Rotenone-Induced Inner Retinal Degeneration Via Presynaptic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic
Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats This article was published in the following Dove Press journal: Drug Design, Development and Therapy Yanshuang Liu, 1,2,* Purpose: Arsenic trioxide (ATO) has been shown to induce hepatic injury. Crocetin is Yingran Liang,3,* a primary constituent of saffron, which has been verified to have antioxidant and anti- Bin Zheng,3 Li Chu,3 inflammatory effects. In the current experiment, we evaluated the efficacy of crocetin against Donglai Ma, 3 ATO-induced hepatic injury and explored the potential molecular mechanisms in rats. Hongfang Wang,3 Xi Chu,4 Methods: Rats were pretreated with 25 or 50 mg/kg crocetin 6 h prior to treating with 5 mg/ kg ATO to induce hepatic injury daily for 7 days. Jianping Zhang2,5 Results: Treatment with crocetin attenuated ATO-induced body weight loss, decreases in 1 Department of Diagnostics, School of food and water consumption, and improved ATO-induced hepatic pathological damage. Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Crocetin significantly inhibited ATO-induced alanine aminotransferase (ALT), aspartate ’ Shijiazhuang, Hebei, 050200, People s aminotransferase (AST), and alkaline phosphatase (ALP) increases. Crocetin prevented Republic of China; 2Hebei Key Laboratory of Integrative Medicine on Liver-Kidney ATO-induced liver malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Patterns, Shijiazhuang 050200, Hebei, People’s Republic of China; 3Department of Crocetin abrogated the ATO-induced decrease of catalase (CAT) and superoxide dismutase Pharmaceutics, School of Pharmacy, Hebei (SOD) activity. -
Association of Crocus Sativus with Cognitive Dysfunctions and Alzheimer’S Disease: a Systematic Review
Review Volume 11, Issue 1, 2021, 7468 - 7492 https://doi.org/10.33263/BRIAC111.74687492 Association of Crocus sativus with Cognitive Dysfunctions and Alzheimer’s Disease: A Systematic Review 1 2 3,* Marjan Talebi , Mohsen Talebi , Saeed Samarghandian 1 Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; [email protected]; 2 Food Safety Net Services, San Antonio, Texas 78216, USA; [email protected]; 3 Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; [email protected]; * Correspondence: [email protected]; Scopus Author ID 6507632790 Received: 8.05.2020; Revised: 10.06.2020; Accepted: 13.06.2020; Published: 17.06.2020 Abstract: Alzheimer’s disease (AD) is known as a principle basis of cognitive impairment in the elderly population. Current available therapeutic approaches are not applicable enough for the reason of intolerable side effects, low patients’ compliance due to the short half-life, and biopharmaceutical limitations. Therefore discovery alternative and multi-targeted therapeutic approaches are sought. Crocus sativus is a distinguished medicinal plant with a wide range of biological and pharmacological belongings, exclusively antioxidant and anti-inflammatory possessions. Following PRISMA guidelines, a systematic review was conducted by search in Electronic databases comprising Scopus, PubMed, Web of Science, and Embase using the keywords cognitive OR cognition OR memory OR nootropic OR Alzheimer OR amnesia OR dementia AND “Crocus sativus” OR saffron OR crocin OR crocetin OR safranal until 21st February 2020. The results display that saffron and its major constituents are capable of having remarkable properties on memory and cognitive deficiency. -
Saffron: Chemical Composition and Neuroprotective Activity
molecules Article Saffron: Chemical Composition and Neuroprotective Activity Maria Anna Maggi 1,2,*, Silvia Bisti 3,4 and Cristiana Picco 4,5 1 Hortus Novus srl, via Campo Sportivo 2, 67050 Canistro, Italy 2 Department of Phyisical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy 3 Department of Biotecnology and Applied Clinical Sciences, DISCAB, University of L’Aquila, Via Vetoio, 67100 Coppito, Italy; [email protected] 4 National Institute of Biostructure and Biosystem (INBB), V. le Medaglie D’Oro 305, 00136 Roma, Italy; [email protected] 5 Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy * Correspondence: [email protected] Academic Editors: Nikolaos Pitsikas and Konstantinos Dimas Received: 14 October 2020; Accepted: 25 November 2020; Published: 29 November 2020 Abstract: Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron’s ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components. -
Upregulation of TIPE2 Attenuates Macrophage Activation and Neuroinfammation After Intracerebral Hemorrhage in Mice
Upregulation of TIPE2 attenuates macrophage activation and neuroinammation after intracerebral hemorrhage in mice Shudong Liu Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Jie Wang Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Wenyan Li Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Hui Shi Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Changlong Zhou Universitatsklinikum Munster Klinik fur Neurologie mit Institut fur Translationale Neurologie Ge Tang neurology Jiangwei Zhang Institut National de Neurologie Mongi-Ben Hamida zhao yang ( [email protected] ) Universitatsklinikum Zentrum fur Neurologie Research Keywords: TIPE2, macrophage, neuroinammation, ICH Posted Date: August 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-54788/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Intracerebral hemorrhage (ICH) is a serious disease with high mortality and morbidity, and effective treatment is limited. A large amount of evidence suggests that the inammatory response contributes to secondary brain damage following ICH. TIPE2 is an essential negative regulator of both innate and adaptive immunity, and depletion of TIPE2 causes inammatory disease. However, the possible role of TIPE2 following ICH has not been reported. Methods: In this study, we investigated TIPE2 levels and inammation in macrophages treated with erythrocyte lysate in vitro, and we observed proinammatory cytokine production, BBB disruption, cerebral water content and neurological damage in ICH mice in vivo. Results: We found that TIPE2 levels were signicantly decreased in erythrocyte lysate-treated macrophages compared to control macrophages. Upregulation of TIPE2 decreased macrophage activation and cytokine production and accelerated brain damage in ICH mice. -
A Radical Approach to Stroke Therapy
Commentary A radical approach to stroke therapy James McCulloch* and Deborah Dewar Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Glasgow G61 1QH, United Kingdom troke is a major cause of death and readily crosses the blood–brain barrier, (mitogen-activated protein kinases͞ Sdisability throughout the developed to augment endogenous brain ascorbic ERK1͞2). During ischemia, ERK1͞2 are world. Cerebrovascular disease ranks acid levels by up to 2 mM. However, in dephosphorylated, and there is a signif- third after cancer and heart disease as a the brain, ascorbic acid levels are heter- icant increase in ERK1͞2 phosphoryla- cause of death in the European Union ogeneous and highly compartmental- tion during reperfusion after forebrain and the U.S. The economic and social ized. In the rat, normal neuronal, glial, ischemia. Neurons and oligodendrocytes burdens of stroke are not consequences and cerebrospinal fluid levels of ascorbic at the margin of a focal ischemic lesion of mortality; they are imposed by the acid are Ϸ10 mM, 1 mM, and 0.5 mM, display increased MEK1͞2, indicating large majority of stroke patients who respectively (3). The antioxidant effects that this signaling pathway is activated survive but are physically and mentally of ascorbic acid at all of these sites within after ischemia and reperfusion in vivo disabled by stroke-induced brain dam- the brain could contribute to the efficacy (8). If MEK1͞2 is inhibited by the novel age. In the U.S., less than 2% of stroke of this agent in ischemia. Brain ascorbic agent, U0126, the extent of brain damage patients benefit from access to early acid levels are highly dynamic (although is reduced after either forebrain or focal thrombolysis, which removes the primary under rigorous homeostatic control), ischemia (2). -
Namenverzeichnis. Index of Names. Index Des Auteurs
Namenverzeichnis. Index of Names. Index des Auteurs. ABE, S. Il6. ANTIA, N. J. 160, 17I. ABRAMS, G. J. v. 399, 417. ApPLEGATE, f[. G. 403, 417. ACHER, R. I04, 107. ApPLING, J. W. 5 14, 536. ACKER, L. 515, 529. ARCHIBALD, W. J. 450, 495· ACKERMANN, D. 89, 100, 101, 106-108, AR1S0N, B. f[. 416, 417. Il3· ARMBRUST, K. I06, Il5. ADAMS, J. 5°9, 5 Il, 5 12, 515, 5 18, 53I. ARMSTRONG, M. D. 95, 110. ADLER, N. 393, 426. ARR1GONI, O. 404, 426. AHMAD, B. 332, 334. ASANO, N. Il6. AHMAD, R. 249, 316, 322, 334. ASCHAFFENBURG, R. 461, 484, 495. AHMED, Z. F. 514, 529. ASEEVA, 1. V. 351, 424. AHRENS, R. 253, 329, 330, 339· ASERO, B. 60, 78. AlSENBERG, A. C. 512, 53!. Aso, K. 352, 356-358, 361, 432, 433. AITKEN, R. A. 515, 529. ASPINALL, G. O. 510, 5I1, 514, 515, 521, AKAMATSU, S. 108. 529, 536 . AKELEY, D. F. 460, 495. ASPREY, G. F. 411, 417. AKHTAR, M. 275, 3°1, 334. ASTWOOD, E. B. 141, 151, 163, 169, 17I. ALBERTI, C. G. 60, 78. AUDIA, \V. V. 41 I, 426. ALBERTY, R. A. 460, 482, 495. AURET, B. J. 5 Il, 529. ALCORN, J. W. S. 405, 421. AUSTIN, M. J. 514, 532. ALCORN, S. M. 410, 417. AVERY, O. T. 504, 5IO-513, 516, 529-531. ALDAG, f[. J. 253, 260, 261,275, 3°5, 338 . AYTOUN, R. S. C. 414, 417. ALEXANDER, H. E. 518, 536. ALLAN, J. D. 106, 108. BABERs, F. f[. 512, 516, 529, 530. -
Organic Seminar Abstracts
1 I B R.AR.Y OF THE UN IVER.SITY Of 1LLI NOIS 547 l938/39 : aanc\ D ssariSSSK" University^in»^^ Lir.i mi SEMINAR TOPICS I Semester 1938-39 Page Structure of Gossypol 1 Roger Adams Some New Synthetic Methods 6 William S. Emerson The Mechanism of Substitution at a Saturated Carbon Atom 8 C. C. Price Diene Syntheses of Polycyclic Compounds 10 T. A. Geissman and C. K. Bradsher Structure of the Triterpenes 14 L. N. Whitehill and E. H. Riddle The Associating Effect of the Hydrogen Atom 23 L. Dankert Splitting of FUrans with Aromatic Amines 25 C. R. Lee Tautomerism of Pyridine Homologs, Pyridine Series Syntheses 28 E. C. Horning Reactivities of Substituted ^A -Chloro Ketones and the ^echanism of 31 Certain Reactions E. H. ^obratz Synthesis of Polyenes from Acetylene and Diacetylene 36 R. V. Lindsey, Jr. Eydrobenzoinic Rearrangements with Replacement of One or Two Aryl Groups 40 by Other Radicals S. L. Scott Anesthetic Effectlof 2-Alkoxy Quinolines 45 B. R. Baker Polyazobenzenes 50 J. W. Shackleton The Reduction of Organic Compounds on the Dropping Mercury Cathode 52 H. M. teeter A New Rearrangement and Its Use in the Preparation of Esters of 55 Amino Alcohols Hugh W. Stewart . )? Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi38391univ . 6U? s 2 I*? Paee The Friedel-Crafts Reaction 59 Joseph Dec and ^. S. L ng Vitamin D2 67 D Burney The Chemical Substances Responsible for the Copulation of the ^ex 72 Cells of the Chlamydomonas ^ugametos in Light W. -
Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin. -
Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2014 Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance Da Zhang Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Other Pharmacy and Pharmaceutical Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3533 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Da Zhang, 2014 All Rights Reserve EVALUATION OF THE ALLOMETRIC EXPONENTS IN PREDICTION OF HUMAN DRUG CLEARANCE A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University By Da Zhang Master of Science, University of Arizona, 2004 Director: F. Douglas Boudinot, Ph.D. Professor, School of Pharmacy, VCU Virginia Commonwealth University Richmond, Virginia August, 2014 ACKNOWLEDGEMENTS First and foremost, I would like to sincerely thank my advisor, Dr. F. Douglas Boudinot, for giving me the opportunity to pursue graduate studies under his guidance and for his continuous professional support, guidance, encouragement and patience throughout my graduate program. He was always delighted in sharing his vast knowledge and kind warmth. I would also like to thank Dr. Ahmad for his scientific advice and support through the complet ion of my degree. He has been a kind and helpful mentor for me. I would like to acknowledge my graduate committee members, Drs. -
(12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest Et A1
US007964607B2 (12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest et a1. (45) Date of Patent: Jun. 21, 2011 (54) PYRAZOLO[3,4-D]PYRIMIDINE FOREIGN PATENT DOCUMENTS COMPOUNDS EP 1460077 9/2004 WO 02085904 10/2002 (75) Inventors: Patrick Robert Verhoest, Old Lyme, CT WO 2004037176 5/2004 (US); Caroline ProulX-Lafrance, Ledyard, CT (US) OTHER PUBLICATIONS Wunder et a1, M01. PharmacoL, v01. 28, N0. 6, (2005), pp. 1776 (73) Assignee: P?zer Inc., New York, NY (U S) 1781. van der Staay et a1, Neuropharmacology, v01. 55 (2008), pp. 908 ( * ) Notice: Subject to any disclaimer, the term of this 918. patent is extended or adjusted under 35 USC 154(b) by 562 days. Primary Examiner * Susanna Moore (74) Attorney, Agent, or Firm * Jennifer A. Kispert; (21) Appl.No.: 12/118,062 Michael Herman (22) Filed: May 9, 2008 (57) ABSTRACT (65) Prior Publication Data The invention provides PDE9-inhibiting compounds of For US 2009/0030003 A1 Jan. 29, 2009 mula (I), Related US. Application Data (60) Provisional application No. 60/917,333, ?led on May 11, 2007. (51) Int. Cl. C07D 48 7/04 (2006.01) A61K 31/519 (2006.01) A61P 25/28 (2006.01) (52) US. Cl. ................................... .. 514/262.1; 544/262 (58) Field of Classi?cation Search ................ .. 544/262; 5 1 4/2 62 .1 See application ?le for complete search history. and pharmaceutically acceptable salts thereof, Wherein R, R1, (56) References Cited R2 and R3 are as de?ned herein. Pharmaceutical compositions containing the compounds of Formula I, and uses thereof in U.S. -
Cardiac Glycosides Provide Neuroprotection Against Ischemic Stroke: Discovery by a Brain Slice-Based Compound Screening Platform
Cardiac glycosides provide neuroprotection against ischemic stroke: Discovery by a brain slice-based compound screening platform James K. T. Wang*†, Stuart Portbury*‡, Mary Beth Thomas*§, Shawn Barney*, Daniel J. Ricca*, Dexter L. Morris*¶, David S. Warnerʈ, and Donald C. Lo*,**†† *Cogent Neuroscience, Inc., Durham, NC 27704; ʈMultidisciplinary Neuroprotection Laboratories and Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710; and **Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27704 Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 17, 2006 (received for review February 3, 2006) We report here the results of a chemical genetic screen using small intrinsically problematic for a number of reasons, including inher- molecules with known pharmacologies coupled with a cortical ent limitations on therapeutic time window and clinically limiting brain slice-based model for ischemic stroke. We identified a small- side-effect profiles. Consequently, much attention has been focused molecule compound not previously appreciated to have neuropro- in recent years on using genomic, proteomic, and other systems tective action in ischemic stroke, the cardiac glycoside neriifolin, biology approaches in identifying new drug target candidates for and demonstrated that its properties in the brain slice assay stroke drug intervention (see review in ref. 5). included delayed therapeutic potential exceeding 6 h. Neriifolin is In this context we developed a tissue-based, high-content assay structurally related to the digitalis class of cardiac glycosides, and model for ischemic stroke based on biolistic transfection of visual ؉ ؉ its putative target is the Na ͞K -ATPase. -
United States Patent (10 ) Patent No.: US 10,660,887 B2 Javitt (45 ) Date of Patent: *May 26 , 2020
US010660887B2 United States Patent (10 ) Patent No.: US 10,660,887 B2 Javitt (45 ) Date of Patent : *May 26 , 2020 (54 ) COMPOSITION AND METHOD FOR (56 ) References Cited TREATMENT OF DEPRESSION AND PSYCHOSIS IN HUMANS U.S. PATENT DOCUMENTS 6,228,875 B1 5/2001 Tsai et al. ( 71 ) Applicant : Glytech , LLC , Ft. Lee , NJ (US ) 2004/0157926 A1 * 8/2004 Heresco - Levy A61K 31/198 514/561 (72 ) Inventor: Daniel C. Javitt , Ft. Lee , NJ (US ) 2005/0261340 Al 11/2005 Weiner 2006/0204486 Al 9/2006 Pyke et al . 2008/0194631 Al 8/2008 Trovero et al. ( 73 ) Assignee : GLYTECH , LLC , Ft. Lee , NJ (US ) 2008/0194698 A1 8/2008 Hermanussen et al . 2010/0069399 A1 * 3/2010 Gant CO7D 401/12 ( * ) Notice : Subject to any disclaimer, the term of this 514 / 253.07 patent is extended or adjusted under 35 2010/0216805 Al 8/2010 Barlow 2011/0207776 Al 8/2011 Buntinx U.S.C. 154 ( b ) by 95 days . 2011/0237602 A1 9/2011 Meltzer This patent is subject to a terminal dis 2011/0306586 Al 12/2011 Khan claimer . 2012/0041026 A1 2/2012 Waizumi ( 21 ) Appl. No.: 15 /650,912 FOREIGN PATENT DOCUMENTS CN 101090721 12/2007 ( 22 ) Filed : Jul. 16 , 17 KR 2007 0017136 2/2007 WO 2005/065308 7/2005 (65 ) Prior Publication Data WO 2005/079756 9/2005 WO 2011044089 4/2011 US 2017/0312275 A1 Nov. 2 , 2017 WO 2012/104852 8/2012 WO 2005/000216 9/2013 WO 2013138322 9/2013 Related U.S. Application Data (63 ) Continuation of application No.