Ionone Is More Than a Violet's Fragrance

Total Page:16

File Type:pdf, Size:1020Kb

Ionone Is More Than a Violet's Fragrance molecules Review Ionone Is More than a Violet’s Fragrance: A Review Lujain Aloum 1 , Eman Alefishat 1,2 , Abdu Adem 1 and Georg Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; [email protected] (L.A.); Eman.alefi[email protected] (E.A.); [email protected] (A.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE * Correspondence: [email protected]; Tel.: +971-50-413-4525 Academic Editor: Domenico Montesano Received: 25 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance. Keywords: ionone; biological activity; BCO2; ionone derivatives; cancer; inflammation; OR51E2 1. Chemical Structure, Physicochemical Properties and Natural Occurrence Ionone is a ketone compound composed of 13 carbons with a monocyclic terpenoid backbone [1]. The term ionone derived from “iona” (Greek for violet) referring to the violet scent and “ketone” in relation to its structure [2]. Several isomeric ionones exist in Nature, including α-ionone, β-ionone and others. Ionones are found as secondary plant metabolism products that share mevalonic acid as a common precursor [3]. They are widely present in fruits and vegetables comprising β-carotene and are found in plant oils, for example oils from Petunia hybrida, Boronia megastigma Nees and especially Viola odorata [4–7]. It can be found in cow’s milk where is passively transferred after consumption of alfalfa pasture [8,9]. α-Ionone and β-ionone are 3-buten-2-ones substituted by 2,6,6-trimethyl-2-cyclohexen-1-yl and 2,6,6-trimethyl-1-cyclohexen-1-yl groups respectively, at position 4 (Table1)[ 10,11]. The ionone stereoisomers, α-ionone and β-ionone, are pale yellow-to-yellow liquids [12] with a woody floral scent. However, the former has an extra honey olfactory aspect [13]. α-Ionone and β-ionone share similar physicochemical properties [10–12,14–18]. They are both soluble in most fixed oils, alcohol and propylene glycol but insoluble/very slightly soluble in glycerin/water, respectively [12]. Molecules 2020, 25, 5822; doi:10.3390/molecules25245822 www.mdpi.com/journal/molecules Molecules 2020, 25, 5822 2 of 25 MoleculesMolecules 2020, 202025, x, FOR25, x PEERFOR PEER REVIEW REVIEW 2 of 262 of 26 Molecules 2020, 25, x FOR PEER REVIEW 2 of 26 Table 1. TheTable chemicalTable 1. The 1. chemicalThe structure chemical structure of structureα-ionone of α-ionone of and α-iononeβ and-ionone. βand-ionone. β-ionone. Table 1. Theα chemical-Iononeα-Ionone structure of α-iononeβ -Iononeandβ -Iononeβ-ionone. ReferenceReference α-Ionone β-Ionone Reference α-Ionone O O β-Ionone O O Reference ChemicalChemical O Chemicalstructure structure depiction O [10,11[10,11]] [10,11] Chemical depictiondepiction structure [10,11] depiction α-Ionone andα-Iononeβα-ionone-Ionone and are andβ-ionone both β-ionone widely are areboth used both widely as aromawidely used ingredientsused as aromaas aroma iningredients various ingredients industries, in variousin variousincluding industries, industries, includingincluding cosmetics cosmetics (e.g., (e.g., shampoos, shampoos, soaps) soaps) and andnon-cosmetic non-cosmetic (e.g., (e.g., household household detergents detergents and and cosmetics (e.g., shampoos, soaps) and non-cosmetic (e.g., household detergents and cleaners) products. α-Iononecleaners)cleaners) and products. β-ionone products. The are TheFlavor both Flavor andwidely andExtract Extractused Manufa as Manufa aromacturer’scturer’s ingredients Association Association in(FEMA) various (FEMA) declares industries, declares that thatboth both The Flavor and Extract Manufacturer’s Association (FEMA) declares that both ionones are Generally includingionones cosmeticsionones are Generallyare(e.g., Generally shampoos, Recognized Recognized soaps) As Safe Asand Safe(GRAS) non-cosmetic (GRAS) when when used (e.g., used as flavoring householdas flavoring agents. detergentsagents. The TheUS FDA andUS FDA has has Recognized As Safe (GRAS) when used as flavoring agents. The US FDA has also approved their use cleaners) alsoproducts. alsoapproved approved The their Flavor their use andasuse flavoring asExtract flavoring agentsManufa agents [10,11].cturer’s [10,11]. Association (FEMA) declares that both asionones flavoring are agents Generally [10,11 Recognized]. As Safe (GRAS) when used as flavoring agents. The US FDA has also approved2. Synthesis2. their Synthesis use as flavoring agents [10,11]. 2. Synthesis 2.1. Chemical2.1. Chemical Synthesis Synthesis 2.1.2. ChemicalSynthesis Synthesis VioletViolet scent scent (ionone) (ionone) is currently is currently used used in many in many commercial commercial products products as its as price its price is low. is low. However, However, 2.1.Violet Chemical scentbefore Synthesisbefore (ionone)the 1890s the 1890s isviolet currently violet flower flower usedoil was oil in wasconsidered many considered commercial the mo thest mo precious productsst precious of asall of itsessential all price essential isoils. low. oils.This However, This is because is because the productionthe production of one of onekilogram kilogram of violet of violet oil requoil requires ires33,000 33,000 kg ofkg violet of violet flowers flowers [19], [19], which which cost cost before theViolet 1890s scent violet (ionone) flower is currently oil was considered used in many the commercial most precious products of all as essential its price oils. is low. This However, is because approximatelyapproximately 82,500 82,500 German German gold gold marks marks for raw for rawmaterials. materials. This This costly costly procedure procedure motivated motivated many many thebefore production the 1890s of violet one kilogramflower oil was of violet considered oil requires the most 33,000 precious kg of of all violet essential flowers oils. This [19], is which because cost approximatelychemistschemists 82,500 and German andindustries industries gold to find marks to finda cost-efficient fora cost-efficient raw materials. way way to synthesize to This synthesize costly this procedure oilthis [20]. oil [20]. motivated many the productionThus ofThus onein 1893, inkilogram 1893, Tiemann Tiemann of violetand andKrueger oil Krueger requ investigatires investigat 33,000ed thekged ofcompoundthe violet compound flowers responsible responsible [19], whichfor thefor costscentthe scent of of chemists and industries to find a cost-efficient way to synthesize this oil [20]. approximatelyvioletsviolets 82,500 by studying by German studying orris gold orris root marks rootoil; aoil;for much araw much cheaper ma terials.cheaper oil Thiswith oil with costlya similar a similarprocedure odour odour principle motivated principle [20,21]. many [20,21]. They They Thus in 1893, Tiemann and Krueger investigated the compound responsible for the scent of violets chemists achievedand achievedindustries the synthesisthe to synthesis find ofa cost-efficient ionone of ionone in two in way twosteps. tosteps. synthesizeFirs t,Firs theyt, they performed this performed oil [20]. an aldol an aldol condensation condensation of citral of citral by studyingThuswith orrisin with1893, acetone root acetone Tiemann oil; (dimethyl a (dimethyl much and ketone) cheaper Krueger ketone) in oilan ininvestigat alkaline with an alkaline a similarmeeddium methedium odour compoundto produce to principle produce pseudoionone. responsible pseudoionone. [20,21]. Theyfor Then the Then achieved pseudoionone scent pseudoionone of the synthesisviolets by ofwas iononestudying wascyclized cyclized in orris twoto ionone to steps.root ionone oil;upon First, aupon exposuremuch they exposure cheaper performed to acidic to oilacidic co with annditions co aldol nditionsa similar (Scheme condensation (Scheme odour 1). The 1).principle Thetype of citral type and [20,21]. andconcentration with concentration acetoneThey of of (dimethylachieved ketone) acidthe acidsynthesisused in used andetermines alkaline determinesof ionone the medium in ratiothe two ratio of tosteps.
Recommended publications
  • Carotenoid Oxidation Products Are Stress Signals That Mediate Gene Responses to Singlet Oxygen in Plants
    Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants Fanny Ramela,b,c, Simona Birtica,b,c, Christian Giniesd, Ludivine Soubigou-Taconnate, Christian Triantaphylidèsa,b,c, and Michel Havauxa,b,c,1 aCommissariat à l’Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France; bCentre National de la Recherche Scientifique, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France; cUniversité Aix-Marseille, F-13108 Saint-Paul-lez- Durance, France; dInstitut National de la Recherche Agronomique, Unité Mixte de Recherche 408 SQPOV, Université d’Avignon et des Pays de Vaucluse, F-84000 Avignon, France; and eGénomiques Fonctionnelles d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche Institut National de la Recherche Agronomique 1165, Equipe de Recherche Labellisée Centre National de la Recherche Scientifique 8196, Université d’Evry Val d’Essonne, 91057 Evry, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and accepted by the Editorial Board February 23, 2012 (received for review September 29, 2011) 1 O2 (singlet oxygen) is a reactive O2 species produced from triplet toxicity (4, 10, 11) and, therefore, products resulting from their 1 excited chlorophylls in the chloroplasts, especially when plants are direct oxidation by O2 are potential candidates for this function. exposed to excess light energy. Similarly to other active O2 species, This possibility is explored in the present work. 1 O2 has a dual effect: It is toxic, causing oxidation of biomolecules, and it can act as a signal molecule that leads to cell death or to Results 1 1 acclimation.
    [Show full text]
  • Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation Over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media
    Modern Research in Catalysis, 2016, 5, 1-10 Published Online January 2016 in SciRes. http://www.scirp.org/journal/mrc http://dx.doi.org/10.4236/mrc.2016.51001 Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media Racharla Krishna, Chowdam Ramakrishna, Keshav Soni, Thakkallapalli Gopi, Gujarathi Swetha, Bijendra Saini, S. Chandra Shekar* Defense R & D Establishment, Gwalior, India Received 18 November 2015; accepted 5 January 2016; published 8 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The efficient citral hydrogenation was achieved in aqueous media using Pd/CMS and alkali addi- tives like K2CO3. The alkali concentrations, reaction temperature and the Pd metal content were optimized to enhance the citral hydrogenation under aqueous media. In the absence of alkali, ci- tral hydrogenation was low and addition of alkali promoted to ~92% hydrogenation without re- duction in the selectivity to citronellal. The alkali addition appears to be altered the palladium sites. The pore size distribution reveals that the pore size of these catalysts is in the range of 0.96 to 0.7 nm. The palladium active sites are also quite uniform based on the TPR data. The catalytic parameters are correlated well with the activity data. *Corresponding author. How to cite this paper: Krishna, R., Ramakrishna, C., Soni, K., Gopi, T., Swetha, G., Saini, B. and Shekar, S.C. (2016) Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media.
    [Show full text]
  • Ionones When Used As Fragrance Ingredients Q
    Available online at www.sciencedirect.com Food and Chemical Toxicology 45 (2007) S130–S167 www.elsevier.com/locate/foodchemtox Review A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients q The RIFM Expert Panel D. Belsito a, D. Bickers b, M. Bruze c, P. Calow d, H. Greim e, J.M. Hanifin f, A.E. Rogers g, J.H. Saurat h, I.G. Sipes i, H. Tagami j a University of Missouri (Kansas City), c/o American Dermatology Associates, LLC, 6333 Long Avenue, Third Floor, Shawnee, KS 66216, USA b Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Avenue, New York, NY 10032, USA c Lund University, Malmo University Hospital, Department of Occupational and Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d Institut for Miliovurdering, Environmental Assessment Institute, Linne´sgade 18, First Floor, Copenhagen 1361 K, Denmark e Technical University of Munich, Institute for Toxicology and Environmental Hygiene, Hohenbachernstrasse 15-17, Freising-Weihenstephan D-85354, Germany f Oregon Health Sciences University, Department of Dermatology L468, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA g Boston University School of Medicine, Department of Pathology and Laboratory Medicine, 715 Albany Street, L-804, Boston, MA 02118-2526, USA h Hospital Cantonal Universitaire, Clinique et Policlinique de Dermatologie, 24, Rue Micheli-du-Crest, Geneve 14 1211, Switzerland i Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA j 3-27-1 Kaigamori, Aoba-ku, Sendai 981-0942, Japan Abstract An evaluation and review of a structurally related group of fragrance materials.
    [Show full text]
  • Citral (Microencapsulated)
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF CITRAL (MICROENCAPSULATED) (CAS NO. 5392-40-5) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 January 2003 NTP TR 505 NIH Publication No. 03-4439 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Use of Essential Oils of the Genus Citrus As Biocidal Agents
    American Journal of Plant Sciences, 2014, 5, 299-305 Published Online February 2014 (http://www.scirp.org/journal/ajps) http://dx.doi.org/10.4236/ajps.2014.53041 Use of Essential Oils of the Genus Citrus as Biocidal Agents Marcos S. Gomes1, Maria das G. Cardoso1*, Maurilio J. Soares2, Luís R. Batista3, Samísia M. F. Machado4, Milene A. Andrade1, Camila M. O. de Azeredo2, Juliana Maria Valério Resende3, Leonardo M. A. Rodrigues3 1Department of Chemistry, Federal University of Lavras, Lavras, Brazil; 2Laboratory of Cell Biology, Instituto Carlos Cha- gas/Fiocruz, Curitiba, Brasil; 3Department of Food Science, Federal University of Lavras, Lavras, Brazil; 4Department of Chemistry, Federal University of Sergipe, São Cristóvão, Brazil. Email: *[email protected] Received November 26th, 2013; revised December 28th, 2013; accepted January 18th, 2014 Copyright © 2014 Marcos S. Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Marcos S. Gomes et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT In this study, the essential oils extracted from the peels of Citrus aurantifolia, Citrus limon and Citrus sinensis were chemically characterized and quantified. These essential oils and their standards limonene, citral and li- monene + citral were evaluated (at concentrations ranging from 500 to 3.91 mL·mL−1) regarding their anti-try- panosome, antifungal and antibacterial activities.
    [Show full text]
  • Light-Induced Changes in an Aqueous Β-Carotene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIR Universita degli studi di Milano 5238 J. Agric. Food Chem. 2007, 55, 5238−5245 Light-Induced Changes in an Aqueous â-Carotene System Stored under Halogen and Fluorescent Lamps, Affected by Two Oxygen Partial Pressures SARA LIMBO,* LUISA TORRI, AND LUCIANO PIERGIOVANNI Department of Food Science and Microbiology, University of Milan, Via Celoria 2, 20133 Milan, Italy The aim of this work was to investigate the reaction kinetics of â-carotene in an aqueous medium as a function of exposure to commercial lights (halogen and fluorescent sources) and oxygen partial pressures. The evolution of the pigment concentration, the changes in color, and the accumulation of a volatile compound (â-ionone) were monitored during storage. The kinetics of degradation were mathematically modeled to compare the effects of lighting conditions and oxygen partial pressures. Lighting was also a critical variable in the presence of a low oxygen partial pressure (5 kPa), and in these conditions, the â-carotene degraded completely during storage, even if more slowly than at 20 kPa of O2. The pigment degradation was correlated to illuminance and UVA irradiance values, but the different decay rates of the fluorescent lamps were explained by the differences in the blue region of the energy emission spectra. A halogen lamp gave minor negative effects on â-carotene degradation. KEYWORDS: Light; halogen lamp; fluorescent lamp; â-carotene; â-ionone; aqueous system; color INTRODUCTION chemical bonds (6, 9). The effects of light on the degradation of packaged foods have been widely investigated especially Food color and appearance are important visually perceived when lipidic substrates are involved (10); attention has therefore factors that contribute to customer selection (1).
    [Show full text]
  • Photochemical Degradation of Antioxidants: Kinetics and Molecular End Products
    Photochemical degradation of antioxidants: kinetics and molecular end products Sofia Semitsoglou Tsiapou 2020 Americas Conference IUVA [email protected] 03/11/2020 Global carbon cycle and turnover of DOC 750 Atmospheric CO2 Surface Dissolved Inorganic C 610 1,020 Dissolved Terrestrial Organic Biosphere Carbon 662 Deep Dissolved 38,100 Inorganic C Gt C (1015 gC) Global carbon cycle and turnover of DOC DOC (mM) Stephens & Aluwihare ( unpublished) Buchan et al. 2014, Nature Reviews Microbiology Problem definition Enzymatic processes Bacteria Labile Recalcitrant Fungi Light Corganic Algae Corganic Radicals Carotenoids (∙OH, ROO∙) ➢ LC-MS ➢ GC-MS H2O-soluble products As Biomarkers for ➢ GC-IRMS Corg sources, fate and reactivity??? Hypotheses 1. Carotenoids in fungi neutralize free radicals and counteract oxidative stress and in marine environments are thought to serve as precursors for recalcitrant DOC 2. Carotenoid oxidation products can accumulate and their production and release can represent an important flux of recalcitrant DOC 3. Biological sources and diagenetic pathways of carotenoids are encoded into the fine-structure as well as isotopic composition of the degradation products FUNgal experiments Strains Culture cultivation - Unidentified - Potato Dextrose broth medium - Aspergillus candidus - Incubated 7 days - Aspergillus flavus - Aerobic conditions - Aspergillus terreus - Under natural light (28℃ ) - Penicillium sp. Biomass and Media Lyophilization extracts Bligh and Dyer method (for lipids analysis) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts ABTS assay: fungal antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 400 350 300 250 200 Medium 150 Biomass extracted] 100 50 0 TEAC [µmol of Trolox/mg of biomass of of[µmol Trolox/mg TEAC Unidentified Aspergillus Aspergillus Aspergillus Penicillium candidus flavus terreus sp.
    [Show full text]
  • Citral Cas N°:5392-40-5
    OECD SIDS CITRAL FOREWORD INTRODUCTION CITRAL CAS N°:5392-40-5 UNEP PUBLICATIONS 1 OECD SIDS CITRAL SIDS Initial Assessment Report for 13th SIAM (Switzerland, November 6-9, 2001) Chemical Name : Citral CAS No: 5392-40-5 Sponsor Country: Japan National SIDS Contact Point in Sponsor Country: Mr. Yasuhisa Kawamura, Ministry of Foreign Affairs, Japan History: This SIAR was discussed at SIAM11 (USA, January, 2001) at which the human health assessment and its conclusion were accepted. The environmental assessment was revised after SIAM11 and the revised SIAR was discussed and finalised at SIAM13. Tests: No testing ( ) Testing (x) Vapor pressure, log Pow, Water solubility, Hydrolysis and Photolysis, Biodegradation, Environmental fate, Acute toxicity to fish, daphnia and algae, Chronic toxicity to daphnia, Preliminary reproduction toxicity Comment: 2 UNEP PUBLICATIONS OECD SIDS CITRAL SIDS INITIAL ASSESSMENT PROFILE CAS No. 5392-40-5 Chemical Name Citral Structural Formula O C10H16O RECOMMENDATIONS The chemical is currently of low priority for further work. SUMMARY CONCLUSIONS OF THE SIAR Human Health Citral was rapidly absorbed from the gastro -intestinal tract. Much of an applied dermal dose was lost due to its extreme volatility, but the citral remaining on the skin was fairly well absorbed. Citral was rapidly metabolized and excreted as metabolites. Urine was the major route of elimination. Acute toxicity of this chemical is low in rodents because the oral or dermal LD50 values were more than 1000 mg/kg. This chemical is irritating to skin and not irritating to eyes in rabbits. There is some evidence that this chemical is a human skin sensitizer.
    [Show full text]
  • Tomato-Based Products and Lycopene in the Prevention of Cancer: Bioavailability and Antioxidant Properties
    CANCER PREVENTION RESEARCH □ REVIEW ARTICLE □ Tomato-based Products and Lycopene in the Prevention of Cancer: Bioavailability and Antioxidant Properties Eun-Sun Hwang School of Agricultural Biotechnology and Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea Epidemiological studies showed that dietary intakes of tomatoes and tomato products are associated with a decreased risk of chronic diseases, such as cancer and cardiovascular disease. This beneficial effect could be related to a high intake of carotenoids such as lycopene or β-carotene. Lycopene is present in tomatoes and tomato products and it is one of the most potent antioxidants among dietary carotenoids. Serum and tissue lycopene levels have been found to be inversely related to the incidence of several types of cancer, including prostate cancer. Although the antioxidant properties of lycopene are thought to be primarily responsible for its beneficial effects, evidence is accumulating to suggest that other mechanisms may also be involved. The bioavailability of lycopene is an essential requirement to sustain its in vivo role. This review outlined the characteristics of lycopene and its bioavailability in human body. (Cancer Prev Res 10, 81-88, 2005) ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ Key Words: Tomato, Lycopene, Carotenoids, Bioavailability, Antioxidant, Cancer prevention of vitamin A.2) The ability to function as a provitamin A was INTRODUCTION limited to those carotenoids with an unsubstituted β-ionone group, and include α-carotene, β-carotene, and β-cryptoxan- Carotenoids are the most common natural pigments and thin. Lycopene lacks the β-ionone ring structure of β-carotene more than 600 different compounds have been characterized and it dose not have provitamin A activity.
    [Show full text]
  • Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti-Aging Potential Parris Kidd, Phd
    Monograph amr Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti-Aging Potential Parris Kidd, PhD Abstract Introduction Astaxanthin, a xanthophyll carotenoid, is a nutrient with Astaxanthin is a carotenoid nutrient with unique cell membrane actions and diverse clinical benefits. molecular properties that precisely position it This molecule neutralizes free radicals or other oxidants by within cell membranes and circulating lipoproteins, either accepting or donating electrons, and without being thereby imbuing them with potent antioxidant and destroyed or becoming a pro-oxidant in the process. Its linear, anti-inflammatory actions.1,2 Astaxanthin also polar-nonpolar-polar molecular layout equips it to precisely effectively protects the double membrane system insert into the membrane and span its entire width. In this of mitochondria, to the point of boosting their position, astaxanthin can intercept reactive molecular species energy production efficiency.3 As a dietary supple- within the membrane’s hydrophobic interior and along its ment, astaxanthin demonstrates an exceptional hydrophilic boundaries. Clinically, astaxanthin has shown range of benefits, mostly at very modest dietary diverse benefits, with excellent safety and tolerability. In intakes (40 mg/day or less). The molecular struc- double-blind, randomized controlled trials (RCTs), astaxanthin ture of astaxanthin is illustrated in Figure 1. lowered oxidative stress in overweight and obese subjects and Humans do not make astaxanthin.4 Current in smokers.
    [Show full text]
  • Ionone: Its Occurrence and Biological Function and Metabolic Engineering
    plants Review β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering Antonello Paparella 1 , Liora Shaltiel-Harpaza 2,3 and Mwafaq Ibdah 4,* 1 Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; [email protected] 2 Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel; [email protected] 3 Tel Hai College, P.O. Box 831, Kiryat Shmona, Upper Galilee 12210, Israel 4 Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel * Correspondence: [email protected]; Tel.: +972-4-953-9537; Fax: +972-4-983-6936 Abstract: β-Ionone is a natural plant volatile compound, and it is the 9,10 and 90,100 cleavage product of β-carotene by the carotenoid cleavage dioxygenase. β-Ionone is widely distributed in flowers, fruits, and vegetables. β-Ionone and other apocarotenoids comprise flavors, aromas, pigments, growth regulators, and defense compounds; serve as ecological cues; have roles as insect attractants or repellants, and have antibacterial and fungicidal properties. In recent years, β-ionone has also re- ceived increased attention from the biomedical community for its potential as an anticancer treatment and for other human health benefits. However, β-ionone is typically produced at relatively low levels in plants. Thus, expressing plant biosynthetic pathway genes in microbial hosts and engineering the metabolic pathway/host to increase metabolite production is an appealing alternative. In the β β present review, we discuss -ionone occurrence, the biological activities of -ionone, emphasizing insect attractant/repellant activities, and the current strategies and achievements used to reconstruct enzyme pathways in microorganisms in an effort to to attain higher amounts of the desired β-ionone.
    [Show full text]
  • Chemistry of Natural Products
    CHEMISTRY OF NATURAL PRODUCTS Prepared By Mr. Dilip Tayade (Associate Professor) Department of Chemistry Dhanaji Nana Mahavidyalaya, Faizpur Dist.-Jalgaon , Maharashtra, India- 425503 NATURAL PRODUCTS Terpenoids Terpenoids are naturally occurring compounds obtained from various parts of plants, microbes and animals. Terpene-Mixture of isomeric hydrocarbons of the molecular formula C10H16 occurring in terpentine and many other essential oils. All these compounds are composed of isoprene units C5H8 Terpene- It is defined as natural products which consist of one or more isoprene units. They are also called as terpenoids. Types:- Terpenoids are two types 1) Simple Terpenoids- obtained from sap and tissues of certain plants ,these are steam volatile ,occurred in essential oils 2) Complex Terpenoids – obtained from gum & resins of plants,these are not steam volatile. Isolation: Four Methods 1) Extraction 2) Steam Distillation 3) Solvent Extraction 4) Adsorption in purified fats ( enfleurage) Extraction Method- Barks, leaves, seeds and flowers are crushed & juice is screened to remove particles, centrifuged e.g.- Citrus , lemon and grass oil Steam Distillation- Volatile oil distill out along with steam when plant material is kept under steam distillation. An oil then collected by extracting with organic solvents such as petroleum ether . Oil under goes changes such as, Acid gets decarboxylated , ester gets hydrolyzed , some ring compounds may breaks and also affect on odor of essential oil. Solvent Extraction- crushed plant material is extracted
    [Show full text]