Kalantari4, Akram Zangeneh5,6, Mohammad Mahdi Zangeneh5,6, Nastaran Sadeghian7, Parham Taslimi8, Ramazan Bayat9 & Fatih Şen9 In this research, we prepared and formulated a neuroprotective supplement (copper nanoparticles in aqueous medium utilizing Crocus sativus L. Leaf aqueous extract) for determining its potential against methadone-induced cell death in PC12. The results of chemical characterization tests i.e., FE-SEM, FT-IR, XRD, EDX, TEM, and UV–Vis spectroscopy revealed that the study showed that copper nanoparticles were synthesized in the perfect way possible. In the TEM and FE-SEM images, the copper nanoparticles were in the mean size of 27.5 nm with the spherical shape. In the biological part of the present research, the Rat infammatory cytokine assay kit was used to measure the concentrations of infammatory cytokines. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test was used to show DNA fragmentation and apoptosis. Caspase-3 activity was assessed by the caspase activity colorimetric assay kit and mitochondrial membrane potential was studied by Rhodamine123 fuorescence dye. Also, the cell viability of PC12 was measured by trypan blue assay. Copper nanoparticles-treated cell cutlers signifcantly (p ≤ 0.01) decreased the infammatory cytokines concentrations, caspase-3 activity, and DNA fragmentation and they raised the cell viability and mitochondrial membrane potential in the high concentration of methadone- treated PC12 cells. The best result of neuroprotective properties was seen in the high dose of copper nanoparticles i.e., 4 µg.
    [Show full text]
  • Protective Efficacy of Crocetin and Its Nanoformulation Against
    Life Sciences 216 (2019) 39–48 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells T ⁎ Jyotsnarani Pradhana,b, Chandana Mohantya,1, Sanjeeb K. Sahooa, a Institute of Life Sciences, Bhubaneswar, Odisha, India b P.G. Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India ARTICLE INFO ABSTRACT Keywords: Aim: This study is aimed to formulate crocetin-loaded lipid Nanoparticles (NPs) and to evaluate its antioxidant Crocetin properties in a cyclosporine A-mediated toxicity in Human Embryonic Kidney (HEK-293) cells in vitro. Nanoparticle Main methods: Crocetin-loaded NPs were prepared followed by physicochemical characterization. In vitro pro- Cyclosporine tective efficacy of crocetin and crocetin loaded NPs was investigated in cyclosporine A-mediated toxicity in HEK- Cytotoxicity 293 cells by assessing free radical scavenging, DNA Nicking, cytotoxicity, intracellular Reactive oxygen species ROS (ROS) inhibition, Mitochondrial membrane potential (MMPs) loss and evaluating the activity and expression of Antioxidant activity antioxidant enzymes and non-enzyme level. Further, we have studied the mechanism of protective activity of crocetin either native or in NPs by studying the expression of phase II detoxifying proteins (HO-1) via Nrf2 mediated regulation. Key findings: Our results showed that pretreatment with crocetin and crocetin-loaded NPs attenuated the cy- closporine A-mediated toxicity, ROS production and exhibited enhance free radical scavenging ability and cy- toprotective activity. Further, the treatment prevented MMPs loss by directly scavenging the ROS and restored the antioxidant enzyme network with normalization of heme oxygenase-1 (HO-1) expression by inhibiting nu- clear translocation of Nrf2.
    [Show full text]
  • Glycine and Succinic Acid Are Effective Indicators of the Suppression of Epithelial-Mesenchymal Transition by Fucoxanthinol in Colorectal Cancer Stem-Like Cells
    414 ONCOLOGY REPORTS 40: 414-424, 2018 Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells MASARU TERASAKI1,2, MASATOSHI MIMA1, SATOKI KUDOH1, TETSUYA ENDO1, HAYATO MAEDA3, JUNICHI HAMADA2,4, KAZUMI OSADA5, KAZUO MIYASHITA6 and MICHIHIRO MUTOH7 1School of Pharmaceutical Sciences and 2Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293; 3Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561; 4School of Nursing and Social Services, and 5School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293; 6Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611; 7Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan Received November 21, 2017; Accepted March 30, 2018 DOI: 10.3892/or.2018.6398 Abstract. Fucoxanthinol (FxOH) is a strong anticancer Csps derived from human CRC HT-29 and HCT116 cells were metabolite of fucoxanthin that accumulates in abundance also altered. According to our metabolite profiling by GC-MS in edible brown algae and promises human health benefits. analysis, reduced glycine and succinic acid levels were corre- FxOH has been shown to suppress tumorigenicity and sphere lated with EMT suppression and apoptosis induction in Csps. formation in human colorectal cancer stem cell (CCSC)-like Our data indicate that simple amino acids such as glycine and spheroids (colonospheres, Csps). In the present study, we succinic acid may be good prognostic indicators of physi- aimed to clarify the inhibitory activity of FxOH on epithelial- ological changes to CCSCs induced by FxOH treatment.
    [Show full text]
  • 3-6 April 2019 Convention Centre Dublin, Ireland
    3-6 April 2019 Convention Centre Dublin, Ireland th 1 18 World Congress of the International Academy ofFINAL Human PROGRAM Reproduction The first volume is now available Buy or order your copy at the Wisepress booth Series Editors This series edited by the International Academy of Human Reproduction presents developments in knowledge and practice within all aspects of reproductive medi- cine. It will help to cover the important gap between the new possibilities offered by the most recent investigations and technical developments and the application in clinical practice. 2 th 18 World Congress of the International Academy of Human Reproduction Welcome in Dublin to the 18th World Congress of the Academy of Human Reproduction. A truly international gathering of scientists and clinicians who are working in their respective countries to advance our collaboration agenda and making progress in the science of Human Reproduction. LOCAL SCIENTIFIC COMMITTEE McAuliffe Fionnuala (Dublin), Mahony Rhona (Dublin), Mocanu Edgar (Dublin), Purandare Nikhil (Galway) THE INTERNATIONAL ACADEMY OF HUMAN REPRODUCTION President Devoto Luigi (CL) Honorary Members Schenker Joseph G. (IL) Diedrich Klaus (DE) Arulkumaran Sabaratnam (GB) Di Renzo Gian Carlo (IT) Biran Affandi (ID) Executive Giudice Linda (US) Bitzer Johannes (CH) Sciarra John (US) Gomel Victor (CA) Bongso Ariff (SG) Vice President Holzgreve Wolfang (DE) Brosens Ivo (BE) Genazzani Andrea R. (IT) Khomasuridze Archil (GE) Chervanek Frank (US) Klimek Rudolf (PL) Coutinho Elsimar (BR) General Secretary
    [Show full text]