Photochemical Degradation of Antioxidants: Kinetics and Molecular End Products
Total Page:16
File Type:pdf, Size:1020Kb
Photochemical degradation of antioxidants: kinetics and molecular end products Sofia Semitsoglou Tsiapou 2020 Americas Conference IUVA [email protected] 03/11/2020 Global carbon cycle and turnover of DOC 750 Atmospheric CO2 Surface Dissolved Inorganic C 610 1,020 Dissolved Terrestrial Organic Biosphere Carbon 662 Deep Dissolved 38,100 Inorganic C Gt C (1015 gC) Global carbon cycle and turnover of DOC DOC (mM) Stephens & Aluwihare ( unpublished) Buchan et al. 2014, Nature Reviews Microbiology Problem definition Enzymatic processes Bacteria Labile Recalcitrant Fungi Light Corganic Algae Corganic Radicals Carotenoids (∙OH, ROO∙) ➢ LC-MS ➢ GC-MS H2O-soluble products As Biomarkers for ➢ GC-IRMS Corg sources, fate and reactivity??? Hypotheses 1. Carotenoids in fungi neutralize free radicals and counteract oxidative stress and in marine environments are thought to serve as precursors for recalcitrant DOC 2. Carotenoid oxidation products can accumulate and their production and release can represent an important flux of recalcitrant DOC 3. Biological sources and diagenetic pathways of carotenoids are encoded into the fine-structure as well as isotopic composition of the degradation products FUNgal experiments Strains Culture cultivation - Unidentified - Potato Dextrose broth medium - Aspergillus candidus - Incubated 7 days - Aspergillus flavus - Aerobic conditions - Aspergillus terreus - Under natural light (28℃ ) - Penicillium sp. Biomass and Media Lyophilization extracts Bligh and Dyer method (for lipids analysis) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts ABTS assay: fungal antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 400 350 300 250 200 Medium 150 Biomass extracted] 100 50 0 TEAC [µmol of Trolox/mg of biomass of of[µmol Trolox/mg TEAC Unidentified Aspergillus Aspergillus Aspergillus Penicillium candidus flavus terreus sp. Fungal strains ABTS assay: β-carotene antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 30.0 25.0 20.0 15.0 10.0 TEAC [µmol of Trolox] of[µmol Trolox] TEAC 5.0 0.0 50 100 150 200 β-carotene concentration (mg/L) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts Fungal compounds ❑ Semiquinones ❑ Carotenoids ❑ Ubiquinones ❑ β-carotene degradation products canthaxanthin beta-apo-4'-carotenal neurosporaxanthin retinal FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts Fungal/algal antioxidants Astaxanthin β-carotene Fucoxanthin Zeaxanthin vitamin K2 coenzyme Q10 Oxidation experiments H2O2 20 mg/L Degradation kinetics Solar light 1 sun Absorbance (final) J1 CAR 3mL LC-MS analysis conditions (x3) Kinetex® 2.6 µm Column Polar C18 100 Å J1 CAR 150 x 2.1 mm 10 mg/L ACN B Solvent (0.1% formic acid) LC-MS min %B (water-soluble t=0 5 t=7 50 oxidation products) Gradient Preparation and irradiation conditions t=10 99 Solvent:H O Irradiation times t=13 99 Carotenoid 2 ratio (min) t=13 5 t=17 5 β-carotene 1:19 (THF) 10, 20, 30, 40, 50 Flow (ml/min) 0.4 Astaxanthin 1:9 (DMSO) 10, 20, 40, 60, 80 Zeaxanthin 1:9 (THF) 10, 30, 50, 70 Oxidation experiments CAR stock solution Solar irradiation in organic solvent CAR J1 aggregate in org. solvent / water mix Discoloration = degradation Degradation kinetics 1.2E-03 9.27E-04 9.29E-04 8.0E-04 ) 1 - 4.37E-04 (k, sec (k, 4.0E-04 Degradation rates rates Degradation 0.0E+00 β-carotene Astaxanthin Zeaxanthin Compound Degradation of β-carotene β-carotene 1.2 1.0 10 ppm J1 0.8 dark 10 min 0.6 20 min 0.4 30 min Absorbance 0.2 40 min 0.0 50 min 200 400 600 800 β-carotene Wavelength (nm) 100 80 60 40 20 % degradation 0 control control + 10' + 20' + 30' + 40' + 50' + H2O2 H2O2 H2O2 H2O2 H2O2 H2O2 Condition Degradation of Astaxanthin Astaxanthin 1.2 original 10ppm J1 1.0 dark 0.8 20 min 0.6 0.4 40 min Absorbance 0.2 60 min 0.0 220 420 620 80 min Astaxanthin Wavelength (nm) 100 80 60 40 20 % degradation 0 control control + 20' + 40' + 60' + 80' + H2O2 H2O2 H2O2 H2O2 H2O2 Condition Degradation of Zeaxanthin Zeaxanthin 2.0 10 ppm J1 1.5 dark 1.0 10 min 30 min Absorbance 0.5 50 min 70 min 0.0 Zeaxanthin 200 400 600 800 100 Wavelength (nm) 80 60 40 20 % degradation 0 control control + 10' + 30' + 50' + 70' + H2O2 H2O2 H2O2 H2O2 H2O2 Condition Degradation products (β-carotene) Compound [M+H]+ Other fragments β-carotene 536.16 [M]+ 391.28 4-oxo-retinoic-acid 315.19 269.19, 227.14, 187.11 191.11, 167.11, 3-hydroxy-β-ionone 209.12 151.07, 109.06, 83.05 β-homocyclocitral 167.14 149.13, 125.10, 109.10 3-hydroxy-β-ionone Degradation products (Astaxanthin) Compound [M+H]+ Other fragments Astaxanthin 597.39 579.39, 147.12, 173.13 15’-apoastaxanthinal 315.19 297.18, 269.19 205.15, 187.11, 9-apoastaxanthinone 223.13 177.13, 162.97 11-apoastaxanthinal 249.16 231.14, 203.14 Astaxanthin 8'-apoastaxanthinal 10'-apoastaxanthinal 12'-apoastaxanthinal 14'-apoastaxanthinal 15'-apoastaxanthinal 13-apoastaxanthinone Degradation products β-carotene (30 min) Astaxanthin (40 min) β-apo-8’-carotenal α-ionone 8’-apoastaxanthinal β-apo-14’-carotenal β-apo-13-carotenone 10’-apoastaxanthinal 4-4’-dimethoxy-β-carotene Retinal palmitate 11-apoastaxanthinal 5,8-epoxy-β-carotene Retinyl acetate 12’-apoastaxanthinal Retinoic acid retinol 14’-apoastaxanthinal 5,6-epoxy-retinoic acid DHA 15’-apoastaxanthinal 4-oxo-retinoic acid α-ionene 9-apoastaxanthinone 3,4-didehydro-retinoic acid β-homocyclocitral 13-apoastaxanthinone 4-oxo-retinoic acid . astaxanthin 5-6 epoxide 5,6,5’,6’-diepoxy-β-carotene . astaxanthin 5,6 endoperoxide 15,15’-epoxy-β-carotene . 3-oxo-β-ionone . 3-hydroxy-β-ionone . 3-hydroxy-5,6-epoxy-β-ionone 4-oxo-β-ionone Tetrahydro-β-ionone Degradation pathway (Astaxanthin 40 min) Astaxanthin 8'-apoastaxanthinal 13-apoastaxanthinone 10'-apoastaxanthinal 12'-apoastaxanthinal 14'-apoastaxanthinal 15'-apoastaxanthinal Findings 1. Antioxidant capacity of fungal extracts was established 2. Part of the antioxidant capacity was attributed to carotenoids 3. Carotenoid oxidation product kinetics under photo-oxidation was structure-dependent 4. Oxidation products stemmed from OH-radical attack on e-rich sites What comes next ❖ Hydroxylated derivatives elucidation via GC-MS ❖ Production of pigments and oxidation products in cultures (e.g. diatom-T. weissflogii or cyanobacterium-Synechococcus) ❖ Extraction and oxidation protocols application to natural samples ❖ Isotopic analysis of carotenoid-derived DOM in natural samples Science is team work Bo Peng Davi Munhoz Science = art Acknowledgements Special thanks to: ➢ Dr. Travis Meador ➢ Dr. Engy Ahmed and Ing. František Lorenc ➢ Ing. David Kahoun and Ing. Pavla Fojtíková ➢ Prof. Lihini Aluwihare ➢ Dr. Neal Arakawa ➢ My students: Davi Munhoz and Bo Peng CAS mobility fellowship CAS MSM200961904 European Regional Development Fund MEYS CZ.02.1.01/0.0/0.0/16_013/0001782 Czech MEYS Large Infrastructure for Research MEYS LM2015075 Grant NSF-OCE 1736656 San Diego, CA, USA Thank you for your attention! České Budějovice, CZ.