A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae Journal of Medicinal Plants A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae Irvani N (M.Sc.)1, Hajiaghaee R (Ph.D.)2, Zarekarizi A.R (M.Sc.)2* 1- Faculty of Biological Science and Technology, Shahid Beheshti University, Tehran, Iran 2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Institute of Medicinal Plants, ACECR, Karaj, Iran P.O.BOX (Mehr Vila): 31375-369 Tel: +98 - 26 – 34764010-18, Fax: +98 – 26- 34764021 E-mail: [email protected] Received: 28 June 2017 Accepted: 18 July 2018 Abstract Fucoxanthin, an allenic carotenoid, is abundant in macro and microalgae as a component of the light-harvesting complex for photosynthesis and photo protection. This carotenoid has shown important pharmaceutical bioactivity, exerting antioxidant, anti-cancer, anti-diabetic, anti- obesity, anti-photoaging, anti-angiogenic, and anti-metastatic effects on a variety of biological models. This carotenoid has been proven to be safe for animal consumption, opening up the opportunity of using this bioactive compound in the treatment of different pathologies. In this paper, an updated account of the research progress in biosynthetic pathway and health benefits of fucoxanthin is presented. Meanwhile, a review on the various methods of extraction of fucoxanthin in macro and microalgae is also revisited. According to these studies providing important background knowledge, fucoxanthin can be utilized into drugs and nutritional products. Keywords: Fucoxanthin, Carotenoids, Biosynthesis pathway, Extraction methods 6 Volume 17, No. 67, Summer 2018 … A Review on Biosynthesis Introduction million species [5]. Microalgae are important Consumer awareness of the importance of a primary producers in marine environments and healthy diet, protection of the environment, play a significant role in supporting aquatic resource sustainability and using all natural animals [6]. Mass production of microalgae resources are continuously increasing and can be carried out outdoors or indoors in fortunately enhance awareness among people bioreactors under optimal conditions [7]. This towards natural products due to their non-toxic makes microalgae a potentially sustainable properties, low pollution and less side effects source of feedstock for fuel, food, chemical, [1]. Microalgae (unicellular organisms) and textile, polymer and even the pharmaceutical macroalgae (multicellular organisms) belong industry [4]. to the large algae group made up of Carotenoids are tetraterpenoids with a photosynthetic organisms [2]. In recent characteristic linear C40 molecular backbone decade, there is a growing interest in using containing up to 11 conjugated double bonds, marine algae as an alternative food source. which are synthesized by all photosynthetic Marine algae are distributing from the polar organisms as well as by many non- region to tropical areas, range in size from photosynthetic bacteria and fungi [8]. There microscopic individual cells of microalgae to are two main classes of naturally occurring huge seaweeds and from nutrient-rich coastal carotenoids: carotenes, which are seas to oligotrophic open oceans [3]. hydrocarbons that are either linear orcyclized Algae have created enormous interest due at one or both ends of the molecule; and to their unconventional growth requirements xanthophylls which are oxygenated derivatives [4]. They provide an opportunity to exploit the of carotenes. In general, a distinction can be underutilized arable lands and oceans without made between primary and secondary reducing the agricultural production surface, carotenoids. Primary xanthophylls are defined which needs to be supplemented in order to as xanthophylls which are structural and feed the growing global population. Seaweeds functional components of the photosynthetic live in the coastal regions of ocean waters, apparatus of the cell and therefore essential for regularly within rocky intertidal or submerged cellular survival. Secondary xanthophylls are reef-like habitats. In this environment, a defined as xanthophylls that algae produce in nutrient struggling for light and space is fierce large quantities only after having been exposed and seaweeds have evolved chemical defense to specific environmental stimuli [9]. mechanisms to ward off predators and increase Fucoxanthin one of the major marine survival. Not surprisingly, many of these xanthophylls, occurs in some macro and chemicals are biologically active and some microalgae and has a unique structure including possess potent pharmacological activity [3]. an allenic bond, a conjugated carbonyl, a 5, 6- Furthermore, Marine microalgae constitute the monoepoxide and acetyl groups [10, 11] (Figure largest group of living organisms in the ocean 1). It serves as an antenna carotenoid in with an estimated range of 2×105 to several 7 Irvani & et al. Figure 1- Structure of Fucoxanthin the light-harvesting complexes where it is identification of biosynthesis pathway and coupled to the thylakoid membrane to transfer improvement of efficient extraction methods excitation energy to the photosynthetic are clearly necessary. Hence, this article electron transport chain via chlorophyll a [12, reviews the current available scientific 13]. Fucoxanthin has attracted considerable literature regarding the Biosynthesis, Health interest because of its potent bioactivities, Benefits and extraction methods of including its antioxidant, anti-inflammatory, fucoxanthin from macro and micro algae. anticancer, anti-obese, antidiabetic, antiangiogenic, and antimalarial activities, and Biosynthesis of fucoxanthin and Enzymatic its protective effects on the liver, blood vessels Reactions of the brain, bones, skin, and eyes [8, 14]. The Some common carotenogenesis genes in effects on adult T-cell leukemia cells, and algae are suggested from homology of the inhibitory effect on the viability of HL-60 cells known genes, but most genes and enzymes for of fucoxanthin are distinctly more potent than algae-specific pathways are still unknown. To that of β-carotene and astaxanthin [15]. This exploit our knowledge regarding this carotenoid has been proven to be safe for carotenoid in the medical fields and industrial animal consumption [16], opening up the applications, resolution of this pathway at the opportunity of using this bioactive compound molecular level is very important [8]. in the treatment of different pathologies [12]. Isopentenyl pyrophosphate (IPP), a C5- Though chemical synthesis of fucoxanthin is compound, is the source of isoprenoids, possible, it is very expensive and hence the terpenes, quinones, sterols, phytol of viability of obtaining directly from brown chlorophylls, and carotenoids. There are two seaweeds should not be overlooked [17]. known independent pathways of IPP synthesis: The promising prospect envisaged in this the classical mevalonate (MVA) pathway and new field of scientific collaboration arose our the alternative, non-mevalonate, 1-deoxy-d- interest to produce fucoxanthin. To perform xylulose-5-phosphate (DOXP) pathway. In the such grave attempt, an intensive work on MVA pathway, acetyl-Coenzyme A is 8 Journal of Medicinal Plants, Volume 17, No. 67, Summer 2018 … A Review on Biosynthesis converted to IPP through mevalonate. The precursor of fucoxanthin. The neoxanthin pathway is found in plant cytoplasm, animals hypothesis, on the other hand, proposes a and some bacteria [18, 19, 20]. In the DOXP branching of the pathway from neoxanthin to pathway, pyruvate and glycelaldehyde are both diadinoxanthin and fucoxanthin. The converted to IPP and the pathway is found in reasons for these differing hypotheses cyanobacteria, the plastids of algae, land plants regarding the fucoxanthin biosynthetic and some bacteria [9, 14]. pathways are: (1) that no pathway intermediate Farnesyl pyrophosphate (C15) is has been detected by HPLC, and (2) that the synthesized from three IPPs, after which, one genes encoding enzymes involved in the IPP is added to farnesyl pyrophosphate by biosynthesis of fucoxanthin have not been geranylgeranyl pyrophosphate synthase cloned [8]. (GGPS) to yield geranylgeranyl pyrophosphate For conversion of neoxanthin to (C20). In a head-to-head condensation of the fucoxanthin, two sequential reactions are two C20 compounds, the first carotene, necessary: ketolation of neoxanthin and phytoene (C40), is formed by phytoene acetylation of an intermediate [18]. Thus, synthase (Psy) using ATP. Four desaturation biochemical detection of the intermediate steps are needed in the conversion from which is probably fucoxanthinol, and phytoene to lycopene. Phytoene desaturase identification of genes encoding ketolase and (CrtP) catalyzes the first two desaturation acetylase are necessary to support the steps, from phytoene to ζ-carotene through neoxanthin hypothesis. phytofluene, and ζ-carotene desaturase (Zds) catalyzes two additional desaturation steps, Fucoxanthin Extraction from ζ-carotene to lycopene through An important factor determining the market neurosporene (Fig.2.). Lycopene is cyclized for fucoxanthin product development is the into β-carotene through γ-carotene [8, 14]. value of the target compound from the The biosynthetic pathway from organism of choice. The fucoxanthin β-carotenoid to violaxanthin is common to extraction efficiency was highly dependent on both diatoms and brown algae because genes the solvent type. Selecting the proper solvent encoding zeaxanthin epoxidase (ZEP) and to
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen Et Al
    USOO8834.855B2 (12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen et al. (45) Date of Patent: Sep. 16, 2014 (54) SUNSCREEN COMPOSITIONS COMPRISING (56) References Cited CAROTENOIDS U.S. PATENT DOCUMENTS (75) Inventors: Geir Johnsen, Trondheim (NO); Per Age Lysaa, Oslo (NO); KristinO O Aamodt, 4,699,7815,210,186 A 10/19875/1993 MikalsenGoupil et al. Oslo (NO) 5,308,759 A 5/1994 Gierhart 5,352,793 A 10, 1994 Bird et al. (73) Assignee: Promar AS (NO) 5,382,714 A 1/1995 Khachik 5,648,564 A 7/1997 AuSich et al. (*) Notice: Subject to any disclaimer, the term of this 5,654,488 A 8/1997 Krause et al. patent is extended or adjusted under 35 5,705,146 A 1, 1998 Lindquist U.S.C. 154(b) by 1255 days. (Continued) (21) Appl. No.: 11/795,668 FOREIGN PATENT DOCUMENTS (22) PCT Filed:1-1. Jan. 23, 2006 CA 21777521310969 12/199612/1992 (86). PCT No.: PCT/GB2OO6/OOO220 (Continued) S371 (c)(1), OTHER PUBLICATIONS (2), (4) Date: Apr. 15, 2008 “A UV absorbing compound in HPLC pigment chromatograms (87) PCT Pub. No.: WO2006/077433 obtained from Iceland Basin Phytoplankton'. Liewellyn et al., PCT Pub. Date: Jul.e 27,af f 9 2006 Marine Ecology Progress Series, vol. 158.:283-287, 1997.* (65) Prior Publication Data (Continued)Continued US 2008/O260662 A1 Oct. 23, 2008 Primary Examiner — Ernst V Arnold (30) Foreign Application Priority Data Assistant Examiner — Hong Yu (74) Attorney, Agent, or Firm — Schwegman Lundberg & Jan. 21, 2005 (GB) ..................................
    [Show full text]
  • Carotene in Obesity Research: Technical Considerations and Current Status of the Field
    nutrients Review β-carotene in Obesity Research: Technical Considerations and Current Status of the Field Johana Coronel 1, Ivan Pinos 2 and Jaume Amengual 1,2,* 1 Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; [email protected] 2 Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected] Received: 16 February 2019; Accepted: 6 April 2019; Published: 13 April 2019 Abstract: Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.
    [Show full text]
  • Photosynthetic Pigments in Diatoms
    Mar. Drugs 2015, 13, 5847-5881; doi:10.3390/md13095847 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Photosynthetic Pigments in Diatoms Paulina Kuczynska 1, Malgorzata Jemiola-Rzeminska 1,2 and Kazimierz Strzalka 1,2,* 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland; E-Mails: [email protected] (P.K.); [email protected] (M.J.-R.) 2 Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-126-646-509; Fax: +48-126-646-902. Academic Editor: Véronique Martin-Jézéquel Received: 10 July 2015 / Accepted: 7 September 2015 / Published: 16 September 2015 Abstract: Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications.
    [Show full text]
  • The Biochromes ) 1.2
    FORSCHUNG 45 CHIMIA 49 (1995) Nr. 3 (Miirz) Chim;a 49 (1995) 45-68 quire specific molecules, pigments or dyes © Neue Schweizerische Chemische Gesellschaft (biochromes) or systems containing them, /SSN 0009-4293 to absorb the light energy. Photoprocesses and colors are essential for life on earth, and without these biochromes and the photophysical and photochemical interac- tions, life as we know it would not have The Function of Natural been possible [1][2]. a Colorants: The Biochromes ) 1.2. Notation The terms colorants, dyes, and pig- ments ought to be used in the following way [3]: Colorants are either dyes or pig- Hans-Dieter Martin* ments, the latter being practically insolu- ble in the media in which they are applied. Indiscriminate use of these terms is fre- Abstract. The colors of nature belong undoubtedly to the beautiful part of our quently to be found in literature, but in environment. Colors always fascinated humans and left them wonderstruck. But the many biological systems it is not possible trivial question as to the practical application of natural colorants led soon and at all to make this differentiation. The consequently to coloring and dyeing of objects and humans. Aesthetical, ritual and coloring compounds of organisms have similar aspects prevailed. This function of dyes and pigments is widespread in natl)re. been referred to as biochromes, and this The importance of such visual-effective dyes is obvious: they support communication seems to be a suitable expression for a between organisms with the aid of conspicuous optical signals and they conceal biological colorant, since it circumvents revealing ones, wl,1eninconspicuosness can mean survival.
    [Show full text]
  • Algal Pigments As Biomarkers Linking Fish and Benthic Organisms with Type E Botulism
    Algal pigments in benthic organisms and fish: development of biomarkers to trace food-web relationships Katherine T. Alben, Maxime Bridoux, Monika Sobiechowska Wadsworth Center, New York State Department of Health Dept. Environmental Health Sciences, SUNY-Albany National Water Quality Monitoring Conference May 9, 2006 San Jose, CA U at ALBANY From R. Ruffin, with permission Type E botulism: what are the food-web pathways? loon grebe gull Hypothesis: algal scud pigments goby yellow orange red can be used to trace food-web connections http://www.combat-fishing.com/lakepondbalance.htm#coldwaterlglake http://www.dnr.state.mn.us/exotics/aquaticanimals/roundgoby/index.html http://www.vancouverisland.com/021wildl&cons/wildlife/birds/cw/cw_herringgull.html http://www.admiraltyaudubon.org/ [email protected] U at ALBANY Algal carotenoids found in the food web diatoms & fucoxanthin C42H60O6 55 chrysophytes diatoxanthin C40H54O2 55 cryptophytes alloxanthin C40H52O2 55 chlorophytes lutein C40H56O2 (5) 55 5 cyanobacteria zeaxanthin C40H56O2 55 5 5 cantha- C40H52O2 55 β-crypto- C40H56O 55 echinenone C40H54O 555 euglenophytes neoxanthin C40H56O4 5 dinoflagellates peridinin C39H52O7 NF NF NF NF crustacean astaxanthin C40H52O4 55 5 5 metabolism U at ALBANY Method Development Standards – high resolution separations Quantitation – NIST, reference materials, MDLs Sample prep – microanalytical procedures, SPE, enzymatic hydrolysis Applications – Phytoplankton Gastropods Dreissenids Fish – round gobies, drum, perch, bass Standards - chlorophyll & carotenoids
    [Show full text]
  • Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: a Promising Bioactive Compound for Cancer Therapy
    International Journal of Molecular Sciences Review Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: A Promising Bioactive Compound for Cancer Therapy Sarah Méresse 1,2,3, Mostefa Fodil 1 , Fabrice Fleury 2 and Benoît Chénais 1,* 1 EA 2160 Mer Molécules Santé, Le Mans Université, F-72085 Le Mans, France; [email protected] (S.M.); [email protected] (M.F.) 2 UMR 6286 CNRS Unité Fonctionnalité et Ingénierie des Protéines, Université de Nantes, F-44000 Nantes, France; [email protected] 3 UMR 7355 CNRS Immunologie et Neurogénétique Expérimentales et Moléculaires, F-45071 Orléans, France * Correspondence: [email protected]; Tel.: +33-243-833-251 Received: 23 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: Fucoxanthin is a well-known carotenoid of the xanthophyll family, mainly produced by marine organisms such as the macroalgae of the fucus genus or microalgae such as Phaeodactylum tricornutum. Fucoxanthin has antioxidant and anti-inflammatory properties but also several anticancer effects. Fucoxanthin induces cell growth arrest, apoptosis, and/or autophagy in several cancer cell lines as well as in animal models of cancer. Fucoxanthin treatment leads to the inhibition of metastasis-related migration, invasion, epithelial–mesenchymal transition, and angiogenesis. Fucoxanthin also affects the DNA repair pathways, which could be involved in the resistance phenotype of tumor cells. Moreover, combined treatments of fucoxanthin, or its metabolite fucoxanthinol, with usual anticancer treatments can support conventional therapeutic strategies by reducing drug resistance. This review focuses on the current knowledge of fucoxanthin with its potential anticancer properties, showing that fucoxanthin could be a promising compound for cancer therapy by acting on most of the classical hallmarks of tumor cells.
    [Show full text]
  • Biologically Active Compounds in Seaweed Extracts Useful in Animal Diet
    20 The Open Conference Proceedings Journal, 2012, 3, (Suppl 1-M4) 20-28 Open Access Biologically Active Compounds in Seaweed Extracts - the Prospects for the Application Katarzyna Chojnacka*, Agnieszka Saeid, Zuzanna Witkowska and Łukasz Tuhy Institute of Inorganic Technology and Mineral Fertilizers, Wroclaw University of Technology ul. Smoluchowskiego 25, 50-372 Wroclaw, Poland Abstract: The paper covers the latest developments in research on the utilitarian properties of algal extracts. Their appli- cation as the components of pharmaceuticals, feeds for animals and fertilizers was discussed. The classes of various bio- logically active compounds were characterized in terms of their role and the mechanism of action in an organism of hu- man, animal and plant. Recently, many papers have been published which discuss the methods of manufacture and the composition of algal ex- tracts. The general conclusion is that the composition of extracts strongly depends on the raw material (geographical loca- tion of harvested algae and algal species) as well as on the extraction method. The biologically active compounds which are transferred from the biomass of algae to the liquid phase include polysaccharides, proteins, polyunsaturated fatty ac- ids, pigments, polyphenols, minerals, plant growth hormones and other. They have well documented beneficial effect on humans, animals and plants, mainly by protection of an organism from biotic and abiotic stress (antibacterial activity, scavenging of free radicals, host defense activity etc.) and can be valuable components of pharmaceuticals, feed additives and fertilizers. Keywords: Algal extracts, feed additives, fertilizers, pharmaceuticals, biologically active compounds. 1. INTRODUCTION was paid to biologically active compounds, useful as the components of pharmaceuticals, feeds and fertilizers.
    [Show full text]
  • Chemical Cleavage of Fucoxanthin from Undaria Pinnatifida And
    Food Chemistry 211 (2016) 365–373 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Chemical cleavage of fucoxanthin from Undaria pinnatifida and formation of apo-fucoxanthinones and apo-fucoxanthinals identified using LC-DAD-APCI-MS/MS ⇑ Junxiang Zhu a, Xiaowen Sun a, Xiaoli Chen a, Shuhui Wang b, Dongfeng Wang a, a College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People’s Republic of China b Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, People’s Republic of China article info abstract Article history: As the most abundant carotenoid in nature, fucoxanthin is susceptible to oxidation under some condi- Received 11 September 2015 tions, forming cleavage products that possibly exhibit both positive and negative health effects in vitro Received in revised form 5 May 2016 and in vivo. Thus, to produce relatively high amounts of cleavage products, chemical oxidation of fucox- Accepted 11 May 2016 anthin was performed. Kinetic models for oxidation were probed and reaction products were identified. Available online 11 May 2016 The results indicated that both potassium permanganate (KMnO4) and hypochlorous acid/hypochlorite (HClO/ClOÀ) treatment fitted a first-order kinetic model, while oxidation promoted by hydroxyl radical Chemical compounds studied in this article: Å (OH ) followed second-order kinetics. With the help of liquid chromatography–tandem mass spectrom- Fucoxanthin (PubChem CID: 5281239) etry, a total of 14 apo-fucoxanthins were detected as predominant cleavage products, with structural Keywords: and geometric isomers identified among them. Three apo-fucoxanthinones and eleven apo- Fucoxanthin fucoxanthinals, of which five were cis-apo-fucoxanthinals, were detected upon oxidation by the three À Å Apo-fucoxanthins oxidizing agents (KMnO4, HClO/ClO , and OH ).
    [Show full text]
  • OXIDATIVE STRESS in ALGAE: METHOD DEVELOPMENT and EFFECTS of TEMPERATURE on ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Spring 2014 OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Fresh Water Studies Commons Recommended Citation Siddiqui, Md Noman, "OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS" (2014). Open Access Theses. 256. https://docs.lib.purdue.edu/open_access_theses/256 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised/) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By MD NOMAN SIDDIQUI Entitled OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIADANT NUCLEAR SIGNALING COMPOUNDS Master of Science For the degree of Is approved by the final examining committee: PAUL BROWN REUBEN GOFORTH THOMAS HOOK To the best of my knowledge and as understood by the student in the 7KHVLV'LVVHUWDWLRQ$JUHHPHQW 3XEOLFDWLRQ'HOD\DQGCHUWLILFDWLRQDisclaimer (Graduate School Form ), this thesis/dissertation DGKHUHVWRWKHSURYLVLRQVRIPurdue University’s “Policy on Integrity in Research” and the use of copyrighted material. PAUL BROWN Approved by Major Professor(s): ____________________________________
    [Show full text]
  • Photochemical Degradation of Antioxidants: Kinetics and Molecular End Products
    Photochemical degradation of antioxidants: kinetics and molecular end products Sofia Semitsoglou Tsiapou 2020 Americas Conference IUVA [email protected] 03/11/2020 Global carbon cycle and turnover of DOC 750 Atmospheric CO2 Surface Dissolved Inorganic C 610 1,020 Dissolved Terrestrial Organic Biosphere Carbon 662 Deep Dissolved 38,100 Inorganic C Gt C (1015 gC) Global carbon cycle and turnover of DOC DOC (mM) Stephens & Aluwihare ( unpublished) Buchan et al. 2014, Nature Reviews Microbiology Problem definition Enzymatic processes Bacteria Labile Recalcitrant Fungi Light Corganic Algae Corganic Radicals Carotenoids (∙OH, ROO∙) ➢ LC-MS ➢ GC-MS H2O-soluble products As Biomarkers for ➢ GC-IRMS Corg sources, fate and reactivity??? Hypotheses 1. Carotenoids in fungi neutralize free radicals and counteract oxidative stress and in marine environments are thought to serve as precursors for recalcitrant DOC 2. Carotenoid oxidation products can accumulate and their production and release can represent an important flux of recalcitrant DOC 3. Biological sources and diagenetic pathways of carotenoids are encoded into the fine-structure as well as isotopic composition of the degradation products FUNgal experiments Strains Culture cultivation - Unidentified - Potato Dextrose broth medium - Aspergillus candidus - Incubated 7 days - Aspergillus flavus - Aerobic conditions - Aspergillus terreus - Under natural light (28℃ ) - Penicillium sp. Biomass and Media Lyophilization extracts Bligh and Dyer method (for lipids analysis) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts ABTS assay: fungal antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 400 350 300 250 200 Medium 150 Biomass extracted] 100 50 0 TEAC [µmol of Trolox/mg of biomass of of[µmol Trolox/mg TEAC Unidentified Aspergillus Aspergillus Aspergillus Penicillium candidus flavus terreus sp.
    [Show full text]
  • Carotenoids in Algae: Distributions, Biosyntheses and Functions
    Mar. Drugs 2011, 9, 1101-1118; doi:10.3390/md9061101 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Carotenoids in Algae: Distributions, Biosyntheses and Functions Shinichi Takaichi Department of Biology, Nippon Medical School, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan; E-Mail: [email protected]; Tel.: +81-44-733-3584; Fax: +81-44-733-3584 Received: 2 May 2011; in revised form: 31 May 2011 / Accepted: 8 June 2011 / Published: 15 June 2011 Abstract: For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. Keywords: algal phylogeny; biosynthesis of carotenoids; distribution of carotenoids; function of carotenoids; pigment-protein complex 1.
    [Show full text]
  • Crocin Suppresses Multidrug Resistance in MRP Overexpressing
    Mahdizadeh et al. DARU Journal of Pharmaceutical Sciences (2016) 24:17 DOI 10.1186/s40199-016-0155-8 RESEARCH ARTICLE Open Access Crocin suppresses multidrug resistance in MRP overexpressing ovarian cancer cell line Shadi Mahdizadeh1, Gholamreza Karimi2, Javad Behravan3,4, Sepideh Arabzadeh3, Hermann Lage5 and Fatemeh Kalalinia3,6* Abstract Background: Crocin, one of the main constituents of saffron extract, has numerous biological effects such as anti-cancer effects. Multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) are important elements in the failure of cancer chemotherapy. In this study we aimed to evaluate the effects of crocin on MRP1 and MRP2 expression and function in human ovarian cancer cell line A2780 and its cisplatin-resistant derivative A2780/RCIS cells. Methods: The cytotoxicity of crocin was assessed by the MTT assay. The effects of crocin on the MRP1 and MRP2 mRNA expression and function were assessed by real-time RT-PCR and MTT assays, respectively. Results: Our study indicated that crocin reduced cell proliferation in a dose-dependent manner in which the reduction in proliferation rate was more noticeable in the A2780 cell line compared to A2780/RCIS. Crocin reduced MRP1 and MRP2 gene expression at the mRNA level in A2780/RCIS cells. It increased doxorubicin cytotoxicity on the resistant A2780/RCIS cells in comparison with the drug-sensitive A2780 cells. Conclusion: Totally, these results indicated that crocin could suppress drug resistance via down regulation of MRP transporters in the human ovarian cancer resistant cell line. Keywords: Crocin, Multidrug resistance, MRP1, MRP2, A2780, A2780/RCIS Background (ABC family) [4, 5].
    [Show full text]