Chemistry of Natural Products

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry of Natural Products CHEMISTRY OF NATURAL PRODUCTS Prepared By Mr. Dilip Tayade (Associate Professor) Department of Chemistry Dhanaji Nana Mahavidyalaya, Faizpur Dist.-Jalgaon , Maharashtra, India- 425503 NATURAL PRODUCTS Terpenoids Terpenoids are naturally occurring compounds obtained from various parts of plants, microbes and animals. Terpene-Mixture of isomeric hydrocarbons of the molecular formula C10H16 occurring in terpentine and many other essential oils. All these compounds are composed of isoprene units C5H8 Terpene- It is defined as natural products which consist of one or more isoprene units. They are also called as terpenoids. Types:- Terpenoids are two types 1) Simple Terpenoids- obtained from sap and tissues of certain plants ,these are steam volatile ,occurred in essential oils 2) Complex Terpenoids – obtained from gum & resins of plants,these are not steam volatile. Isolation: Four Methods 1) Extraction 2) Steam Distillation 3) Solvent Extraction 4) Adsorption in purified fats ( enfleurage) Extraction Method- Barks, leaves, seeds and flowers are crushed & juice is screened to remove particles, centrifuged e.g.- Citrus , lemon and grass oil Steam Distillation- Volatile oil distill out along with steam when plant material is kept under steam distillation. An oil then collected by extracting with organic solvents such as petroleum ether . Oil under goes changes such as, Acid gets decarboxylated , ester gets hydrolyzed , some ring compounds may breaks and also affect on odor of essential oil. Solvent Extraction- crushed plant material is extracted with petroleum ether, diethyl ether and then distilled out Adsorption in purified fats ( enfleurage)- Classification of Terpenoids No. of Molecular Class of Terpenes Examples Isoprene Formula units 1 C5H8 Hemi-terpenoid Isoprene itself Citral,Limolene,α-terpenoids, 2 C10H16 Mono-terpenoid menthol,dipentone α-pineol,camphor 3 C15H24 Sequi-terpenoid Humulene,bisabolenes 4 C20H32 Di-terpenoid Sex hormons,testoteron, estradiol,vitamin-D 5 C30H48 Tri-terpenoid Steroids such as ( Steroid) choleterol, Ergosterol 6 C40H64 Tetra-terpenoid β-Carotene (Caretenoid) 7 (C6H8)n Poly-terpenoid Natural Rubber At the second level, each group of terpenoids is further classified into further groups on the basis of number of rings present in the molecule. Mono-terpenoids Acyclic Monocyclic Bicyclic Monoterpenoid Monoterpenoids Monoterpenoids CnH2n-2 CnH2n CnH2n-2 Citral α- Terpineol, C10H18O Camphor C H O C H O 10 16 Menthol C10H20O 10 16 α- Pinene C H Dipentene C10H16 10 16 Limolene C10H16 At the third level, each class is further subdivided according to functional groups present in the terpenes. Monocyclic Monoterpenoids Bicyclic monoterpenoids Hydrocarbons Alcohols Hydrocarbons Ketones Dipentene α- Terpineol α- pinene Camphor Menthol Isoprene Rule: The skeleton structure of all naturally occurring terpenoids is built up of two or more isoprene units called as isoprene rule Ingold pointed out that the isoprene unit in naturally occuring terpenoids were joined head to tail .This is known as special isoprene rule. Applications of rule: i) This rule helps in determining the framework of unknown terpenoids. ii)The framework in which the isoprene rule & special isoprene rules are noy followed are ruled out. The following frameworks are accepted . All these structure follows rules General Methods for Structure Determination of Terpenoids 1. Molecular Formula:-Presence of elements are determined from which empirical formula is determined. From empirical formula & mol.wt. the mol.formula is calculated. 2. Detection of unsaturation:- 3.Nature of Oxygen Function:- Oxygen atom may be (A)-OH, (B) –COOH, (C ) -C=O, (D) –CO-CH2- (E) –COCH3 can be detected as A) -OH ( Alcoholic )group:- It is detected by the action of acetic anhydride or phenyl isocyanate R-OH + Ac2O R-O-Ac + AcOH R-O-H + O=C=N-C6H5 R-O-CO-NH-C6H5 B ) -COOH ( Carboxylic ) group :- R-COOH +NaHCO3 R-COONa +CO2 + H2O C) >C=O ( Carbonyl ) group :- >C=O + H2N-OH >C=N-OH + H2O Oxime derivative R-CHO + 2Ag(NH3)2OH R-COOH +2Ag +2NH3 +H2O -CO-CH2- (Oxo) group :- C6H5CHO +HNO2 Oxime +Benzylidene deri. E) –CO-CH3 ( Acetyl ) group:-It forms haloform reaction or on strong oxidation with CrO3 gives acetic acid. 3 Br /NaOH Bromoform R-CH2-CO-CH3 2 R-CH2-COOH + CHBr3 CrO ( O ) Acetic acid R-CH2-CO-CH3 3 R-COOH + CH3COOH 4) Degradation Products: Oxidative oxidation is more imp in structure determination. Oxidizing agents such as alkaline KMnO4, H2O2,O3,CrO3,NaOBr etc. used for degradation. We can find out position of olefinic bond , primary, secondary & tertiary alcohol present in a terpenoid . a) Alkaline KMnO4 :- Olefinic bond gives dihydroxy compound ( glycol ) ii) Trisubstituted compound gives ketones & acid iii)Primary & secondary alcohols are stepwise oxidised to acids while tertiary alcohols are not oxidized by alkaline KMnO4 . R1-CHOH-R2 ( O ) R1-CO-R2 b)CrO3 – It also oxidizes alcohol stepwise. c) O3 ( Ozone )- Ozonolysis find out the position of olefinic double bond . i) Terminal alkenes after ozonolysis gives formaldehyde as one of the product. ii)Tetra-substituted alkene gives diketones:- d) OsO4 :- Alkenes react with OsO4 gives glycol e) Performic acid( H-COOOH):-Alkenes react with performic acid and forms epoxide which on hydrolysis gives glycols. 5) Dehydrogenation:- Dehydrogenation of terpenoids is carried out by heating them in S , Se , Pd & Zn. 6) Dehydration:- conc.H2SO4 ,KHSO4,P2O5, ZnCl2 are commonly used for dehydration of terpenoids , most of the terpenoids on dehydration gives p-cymene. 7) Physical Methods:- U.V., I.R., NMR,Mass spectroscopy are modern methods used for determining structure of terpenoids. 8) Synthetic Methods:- The final confirmation of structure is achieved by its synthesis in the laboratory. Monoterpenoids 1) Citral Class:- Citral belongs to acyclic ( open chain monoterpenoids) Occurrence:- Lemon grass oil ( 70-80 %) Isolation :- Isolated as sodium bisulphite addition product which on hydrolysis gives citral. Properties :- 1). It is a colourless oil,B.P .2280C 2). It is optically inactive. Uses:- 1). It is mostly used as perfume 2). It is the starting material for synthesis of vitamin A Structure determination of citral 1). Molecular Formula:- C10H16O 2). Detection of unsaturation:- 3)The formula for parent saturated hydrocarbon of citral becomes C10H22,which corresponds to a general formula CnH2n-2 suggesting that citral is a acyclic terpenoid. Nature of oxygen:- a) Citral forms an oxime withhydroxyl amine and bisulbhiteaddition productwith saturated NaHCO3. Therefore citral contains either aldehyde or ketonic group. b) Citral on reduction with Na/Hg in dil.acid forms a primary alcohol,geraniol (C10H19O ). Citral 0n mild oxidation with moist Ag2O gives geranic acid( C10H16O2) without loss of carbon atom. Geranic acid Citral Geraniol R-COOH R-CHO R-CH2-OH These reactions confirm the presence of aldehyde group. 5) Position of aldehyde group:- a)It shows λmax 238nm which is characteristic of conjugated aldehyde group. b) Citral on hydrolysis with aq.K2CO3 soln under high pressure gives acetaldehyde & a ketone i.e. methyl heptenone( 6-methyl-hep5-ene-2one) Both reaction proves that citral is a conjugated aldehyde. 6) Carbon skeleton in citral:- Citral when heated with KHSO4 undergoes cyclisation to form p-cymene. Formation of p-cymene proves that citral contains a C- CH3 and isopropylidenen gr. In 1:4position wrt each other By considering all above reactions,the possible carbon skeleton is Does not follow isoprene rule follow isoprene rule 7) Oxidative degradation:-a) b) Formation of acetone in both reaction shows the presence of gem dimethyl group in citral. From all above reactions following structure is assigned Reactions of Citral: Synthesis of Citral a)2,4 Dibromo2 methylbutane reacts with sodio acetyl acetone forms methyl heptenone b) Conversion of methyl heptenone into citral ALKALOIDS Alkaloids are naturally extracted which contain at least one nitrogen atom. These are similar to alkali hence called as alkaloids and having marked physiological,toxic and curative action on living organism. alkaloids are very poisonous but if taken into small quantity can act as medicine. E.g. -Nicotine stimulates the CNS, Morphine relieves pain Occurrence: - Alkaloids are naturally extracted from leaves roots , barks, seeds and fruits Isolation:- 1). The plant material containing alkaloids are dried , powdered & extracted with petroleum ether to remove soluble fats. 2). The residue is then extracted with methyl alcohol so that alkaloids get dissolved in methyl alcohol and residue containing cellulosic and other insoluble material is rejected. 3). The filtrate is distilled off & the crude plant extract is then treated with H dil.HCl or H2SO4 (P =2) when alkaloids converted into their soluble salts, which are then treated with ether or chloroform. 4). Ether layer contains non basic plant material & it is rejected . 5). The water soluble parts containig salt of alkaloids is treated with Na2CO3 or NaOH when alkaloids precipitate out which are then extracted with ether or chloroform. 6). The ether layer is distilled off & the residue obtained contains a mixture of alkaloids . The individual alkaloids are separated by using techniques like fractional distillation, steam distillation and chromatography. Powered Plant Material Extracted with Petroleum Ether Residue Ether Part Extracted with Methyl alcohol (Soluble fats rejected) Methyl Alcohol Part contain Alkaloids Residue Distilled off to remove methyl alcohol ( Cellulosic material rejected) Crude Plant Extract
Recommended publications
  • Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation Over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media
    Modern Research in Catalysis, 2016, 5, 1-10 Published Online January 2016 in SciRes. http://www.scirp.org/journal/mrc http://dx.doi.org/10.4236/mrc.2016.51001 Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media Racharla Krishna, Chowdam Ramakrishna, Keshav Soni, Thakkallapalli Gopi, Gujarathi Swetha, Bijendra Saini, S. Chandra Shekar* Defense R & D Establishment, Gwalior, India Received 18 November 2015; accepted 5 January 2016; published 8 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The efficient citral hydrogenation was achieved in aqueous media using Pd/CMS and alkali addi- tives like K2CO3. The alkali concentrations, reaction temperature and the Pd metal content were optimized to enhance the citral hydrogenation under aqueous media. In the absence of alkali, ci- tral hydrogenation was low and addition of alkali promoted to ~92% hydrogenation without re- duction in the selectivity to citronellal. The alkali addition appears to be altered the palladium sites. The pore size distribution reveals that the pore size of these catalysts is in the range of 0.96 to 0.7 nm. The palladium active sites are also quite uniform based on the TPR data. The catalytic parameters are correlated well with the activity data. *Corresponding author. How to cite this paper: Krishna, R., Ramakrishna, C., Soni, K., Gopi, T., Swetha, G., Saini, B. and Shekar, S.C. (2016) Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media.
    [Show full text]
  • Citral (Microencapsulated)
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF CITRAL (MICROENCAPSULATED) (CAS NO. 5392-40-5) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 January 2003 NTP TR 505 NIH Publication No. 03-4439 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Use of Essential Oils of the Genus Citrus As Biocidal Agents
    American Journal of Plant Sciences, 2014, 5, 299-305 Published Online February 2014 (http://www.scirp.org/journal/ajps) http://dx.doi.org/10.4236/ajps.2014.53041 Use of Essential Oils of the Genus Citrus as Biocidal Agents Marcos S. Gomes1, Maria das G. Cardoso1*, Maurilio J. Soares2, Luís R. Batista3, Samísia M. F. Machado4, Milene A. Andrade1, Camila M. O. de Azeredo2, Juliana Maria Valério Resende3, Leonardo M. A. Rodrigues3 1Department of Chemistry, Federal University of Lavras, Lavras, Brazil; 2Laboratory of Cell Biology, Instituto Carlos Cha- gas/Fiocruz, Curitiba, Brasil; 3Department of Food Science, Federal University of Lavras, Lavras, Brazil; 4Department of Chemistry, Federal University of Sergipe, São Cristóvão, Brazil. Email: *[email protected] Received November 26th, 2013; revised December 28th, 2013; accepted January 18th, 2014 Copyright © 2014 Marcos S. Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Marcos S. Gomes et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT In this study, the essential oils extracted from the peels of Citrus aurantifolia, Citrus limon and Citrus sinensis were chemically characterized and quantified. These essential oils and their standards limonene, citral and li- monene + citral were evaluated (at concentrations ranging from 500 to 3.91 mL·mL−1) regarding their anti-try- panosome, antifungal and antibacterial activities.
    [Show full text]
  • Citral Cas N°:5392-40-5
    OECD SIDS CITRAL FOREWORD INTRODUCTION CITRAL CAS N°:5392-40-5 UNEP PUBLICATIONS 1 OECD SIDS CITRAL SIDS Initial Assessment Report for 13th SIAM (Switzerland, November 6-9, 2001) Chemical Name : Citral CAS No: 5392-40-5 Sponsor Country: Japan National SIDS Contact Point in Sponsor Country: Mr. Yasuhisa Kawamura, Ministry of Foreign Affairs, Japan History: This SIAR was discussed at SIAM11 (USA, January, 2001) at which the human health assessment and its conclusion were accepted. The environmental assessment was revised after SIAM11 and the revised SIAR was discussed and finalised at SIAM13. Tests: No testing ( ) Testing (x) Vapor pressure, log Pow, Water solubility, Hydrolysis and Photolysis, Biodegradation, Environmental fate, Acute toxicity to fish, daphnia and algae, Chronic toxicity to daphnia, Preliminary reproduction toxicity Comment: 2 UNEP PUBLICATIONS OECD SIDS CITRAL SIDS INITIAL ASSESSMENT PROFILE CAS No. 5392-40-5 Chemical Name Citral Structural Formula O C10H16O RECOMMENDATIONS The chemical is currently of low priority for further work. SUMMARY CONCLUSIONS OF THE SIAR Human Health Citral was rapidly absorbed from the gastro -intestinal tract. Much of an applied dermal dose was lost due to its extreme volatility, but the citral remaining on the skin was fairly well absorbed. Citral was rapidly metabolized and excreted as metabolites. Urine was the major route of elimination. Acute toxicity of this chemical is low in rodents because the oral or dermal LD50 values were more than 1000 mg/kg. This chemical is irritating to skin and not irritating to eyes in rabbits. There is some evidence that this chemical is a human skin sensitizer.
    [Show full text]
  • Camphor: Risks and Benefits of a Widely Used Natural Product PAOLO
    JASEM ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. June, 2009 All rights reserved www.bioline.org.br/ja Vol. 13(2) 69 - 74 Camphor: risks and benefits of a widely used natural product PAOLO ZUCCARINI 1Department of Crop Biology, Sect. Plant Physiology, University of Pisa, 56127, Pisa, Italy *Corresponding author. E-mail: [email protected]; tel.: +39 349 1298437 ABSTRACT: This study analyzes the main aspects of the non-clinical profile of D-Camphor, a natural product widely used as a common remedy for several symptoms. The pharmacology, pharmacokinetics and toxicity of this substance are analyzed, with regard to all the literature available, in order to assess a risk profile and better understand the positive and negative aspects connected with its use. The general conclusion is that the main risks of camphor as a medicinal product are mainly due to a somehow diffused attitude of considering it as “not a real medicine”, and to its consequent sometimes not sufficiently careful administration. @ JASEM Camphor is a natural product derived from the effective medicine (Gibson et al., 1989). Camphor wood of the camphor laurel (Cinnamomum is today mostly used in the form of inhalants and of camphora L.) trees through steam distillation and camphorated oil, a preparation of 19% or 20% purification by sublimination; the trees used should camphor in a carrier oil, for the home treatment of be at least 50 years old. It also occurs in some other colds (Jochen and Theis, 1995) and as a major related trees in the laurel family, notably Ocotea active ingredient of liniments and balms used as usambarensis Eng., and can also be obtained from topical analgesics (Xu et al., 2005).
    [Show full text]
  • Backhousia Citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral
    foods Review Backhousia citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral Ian Southwell Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; [email protected] Abstract: Lemon oils are amongst the highest volume and most frequently traded of the flavor and fragrance essential oils. Citronellal and citral are considered the key components responsible for the lemon note with citral (neral + geranial) preferred. Of the myriad of sources of citral, the Australian myrtaceous tree, Lemon Myrtle, Backhousia citriodora F. Muell. (Myrtaceae), is considered superior. This review examines the history, the natural occurrence, the cultivation, the taxonomy, the chemistry, the biological activity, the toxicology, the standardisation and the commercialisation of Backhousia citriodora especially in relation to its essential oil. Keywords: Backhousia citriodora; lemon myrtle; lemon oils; citral; geranial; neral; iso-citrals; citronellal; flavor; fragrance; biological activity 1. Introduction There are many natural sources of lemon oil or lemon scent. According to a recent ISO Strategic Business Plan [1], the top production of lemon oils comes from lemon (7500 Citation: Southwell, I. Backhousia tonne), Litsea cubeba (1700 tonne), citronella (1100 tonne) and Eucalyptus (now Corymbia) citriodora F. Muell. (Lemon Myrtle), citriodora (1000 tonne). Lemon oil itself, cold pressed from the peel of Citrus limon L., an Unrivalled Source of Citral. Foods Rutaceae, contains 2–3% of citral (geranial + neral) [2–4], the lemon flavor ingredient. 2021, 10, 1596. https://doi.org/ Consequently, the oil, along with numerous other citrus species, is used more for its high 10.3390/foods10071596 limonene (60–80%) and minor component content as a fragrance, health care additive [5] or solvent rather than a citral lemon flavor.
    [Show full text]
  • Ionone Is More Than a Violet's Fragrance
    molecules Review Ionone Is More than a Violet’s Fragrance: A Review Lujain Aloum 1 , Eman Alefishat 1,2 , Abdu Adem 1 and Georg Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; [email protected] (L.A.); Eman.alefi[email protected] (E.A.); [email protected] (A.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE * Correspondence: [email protected]; Tel.: +971-50-413-4525 Academic Editor: Domenico Montesano Received: 25 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators.
    [Show full text]
  • Central Effects of Citral, Myrcene and Limonene, Constituents of Essential Oil Chemotypes from Lippia Alba (Mill.) N.E
    Phytomedicine 9: 709–714, 2002 © Urban & Fischer Verlag http://www.urbanfischer.de/journals/phytomed Phytomedicine Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) N.E. Brown T. Gurgel do Vale, E. Couto Furtado, J. G. Santos Jr., and G. S. B. Viana Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil Summary Citral, myrcene and limonene (100 and 200 mg/kg body wt., i.p.), constituents of essential oils from Lippia alba chemotypes, decreased not only the number of crossings but also numbers for rearing and grooming, as measured by the open-field test in mice. Although muscle relaxation detected by the rota rod test was seen only at the highest doses of citral (200 mg/kg body wt.) and myrcene (100 and 200 mg/kg body wt.), this effect was observed even at the lowest dose of limonene (50 mg/kg body wt.). Also, citral and myrcene (100 and 200 mg/kg body wt.) increased barbiturate sleeping time as compared to control. Limonene was also effective at the highest dose, and although citral did not increase the onset of sleep, it increased the duration of sleep, which is indicative of a poten- tiation of sleeping time. Citral (100 and 200 mg/kg body wt.) increased 2.3 and 3.5 times, respec- tively, the barbiturate sleeping time in mice. Similar effects were observed for myrcene and limonene at the highest dose (200 mg/kg body wt.) which increased the sleeping time around 2.6 times. In the elevated-plus maze, no effect was detected with citral up to 25 mg/kg body wt., while at a high dose it decreased by 46% the number of entries in the open arms.
    [Show full text]
  • Ingredients List
    XTRÆM AMBROXANTM (50%) / GLOBALIDE / EXALTOLIDE / HEDIONE HIGH CIS / IROTYL EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER) ALCOHOL VOL.80% MADE IN FRANCE ULTRÆ ALDAMBRETM / ALDEHYDE / ROSE OXIDE / HABDANOLIDETM / TONALIDTM EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER) ALCOHOL VOL.80% MADE IN FRANCE SUPÆR ISO E SUPERTM (90%) / ETHYL ACETATE / PHENYL OXIDE / MENTHANYL ACETATE EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER) ALCOHOL VOL.80% MADE IN FRANCE HYPÆR CASHMERANTM / TRIPLAL / KEPHALISTM / AMBRETTOLIDETM / MUSC T EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER), EUGENOL, CITRAL ALCOHOL VOL.80% MADE IN FRANCE SUPRÆ AKIGALAWOOD TM / BELAMBRE TM / GEORGYWOOD TM / SYLKOLIDE TM / COSMONE TM / SERENOLIDE TM EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER) ALCOHOL VOL.80% MADE IN FRANCE ÆXTRA BAGDANOLTM / EVERNYL / ETHYL ACETATE / ETHYL LINALYL ACETATE EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER) ALCOHOL VOL.80% MADE IN FRANCE ÆTHEROXYDE EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER), ALPHA-ISOMETHYL IONONE, BHT, ETHYLHEXYL METHOXYCINNAMATE, BUTYL METHOXYDIBENZOYLMETHANE, ETHYLHEXYL SALICYLATE ALCOHOL VOL.80% MADE IN FRANCE CITRUS ESTER EAU DE PARFUM INGREDIENTS : ALCOHOL DENAT., PARFUM (FRAGRANCE), AQUA (WATER), CITRAL, CITRONELLOL, ISOEUGENOL, LIMONENE, LINALOOL, BHT, ETHYLHEXYL METHOXYCINNAMATE, BUTYL METHOXYDIBENZOYLMETHANE, ETHYLHEXYL
    [Show full text]
  • Health and Safety Data Sheet Airsenz Air Freshner Aerosol Refill
    Roman Ridge Road, Sheffield Tel +44 (0) 114 2560 101 South Yorkshire Fax +44 (0) 114 2449 155 S9 1GB Web: www.hygequip.com United Kingdom Email: [email protected] Health and Safety Data Sheet AirSenz Air Freshner Aerosol Refill 1) IDENTIFICATION OF THE PRODUCT AND OF THE COMPANY Product Name: AirSenz Air Freshener Aerosol Refill. Product Type: Air Freshener - all variants. Supplier: Hygequip Europe Ltd T/A Address: Roman Ridge Road, Sheffield S9 1GB, United Kingdom, Telephone: 0114 2560 101 E.mail: [email protected] 2) COMPOSITION / INGREDIENT INFORMATION GENERAL DESCRIPTION; A fragranced denatured ethanol solution with butane as the propellant. Chemical Identity: Butane, alcohol denat., isobutane, propane, parfum. Substances listed in CHIP or EH40 Classified Concentration OES CAS no. R/S phrases Symbol BUTANE 40 <50% w/w 600 ppm 68476-85-7 R12, S2, 9, 16, 33. Fx ALCOHOL DENAT. <40% w/w 1000 ppm 64-17-5 R11, S2,7/9,16 F PARFUM >10% w/w - - - - R10,20,22,36,38,43, Xi,N 50,51,53,66. 3) HAZARDS IDENTIFICATION Eye Contact: Contact may cause mild irritation Skin Contact: Contact may cause irritation Inhalation: High levels of vapour may cause dizziness Ingestion: Accidental ingestion is an unlikely event Aerosols may rupture if heated to excess. This product may contain the following allergens:- Hexyl Cinnamal, cinnamal,coumarin,eugenol,butylphenyl methylpropional, citral,citronellol,limonene, linalool,alpha-isomethyl ionone, benzyl cinnamate, benzyl alcohol,geraniol,isoeugenol,hydroxyisohexyl-3-cyclohexene carboxaldehyde,amyl cinnamal, benzyl salicylate,hydroxycitronellol, methyl-2-octynoate,farnesol,benzyl benzoate. 4) FIRST AID MEASURES Eye Contact: Contact lens should be removed.
    [Show full text]
  • Hormonell Wirksame Chemikalien in Kosmetika (Anm.: Alle Naturakosmetik-Stichproben Waren Einwandfrei Und Sind Hier Nicht Gelistet)
    Hormonell wirksame Chemikalien in Kosmetika (Anm.: alle Naturakosmetik-Stichproben waren einwandfrei und sind hier nicht gelistet) PRODUKTNAME MARKE HERSTELLER EAN INCI GEFUNDENE STOFFE ALCOHOL DENAT., AQUA/WATER/EAU, PEG-40 HYDROGENATED CASTOR OIL, PARFUM/FRAGRANCE, ETHYLHEXYL METHOXYCINNAMATE, LIMONENE, LINAOOL, BENZOPHENONE-3, ETHYLHEXYL SALICYLATE, ALLANTOIN, BUTYL ALCOHOL DENAT, ADIDAS VICTORY LEAGUE METHOXYDIBENZOYLMETHANE, LINOLEAMIDOPROPYL PG-DIMONIUM CLORIDE ETHYLHEXYL ADIDAS COTY, FRANCE 3412241230158 AFTER SHAVE PHOSPHATE, PROPYLENE GLYCOL, TOCOPHERYL ACETATE, POLYSORBATE 20, METHOXYCINNAMATE, BUTYLPHENYL METHYLPROPIONAL, COUMARIN, CITRAL, LINOLEIC ACID, BENZOPHENONE-3 POTASSIUM GLUCONATE, GERANIOL, DISODIUM EDTA, BHT, LINOLENIC ACID, CI14700, CI 19140 ALCOHOL DENAT., AQUA/WATER/EAU, PEG-40 HYDROGENATED CASTOR OIL, PARFUM/FRAGRANCE, ETHYLHEXYL METHOXYCINNAMATE, LIMONENE, LINALOOL, BUTYLPHENYL METHYLPROPIONAL, ALLANTOIN, BENZOPHENONE-3, ETHYLHEXYL ALCOHOL DENAT, SALICYLATE, LINOLEAMIDOPROPYL PG-DIMONIUM CHLORIDE PHOSPHATE, ADIDAS ICE DIVE AFTER ETHYLHEXYL ADIDAS COTY, FRANCE 3412242630155 PROPYLENE GLYCOL, BUTYL METHOXYDIBENZOYLMETHANE, TOCOPHERYL SHAVE METHOXYCINNAMATE, ACETATE, POLYSORBATE 20, CITRONELLOL, CITRAL, HEXYL CINNAMAL, COUMARIN, BENZOPHENONE-3 GERANIOL, LINOLEIC ACID, POTASSIUM GLUCONATE, DISODIUM EDTA, BHT, LINOLENIC ACID, FD&C YELLOW NO.5 (CI 19140), FD&C BLUE NO.1 (CI 42090), EXT.D&C VIOLET NO.2 (CI 60730) ALCOHOL DENAT, AQUA, PARFUM, GLYCERIN, PEG-40 HYDROGENATED CASTOR OIL, ETHYLHEXYL METHOXYCINNAMATE, BUTYL
    [Show full text]
  • Chemical Kinetics of Multiphase Reactions Between Ozone and Human Skin Lipids: Implications for Indoor Air Quality and Health Effects
    UC Irvine UC Irvine Previously Published Works Title Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. Permalink https://escholarship.org/uc/item/82933277 Journal Indoor air, 27(4) ISSN 0905-6947 Authors Lakey, PSJ Wisthaler, A Berkemeier, T et al. Publication Date 2017-07-01 DOI 10.1111/ina.12360 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received:10June2016 | Accepted:30November2016 DOI: 10.1111/ina.12360 ORIGINAL ARTICLE Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects P. S. J. Lakey1 | A. Wisthaler2 | T. Berkemeier1 | T. Mikoviny2 | U. Pöschl1 | M. Shiraiwa1,3 1MultiphaseChemistryDepartment,Max PlanckInstituteforChemistry,Mainz, Abstract Germany Ozonereactswithskinlipidssuchassqualene,generatinganarrayoforganiccom- 2 DepartmentofChemistry,UniversityofOslo, pounds,someofwhichcanactasrespiratoryorskinirritants.Thus,itisimportantto Oslo,Norway quantifyandpredicttheformationoftheseproductsunderdifferentconditionsinin- 3DepartmentofChemistry,Universityof California,Irvine,CA,USA doorenvironments.Wedevelopedthekineticmultilayermodelthatexplicitlyresolves masstransportandchemicalreactionsattheskinandinthegasphase(KM-SUB-Skin). Correspondence M.Shiraiwa,DepartmentofChemistry, It can reproduce the concentrations of ozone and organic compounds in previous UniversityofCalifornia,Irvine,CA,USA. measurementsandnewexperiments.Thisenabledthespatialandtemporalconcentra-
    [Show full text]